The Firm: Basics

MICROECONOMICS

Principles and Analysis
Frank Cowell

Notation

- Quantities

We set out some of the elements needed for an analysis of the firm.

- Technical efficiency
- Returns to scale
- Convexity
- Substitutability
- Marginal products
- This is in the context of a single-output firm...
- ...and assuming a competitive environment.
- First we need the building blocks of a model...

The basics of production...

-

z_{i}
$\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$
q For next
presentaion

- Prices
w_{i}
- price of input i
$\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \quad$ Input-price vector
p
-price of output
Overview... me fimm baics
The environment for the basic

$$
\begin{aligned}
& \text { Input requi } \\
& \text { ment sets }
\end{aligned}
$$ model of the firm.

Feasible production

- The basjo rolationchip between output and function $q \leq \phi\left(z_{1}, z_{2}, \ldots, z_{m}\right)$
- This can be written more compactlo Note that we use " \leq " and not

as:	" $=$ " in the relor of inputs
-Consider the meaning of ϕ	

$q \leq \phi(\mathbf{z})$ -Consider the meaning of ϕ

- ϕ gives the maximum amount of output that can be produced from a given list of inputs

-single-output, multiple-input production relation

Technical efficiency

- Case 1: -The case where
$q=\phi(\mathbf{z})$
- Case 2:
$q<\phi(\mathbf{z})$ production is technically efficient
-The case where production is (technically) inefficient

Intuition: if the combination (\mathbf{z}, q) is inefficient you can throw away some inputs and still produce the same output

The function ϕ

Overview...

The input requirement set

- Pick a particular output level q
- Find a feasible input vector \mathbf{z}
- Repeat to find all such vectors
- Yields the input-requirement set
$Z(q):=\{\mathbf{z}: \phi(\mathbf{z}) \geq q\}$
- The shape of Z depends on the assumptions made about production...
- We will look at four cases.
- remember, we must have $q \leq \phi(\mathbf{z})$
- The set of input vectors that meet the technical feasibility condition for output q..

The input requirement set

- Feasible but inefficient Feasible and technically efficient - Infeasible points.

Case 1: Z smooth, strictly convex


```
- Pick two boundary points - Draw the line between them - Intermediate points lie in the
interior of \(Z\) interior of \(Z\).
```

-Note important role of convexity.

A combination of two echniques may produce more output.

- What if we changed some of the assumptions?

Case 2: Z Convex (but not strictly)

Case 3: Z smooth but not convex
Case 4: Z convex but not smooth

Isoquants

- Pick a particular output level q
- Find the input requirement set $Z(q)$
- The isoquant is the boundary of Z :
$\{\mathbf{z}: \phi(\mathbf{z})=q\}$
- If the function ϕ is differentiable at \mathbf{z} then the marginal rate of technical substitution is the slope at $\mathbf{z}: \frac{\phi_{j}(\mathbf{z})}{\phi_{i}(\mathbf{z})}$
- Gives the rate at which you can trade off one output against another along the isoquant - to maintain a constant q.
- Think of the isoquant as an integral part of the set $Z(q)$
- Where appropriate, use subscript to denote partial derivatives. So

Input ratio and MRTS

- MRTS $_{21}$ is the implicit "price" of input 1 in terms of input 2 .
- The higher is this "price", the smaller is the relative usage of input 1 .
- Responsiveness of input ratio to the MRTS is a key property of ϕ.
- Given by the elasticity of substitution $-\frac{\partial \log \left(z_{1} / z_{2}\right)}{\partial \log \left(\phi_{1} / \phi_{2}\right)}$
- Can think of it as measuring the isoquant's "curvature" or "bendiness"

A simple derivation of the logarithmic form of elasticity of substitution

See also A.4.6

Elasticity: diagrammatic explanation

Elasticity: perfect substitute isoquants

Let's rebuild from the isoquants

- The isoquants form a contour map.
- If we looked at the "parent" diagram, what would we see?
- Consider returns to scale of the production function.
- Examine effect of varying all inputs together:
- Focus on the expansion path.
- q plotted against proportionate increases in \mathbf{z}.
- Take three standard cases:
- Increasing Returns to Scale
- Decreasing Returns to Scale
- Constant Returns to Scale
- Let's do this for 2 inputs, one output...

Case 1: IRTS

Case 3: CRTS

Marginal products

- Pick a technically efficient input vector
- Keep all but one input constant
- Measure the marginal change in output w.r.t. this input

$$
\mathrm{MP}_{i}=\phi_{i}(\mathbf{z})=\frac{\partial \phi(\mathbf{z})}{\partial z_{i}}
$$

- Remember, this means
a z such that $q=\phi(\mathbf{z})$
- The marginal product

CRTS production function again

Relationship between q and z_{1}

- Some other possibilities for the relation between relation between input.

- We've just taken the conventional case
- But in general this curve depends on the shape of ϕ.

MP for the CRTS function

Key concepts

What next?
 - Introduce the market

- Optimisation problem of the firm
- Method of solution
- Solution concepts.

