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2 Fair Distribution

2.1 Four Principles of Distributive Justice

In this chapter and the next, a benevolent dictator representing the public authority seeks a
reasonable compromise between the conflicting interests of the parties involved in a given
problem of distribution. Reasonable means “for a reason,” and the axioms are the formal
expression of such reasons. The manager of a firm, the parents in a family, and the judge in
a litigation are all acting as benevolent dictators.1

Recall Aristotle’s maxim, sometime called the formal principle of distributive justice:
“Equals should be treated equally, and unequals unequally, in proportion to the relevant
similarities and differences.” The term “proportion” should not be taken too literally here;
the interesting point is to draw our attention to the “relevant” similarities and differences.

Four principles guide the definition of “relevance,” and are not exclusive of one another.
They are compensation, reward, exogenous rights, and fitness. The canonical story2 is that
of a flute that must be given to one of four children. The first child has much fewer toys
than the other three, hence should get the flute by the compensation principle. The second
child worked hard at cleaning and fixing it, so he should get it as a reward. The third child’s
father owns the flute (although the father does not care for it), so he has the right to claim it.
The fourth child is a flutist, so the flute must go to him because all enjoy the music (fitness
argument).

Compensation, reward, and exogenous rights belong squarely to the principles of fairness.
As explained below, fitness is related to fairness as well as to welfare.

Compensation and Ex post Equality

Certain differences in individual characteristics are involuntary, morally unjustified, and
affect the distribution of a higher-order characteristic that we deem to equalize. This justifies
unequal shares of resources in order to compensate for the involuntary difference in the
primary characteristic and achieve equality of the higher-order characteristic.

Nutritional needs differ for infants, pregnant women, and adult males, and hence call for
different shares of food. The ill needs medical care to become as healthy as a “normal”
person. The handicapped needs more resources to enjoy certain “primary” goods, such as
transportation or access to public facilities. A socioeconomic disadvantage calls for more
educational resources to restore equal access to the job market. Economic needs are the
central justification of the macroeconomic redistributive policies, taking the form of tax
breaks, welfare support, and medical aid programs.

1. The discussion of cost- and surplus-sharing in chapter 5 takes place in the benevolent dictator context.

2. The story goes back to Plato.
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Formally, the compensation principle is implemented by defining an index vi representing
the level of the higher-order characteristic enjoyed by agent i , and a function ui transforming
her share of resources yi into her index vi = ui (yi ). For instance, vi is the level of satisfaction
of i ′s nutritional needs (with vi = 1 and vi = 0 representing full satisfaction and starvation,
respectively) and yi is the amount of food she eats (where for simplicity food is measured
along a unidimensional scale, e.g., calories). Thus a pregnant woman i and an elderly
male j who eat the same amount of food y are not nourished equally, ui (y) < u j (y),
or equivalently, it takes more food to bring i at the same level of nourishment than j ,
ui (yi ) = u j (y j ) ⇒ yi > y j . The other examples are similar: if vi is the level of health, and
yi the amount of medical care devoted to agent i , a healthy person i needs no care at all
ui (0) = 1, and the amount of care y j it takes to restore j ′s health measures the seriousness
of his condition. The definition of the function ui is “objective,” and agent i bears no
responsibility in its shape. This feature is essential to the benevolent dictator interpretation.

Equality ex post can be applied to many other indexes than the satisfaction of basic needs.
Handicaps in a horse race restore equal chances of winning by an unequal distribution of
weight, tax breaks to certain businesses restore their compensation, travel subsidies for
conference participants restore equality of the cost of attending, and so on.

Reward

Differences in individual characteristics are morally relevant when they are viewed as
voluntary and agents are held responsible for them. They justify unequal treatment.

Past sacrifices justify a larger share of resources today (veterans). Past wrongdoings
justify a lesser share: reckless drivers should pay more for insurance, no free healthcare for
the substance abuser, no organ transplant for the criminal. Past hardships to my ancestors
justify, vicariously, a compensation transfer today: affirmative action.

Merit by extraordinary achievement calls for reward: prizes to a creator, an athlete, a
peacemaker, and other outstanding individuals.

A central question of political philosophy is the fair reward of individual productive
contributions: the familiar Lockean argument entitles me to the fruit of my own labor, but
this hardly leads to a precise division rule except when the production of output from the
labor input unambiguously separates the contributions of the various workers. Separating
the fruit of my labor from that of your labor is easy only when your labor creates no
externality on mine, and vice versa. If we are fishing in the same lake, cutting wood from
the same forest, or sharing any other kind of exhaustible resources, this separation is no
longer possible hence the fair reward of one’s labor is not a straightforward concept. The
same difficulty arises when sharing joint costs or the surplus generated by the cooperation
of actors with different input contributions: some bring capital, some bring technical skills,
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and so on. This question is the subject of chapter 5; it is also discussed in this chapter (e.g.,
example 2.4).

Exogenous Rights

Certain principles guiding the allocation of resources are entirely exogenous to the con-
sumption of these resources and to the responsibility of the consumers in their production.
Such is the right of private property in the flute story: the point is that ownership is inde-
pendent from the consumption of the flute (and the related questions who needs it?, who
deserves it?, who will make the best use of it?).

A paramount instance of exogenous rights is the fairness principle of equality in the
allocation of certain basic rights such as political rights, the freedom of speech and of
religion, or access to education. My right to vote and to be eligible for office equals yours,
despite the fact that I don’t care to vote or to run for office, or that I will use my vote
irrationally or wastefully, such as by voting according to the phases of the moon. My right
to education is not related to my IQ, nor to the admirable deeds I perform when I am not in
school.

Equal exogenous rights correspond to equality ex ante, in the sense that we have an equal
claim to the resources (be they the ability to vote and the weight of one’s vote, the duty to
be drafted, the right to police protection, the access to a public beach, etc.) regardless of the
way they affect our welfare and that of others. This stands in sharp contrast with equality
ex post suggested by the compensation principle.

Examples of unequal exogenous rights are numerous and important as well. Beside private
ownership (see above), there is also the difference in status brought about by social stand-
ing or by seniority. When the beneficiaries of the distribution are institutions or represent
groups of agents, the inequality in their exogenous rights is commonplace: shareholders in
a publicly traded firm, or political parties with different size of representation in the parlia-
ment, should have unequal shares of decision power; creditors in the American bankruptcy
law are prioritized, with the federal government coming first followed by the trustees, and
the shareholders come last; and so on.

Fitness

Resources must go to whomever makes the best use of them, flutes to the best flutist, the
child to his true mother (Solomon), the book in Japanese to whomever can read Japanese,
the cake to the glutton, and so on.

Thus fitness justifies unequal allocation of the resources independently of needs, merit,
or rights. Formally, fitness can be expressed in two conceptually different ways, sum-fitness
and efficiency-fitness.
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The concept of sum-fitness relies on the notion of utility, namely the measurement of the
higher-order characteristic that is relevant to the particular distributive justice problem at
hand. Going back to the discussion of the compensation principle above, the central object
is the function transforming resources into utility. If we distribute medical care among a
group of patients, the index vi represents the health level of patient i and vi = ui (yi ) is the
function telling us what health level is achieved by what level of care. If we distribute food,
vi is i’s level of nourishment (satisfaction of nutritional needs) and yi her share of food. If
we divide a cake, vi is the degree of “pleasure” accruing to i when he eats the share yi .

Sum-fitness allocates resources so as to maximize total utility of the concerned agents.
Sum-fitness is a fairness principle, however unsettling and radical its recommendations
may be at times. The critical comparison of sum-fitness—maximizing the sum

∑

i ui of
individual utilities—and of compensation—equalizing ui across all agents—accounts for
a familiar trade-off of distributive justice.

Consider the flute example. The only use of the flute is to play music and music can be
heard by everyone. Say that the utility of child i has two components: the objective quality
ai of the music being played, and the pleasure b he derives from playing the instrument (the
same for every child). With n being the number of children, total utility when the flute is
given to child i is n · ai + b, where ai measures how well i plays the flute. Here sum-fitness
unambiguously recommends giving the flute to the most talented flutist. The compensation
principle, on the other hand, would sometime time-share, allowing the children to take turn
playing the flute.3

In section 2.5 we compare sum-fitness and compensation in a simple model of fair
division: often their recommendations differ sharply, yet at a deeper level of analysis the
two principles can be viewed as two faces of the same coin.

The more general concept of efficiency-fitness (or simply efficiency, or Pareto optimality)
is the central normative requirement of collective rationality; section 1.3. Efficiency-fitness
is developed in chapter 3, and it plays a leading role in the subsequent chapters.

Efficiency-fitness typically imposes much looser constraints than sum-fitness on the allo-
cation of resources. For instance, in the simple models of this chapter,4 efficiency-fitness is
automatically satisfied. In the general welfarist approach of chapter 3, efficiency-fitness is
compatible with sum-fitness—also called classical utilitarianism—with compensation—in
the form of the egalitarian collective utility function—and with many other compromises
between these two extremes.

3. If each child plays 1/nth of the time, each will enjoy the utility b/n + Ea, where Ea is the average skill of the
children. For some values of b and ai , b/n + Ea > maxi ai so that time-sharing improves upon the utility of all
agents but one (the best flutist) and yields a more egalitarian distribution of net utilities.

4. Here the resources are “one-dimensional,” meaning that, a given amount of a single divisible commodity is
distributed.
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We now discuss some examples, contrasting the four principles of distributive justice.

Example 2.1 Lifeboat Consider the allocation of a single indivisible “good”: each agent
can either have it or not. The benevolent dictator must choose, under some constraints,
who will get it and who will not. The paradigmatic example is access to the lifeboat when
the ship is sinking: the lifeboat is too small to accommodate everyone. Other dramatic
examples include medical triage—who will receive medical attention, in a war or a natural
disaster—the allocation of organs for transplant, and immigration policies.

We start by the genuine lifeboat story, where seats in the boat must be rationed. The
simplest version of exogenous rights is strict equality: we draw lots to pick who should be
sacrificed. Alternatively, exogenous rights amount to an exogenous priority ranking: keep
the good citizen (respected scientist, politician, or whatever, provided that his skills are not
useful in these circumstances) and throw out the bad one (criminal). Compensation suggests
letting the “strong” men take their chance by swimming, whereas the “weak” women and
children stay on the boat, thus equalizing ex post chances of survival. The reward viewpoint
would dispose of the one who causes the ship to sink. Finally fitness commands to keep
on board the crew (for their navigation skills) or the women and children (for the sake of
future humankind: the child has more potential for welfare than the old; the women can
bear children).

Another example is food rationing in a besieged town. Compensation says to give more
food to the sick and the children; fitness favors those who fight in defense of the town,
whereas reward favors those who risked their lives to get the supplies; finally exogenous
rights enforces either strict equality of rations or make the size of one’s ration depend on
social status.

In medical triage, compensation gives priority to the most severely wounded, reward gives
priority to the bravest soldiers, exogenous rights enforces strict equality or priority according
to rank in the hierarchy, and fitness maximizes the expected number or recoveries (where
recovery refers to the ability to fight) implying that one badly wounded soldier who needs
intensive care is sacrificed in favor of several soldiers to whom recovery can be guaranteed
with few medical resources.5 An alternative interpretation is priority according to rank
(a general is more important to victory than a private). A variant is medical triage where,
after an earthquake, fitness gives priority to doctors and engineers who produce the most
social value under the circumstances; reward is not relevant, unless we want to punish looters.

In the allocation of organs for transplant, compensation gives priority to whose who can
survive the shortest time or whose life is most difficult without a new organ; reward gives

5. Later in example 2.7 we have a model of medical triage where the decision is not simply “in” or “out” but the
quantity of medical resources allocated to each wounded soldier.
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priority according to seniority on the waiting list (first come, first served); exogenous rights
enforces strict equality of chances (lottery) or priority according to social status, or wealth
(if the donation of the wealthy patient does not increase the availability or organs); fitness
maximizes medical fitness, namely chances of success of transplant.

In the next three examples, the decision does not bring life or death. But the problem is
formally equivalent in the sense that we must decide who is “in” and who is “out.”

In immigration policy, compensation admits political or economic refugees; exogenous
rights is blind equality (lottery) or priority based on an ethnic, religious, or racial charac-
teristic (e.g., Germany, Israel); reward gives priority to those with a record of “good deeds”
for the country in question (even if they will retire after immigration, and be a net burden
to their host) such as investments and political support; fitness gives priority to those with
an expectation of good deeds, with useful skills, with a commitment to invest, and the like,
or priority to those whose relatives have already immigrated.

In admission to colleges, compensation gives priority to applicants with disadvantageous
socioeconomic background; exogenous rights give equal right to admission (often the rule
in European universities—France, Netherlands—where rationing can take the form of a
lottery); unequal exogenous rights include quotas favoring minority students (regardless of
their own circumstances), children of alumni, or citizens of foreign countries; reward gives
priority to the student’s academic record as it reflects past efforts and achievements; fitness
also uses the academic record but as a signal correlated to future success in the college itself
(note the analogy with the previous example).

In tickets for an overdemanded musical performance or sporting event, compensation
gives priority to out-of-town residents or to applicants who have not been attending any of
the previous events; for exogenous rights a lottery is faultlessly egalitarian, or alternatively,
priority to politicians, honor students in the local high school, or to any group whose
distinctive characteristic bears no relation to the event; reward gives priority to sponsors of
the orchestra or team; fitness favors musicians or music teachers, or athletes.

Example 2.2 Queuing and Auction Two common methods used to ration seats in concert
halls but also in planes and in private clubs are queuing and auction. Queuing (with a real
waiting cost) rewards effort and effort is correlated to benefit from the good in question;
therefore it meets the sum-fitness criterion better than a lottery because seats will go to their
most eager consumers. On the other hand, queuing is an inefficient use of time. Auction-
ing the goods is in one sense the best system from the fitness angle because the goods go to
those who value them most without any waste of resources; hence total utility is maximized.
This argument is rigorous only if all agents are of comparable wealth: the most eager opera
fan will be denied access if she is short of cash. Thus auctioning is unpalatable because it
favors the rich (think of the right to buy off conscription), a criterion orthogonal to merit
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(reward) and to fitness. Only if agents have comparable wealth, will auctioning maximize
sum-fitness and efficiency-fitness. Yet the common practice of bumping passengers off a
plane by auction shows that wealth differences are not always viewed as an ethical obstacle
to the fairness of the auctioning method. The choice to be bumped is voluntary, which makes
the method more acceptable than if the airline was auctioning the right to stay on the plane
(with the proceeds being redistributed to passengers who are bumped).

Example 2.3 Political Rights Plato (in the Republic) invoked the fitness argument when
proposing to place philosophers at the reins of government. As recently as one hundred
years ago, inequalities in voting rights (or eligibility to a political office) based on wealth,
land ownership, or literacy were more common than the universal suffrage (and eligibility
to office) that has become the modern norm. The moral basis of these unequal voting rights
was a combination of fitness (uneducated and/or poor citizens cannot form a reasonable
opinion) and reward (the wealthier I am, the higher my contribution to the commonwealth,
hence the higher my stake in the decisions being taken). Both arguments have been swept
aside to leave room for the strict exogenous equality of individual political rights, an inalien-
able component of membership in the political community. The age limit and the denial
of voting rights to the insane are two fitness arguments still in place. Denial of rights to
criminals is a reward argument.

In many voting bodies, equality of voting rights is not warranted: members of the
European union, and shareholders in a board meeting, are given unequal voting weights
because they represent unequal population sizes or capital investment. An interesting and
important question is the just distribution of weights. Simple proportionality does not work
because a small agent may end up with no influence whatsoever on the decision process,
and we must rely on other normative principles.6

2.2 A Simple Model of Fair Distribution

The model discussed in this and the next two sections is the simplest formal model of
distributive justice. There is a given amount t of a commodity to be divided among a given
set of agents, and each agent i is endowed with a claim xi . The commodity can be a “good”
(valuable resource) or a “bad” (a cost to be shared, e.g., a tax burden): if the former, we call
xi the demand of agent i ; if the latter, we speak of his liability.

The problem is that t , the available resource, differs from the total sum x of claims:
t ̸= xN =

∑

i xi . If there is equality, we simply meet each agent’s demand, or assign his
liability to each agent.

6. The most popular method is an application of the Shapley value.
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We distinguish the cases where t is smaller or larger than xN : we speak of a deficit, of a
rationing situation, in the former case, of excess in the latter case. The most frequent case is
when the commodity is a good and the resource t falls short of xN . One example is rationing
an overdemanded good, as in rationing prescription drugs: xi is the quantity prescribed to
agent i and t is the pharmacist’s supply. Two other examples are bankruptcy (xi is the
bankrupt firm’s debt to creditor i , t is its liquidation value; see below) and inheritance (xi is
agent i ′s deed and t the value of the estate).

The case with a “good” commodity and resources in excess of the claim is illustrated in
example 2.4 about a joint venture: xi is agent i ′s opportunity cost of joining the venture (in
our story, we speak of stand-alone salaries) and t its total revenue. Of course, both cases
t > xN (excess) and t < xN (deficit) are possible here.

The case where the commodity is a bad is no less interesting. The design of a taxation
schedule (section 2.4) is a key example: xi is agent i ′s taxable income and t total tax to be
levied.7 Other examples discussed below include a fund-raising story and the distribution of
chores. In the fund-raising story, xi is agent i ′s pledge and t is the amount that must be raised;
thus both cases of an excess t > xN or a deficit t < xN are plausible. In the distribution of
chores, xi is the amount for which i is responsible and t is the actual workload.

Throughout the rest of chapter 2 we assume equal exogenous rights, namely the differ-
ences in their claims is the only reason to give different shares to the agents. In particular,
two agents with identical claims must receive the same share. Also fitness plays no role, with
the exception of the model in section 2.5.8 As either every agent wants more of the good
or every agent wants less of the bad, efficiency-fitness is automatically satisfied. Moreover
we identify an agent’s share with her welfare; therefore sum-fitness has no bite either. Thus
our discussion bears on the principles of compensation and reward.

Example 2.4a Joint Venture: Excess Teresa is a pianist and David is a violinist. They
work as a full-time duo. Before the duo was formed, Teresa was earning $50K a year as
a teacher and solo artist, and David $100K as the first violinist of a symphony orchestra.
After one year of performing together, the net revenue of their duo is $210,000. What is a
fair split of this revenue?

The key to the example is the interpretation of the cooperation technology.
One viewpoint is that the stand-alone salaries are relevant to the cooperative process, and

agents are held responsible for them. The presumption is that the input of each instrument is
to some extent separable in the final product; it makes sense to take stand-alone salaries as a

7. In section 2.4 we consider a dual interpretation where xN − t is the tax and t is the net salary mass; the taxation
problem becomes an instance of dividing an overdemanded good.

8. Here we model explicitely a utility function transforming a share of resources into welfare. This gives the
sum-fitness property some bite.
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proxy for the value of their respective contributions, and to divide profit in the corresponding
proportions. To make this interpretation more plausible, consider the case of a famous singer
and her unknown accompanying pianist, so their ex ante earnings are very different.

This first solution is called the proportional solution, and its mathematical formulation
is transparent. Teresa and David in our example receive 70K and 140K respectively. More
generally, if xi is agent’s stand-alone salary and t total revenue of the joint venture, agent
i ′s share is

yi = xi
∑

N x j
t (1)

Here is another plausible solution: taking their stand-alone salaries as the “status quo ante”
outcome, the agents divide equally the surplus (in excess of the status quo) generated by
their cooperative venture: in this view the difference in the voluntary characteristics (stand-
alone salaries) is preserved (at 50K). Teresa and David get 80K and 130K respectively, and
more generally,

yi = xi + 1
n

(

t −
∑

N

x j

)

(2)

This is the equal surplus solution that is always more (resp. less) advantageous to the agent
with the smallest (resp. largest) value xi than the proportional solution above.9

The third solution of interest pushes the egalitarian criterion one step further. The stand-
alone salary sets a floor on an agent’s share because no one should be penalized for joining
the cooperative venture. Except for this constraint, the revenue is shared equally among all
agents. This solution regards the individual contributions as no more separable than that of
the left and right hands clapping, hence stand-alone salaries as irrelevant to the production
process—if not to the division of the proceeds. In our example Teresa and David get 105K
each. With a total revenue of 190K, they would get 90K and 100K respectively: as long as
total revenue is below 200K, David’s share stays put at 100K and Teresa gets all the surplus.
When revenue is above 200K, it is split equally.

The mathematical expression of this third solution is slightly more involved. Agent i
receives a common share λ or his stand-alone salary, whichever is largest: yi = max{λ, xi }.
The common share λ is computed by solving the equation

∑

N

max{λ, xi } = t (3)

9. This mathematical fact is easy to check using the two formulas above; see exercise 2.5.
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This solution is called the uniform gains solution. It is more (resp. less) advantageous to the
agent with the smallest (resp. largest) value than the equal surplus solution (exercise 2.5).

Example 2.4b Joint Venture: Deficit Now suppose that total revenue falls short of 150K,
the sum of the stand-alone salaries. We must divide a deficit instead of a surplus. Her stand-
alone salary is an upperbound on an agent’s share because everyone must bear a share of
the deficit.

The three solutions are easily adapted to the deficit case. The proportional solution is
given by the same formula (1).

The uniform gain solution pursues the same egalitarian goal, but this time the share
yi must not exceed xi . Each agent receives a common share λ or xi , whichever is less:
yi = min{λ, xi }. The common share λ is the solution of the equation:

∑

N

min{λ, xi } = t (4)

Finally the equal surplus solution becomes the uniform losses solution, which aims at
subtracting the same amount from every stand-alone salary. Say that total revenue is 90K:
the deficit 60K is shared equally between Teresa and David who end up with 20K and 70K.
But if total revenue is very low, say 40K, the deficit 110K cannot be split equally lest Teresa
ends up paying David from her own pocket! In other words, equalization of the losses must
be adjusted to take into account the constraint yi ≥ 0. In the example Teresa ends up with
nothing at all, and David keeps the 40K. This contradicts even the mildest version of the
reward principle, as Teresa gets nothing for her work!

If the uniform losses solution is implausible in the joint venture problem, for the reasons
given above, it is very convincing in other contexts, examples of which are provided below.
Its mathematical expression is as follows: if the common loss is µ, agent’s share yi is
yi = max{xi − µ, 0}; in other words, i ′s loss is the smallest of the two numbers µ and xi .
The common loss µ is the solution of the equation

∑

N

max{xi − µ, 0} = t (5)

Figure 2.1 illustrates our three solutions, proportional, uniform gains and equal surplus/
uniform losses in the case of two agents with claims x1, x2. The vector x = (x1, x2) is fixed
and the total t to be divided varies from 0 to infinity, generating a path for the vector of
shares y = (y1, y2).

The figure illustrates the three solutions in a deficit case (with total resources t, solu-
tions a, b, and c) and in an excess case (t ′, a′, b′, c′). In the deficit case, agent 2 with the
smallest claim of the two prefers his share under the uniform gains solution (point c) to his
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Figure 2.1
Three basic rationing/surplus-sharing methods

proportional share (point b), and the latter to his uniform losses share (point a). In the excess
case, his first choice is uniform gains (c′), and his last is proportional (b′). Exercise 2.5
generalizes to an arbitrary number of agents these preferences of the agent with the largest
or smallest claim.

We now discuss three examples where the three solutions appeal differently to our
intuition.

First, consider bankruptcy: creditor i has a claim $xi and the total liquidation value t of
the firm is smaller than the sum of the debts. If our creditor have equal exogenous rights,
the proportional solution is compelling. It is the legal solution as well.

An important—indeed a characteristic—feature of this solution is its robustness to the
transfer of claims. If creditors i, j with claims xi , x j reallocate the entire claim to agent
i—effectively merging the two claims in one—their total share yi + y j is unaffected. The
same is true if a creditor i splits into two creditors i1 + i2, and divides his claim xi as
xi = xi1 + xi2 in arbitrary shares for i1 and i2: the splitting operation leaves the total share of
{i1, i2} identical to that of i . Contrast this with the uniform gains solution, where the merging
of two claims xi , x j in one of size xi + x j results in either a smaller or the same share for
the “merged” agent; symmetrically the splitting of one claim xi into two subclaims xi1, xi2



moulin-79027 book October 22, 2002 11:48

Fair Distribution 32

can only increase the total share (yi1 + yi2 ≥ yi ). The reverse statements (i.e., merging is
advantageous and splitting is disadvantageous) hold for the uniform losses solution in the
case of a deficit. See exercise 2.2.

It is not too difficult to show that the proportional solution is the only solution in the
deficit problem robust with respect to the transfer of claims (exercise 2.2). Hence it is
compelling in any situation where claims are akin to anonymous bonds, as is nearly the
case in a bankruptcy situation (e.g., stocks are transferable), except for some creditors with
special status such as the federal government.

Next, consider rationing medical supplies. The pharmacist has t units of a certain drug—
say insulin—in stock and patient i shows a prescription for xi units; t falls short of xN . The
uniform losses solution is appealing here: xi represents an objective “need,” and it seems
fair to equalize net losses, assuming that a loss of k units of insulin below the optimal level
is equally harmful to every patient. On the other hand, if the demand for the drug is not
based on an objective need, say sleeping pills or diet pills, uniform gains seems most fair: it
corresponds to the familiar rationing by individual coupons—the same number of coupons
per person. In both cases—insulin and diet pills—the proportional solution is not especially
appealing.

Third, consider a fund-raising situation. Donor i offers to contribute $xi to the project
in need of funding. If the actual cost t exceeds the sum of xi , and it must be raised among
these same donors, the proportional solution will unfairly penalize the most generous donor,
unless we can view xi as a proxy of his ability to pay. Equal surpluses is not appealing even
if all donors are viewed as equally able—if unequally willing—to pay for the project. In
this case the uniform gains solution is the most plausible of the three, charging the extra
cost to the most timid donors first.

Symmetrically, suppose that the actual cost t falls short of the sum of the pledges xi :
How should we allocate rebates? Here the uniform gains is quite appealing. If the pledges
are ranked as x1 ≥ x2 ≥ x3 ≥ . . . , this solution gives the first (x1 − x2) dollars of rebate to
donor 1, splits equally the next 2(x2 − x3) dollars of rebate between donors 1 and 2, and so
on.10 If the donors have similar ability to pay, uniform gains rewards first the most generous
agents, meaning the highest contributors. On the other hand, uniform losses is not palatable
for symmetric reasons as it gives an equal rebate irrespective of the size of xi . If all agents
have the same ability to pay, this rewards bad behavior; if, on the contrary, xi is a proxy of
their ability to pay, a proportional rebate is the most natural compromise.

Example 2.5 We illustrate the three solutions by a numerical example with five agents with
respective claims and 20, 16, 10, 8, and 6, so the total claim is 60. The table gives the shares
for five values of total resource t : t = 20, 40, 50 yield a deficit and t = 80, 120 an excess.

10. This algorithm is described in exercise 2.6.
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Claims 20 16 10 8 6

t = 20 PRO shares 6.7 5.3 3.3 2.7 2
UG shares 4 4 4 4 4
UL shares 11.3 7.3 1.3 0 0

t = 40 PRO shares 13.3 10.7 6.7 5.3 4
UG shares 8.7 8.7 8.7 8 6
UL shares 16 12 6 4 2

t = 50 PRO shares 16.7 13.3 8.3 6.7 5
UG shares 13 13 10 8 6
UL shares 18 14 8 6 4

t = 80 PRO shares 26.7 21.3 13.3 10.7 8
UG shares 20 16 14.7 14.7 14.7
ES shares 24 20 14 12 10

t = 120 PRO shares 40 32 20 16 12
UG shares 24 24 24 24 24
ES shares 32 28 22 20 18

We turn to the issue of computing two of our three solutions, the uniform gains and
uniform losses solution, of which the mathematical definitions (3), (4), and (5) are not
entirely transparent. A simple algorithm to compute the uniform gains solution works as
follows. Divide t in equal shares and identify agents whose claims are on the “wrong”
side of t/n. If we have a deficit, this means those agents with xi ≤ t/n; if we have an
excess, it means those with xi ≥ t/n. Give their claim xi to those agents, decrease the
resources accordingly, and repeat the same computation among the remaining agents, with
the remaining resources.

A similar algorithm delivers the uniform losses solution in the deficit case: apply formula
(2) and identify all agents who receive yi ≤ 0, give zero to these agents. Repeat the algorithm
among the remaining agents.

In the deficit case the algorithm computing the uniform gains solution reveals that agent
i’s share must be at least t/n or xi , whichever is smaller: yi ≥ min{xi , t/n}. Indeed, an
agent who is on the wrong side of t ′/n′, at any stage of the algorithm where t ′ units remain
to be shared among n′ agents, receives yi = xi . Moreover the sequence of per capita shares
t/n, t ′/n′, t ′′/n′′, is nondecreasing because at each step the claims of the agents who are
dropped are below the per capita share. Therefore an agent who is always on the right side of
t ′/n′ receives no less than t/n. Exercise 2.8 elaborates on such lower bound for the uniform
gains shares, and stresses that neither uniform losses nor proportional meets any nontrivial
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lower bound. Exercise 2.6 offers two more algorithms for computing the uniform gains and
uniform losses solutions.

Our final example shows the versatility of the three basic solutions, which can be adapted
to a distribution problem with indivisible units and lotteries.

*Example 2.6 Scheduling A server processes one job per unit of time. User i demands
xi jobs. For every user, the earlier a job is done, the better. The server must schedule
total demand xN =

∑

i xi , namely decide in what order the xN jobs will be processed. A
scheduling sequence is a list {i1, i2, . . . , it , . . . , ixN }, where for all t, it is one of the users
and where user i appears exactly xi times in the sequence. For the sake of fairness, the
server randomizes the choice of the sequence {i1, . . . , ixN }.

The link between this scheduling problem and the rationing of an overdemanded com-
modity is apparent if we fix a date t and consider the number yi of user i ′s jobs processed
up to date t . The vector (yi ) is a division of t units among users with demand profile (xi ); it
is a solution to a rationing problem where the resources come in indivisible units and their
allocation is random.

The proportional solution works by filling an urn with xN balls, where xi balls are labeled i ,
then drawing balls from the urn successively and without replacement: in other words, all
sequences {i1, . . . , ixN }, where each i appears xi times are equiprobable. An alternative
definition of proportional scheduling goes as follows: if at time t user i has zi jobs still
unserved, the (t + 1)th job will be given to user i with probability zi/zN . To see why this
method corresponds to the proportional solution of the rationing problem, observe that the
expected number of i ′s jobs served in the first t periods is (xi/xN ) · t.

Proportional scheduling has been deemed an unfair solution because a small demand xi

is swamped by a much larger demand x j . If x j becomes arbitrarily large, the expected share
of agent i up to a fixed date t dwindles to zero (his expected waiting time until completion of
all his jobs becomes arbitrarily large). The simple method known as “fair queuing” avoids
this problem by giving an equal chance of receiving the first (most preferred) unit of service,
irrespective of the sizes of their demands.

Specifically, fair queuing serves first one job of each user i such that xi ≥ 1, using an
ordering of these agents selected at random, with uniform probability on all orderings; next
all users i such that xi ≥ 2 are served a second unit in random order, and so on. In other
words, the method empties a series of urns where each agent is allowed to throw at most
one ball in each urn.

Figure 2.2 illustrates the method in the two agents’ case, and suggests its relation to
the uniform gains solution. In the first t periods, the expected number of i ′s jobs served is
precisely given by the uniform gains shares.
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X2 X

X1

•

Figure 2.2
Fair queuing in example 2.6

Under fair queuing a small demand is not swamped by a large demand, as with propor-
tional scheduling. In fact an agent’s delay is unaffected when another agent with a larger
demand raises his demand even further.

A related observation is the following incentive property of fair queuing. Suppose that
agent i needs xi jobs. By inflating his demand to x ′

i jobs, x ′
i > xi , she will not affect in

any way the (random) scheduling of her xi first jobs: hence this move is not profitable
(and neither is a symmetric reduction of her demand, obviously). By contrast, artificially
inflating one’s demand is always profitable if the proportional scheduling method is used,
in the sense that the first xi jobs (the true demand) will be served earlier.

Our third scheduling method works by simply reversing the scheduling sequence of fair
queuing and for this reason is called its dual method11 and denoted fair queuing*. This
means that fair queuing* selects the sequence {i1, i2, . . . , ixN } with the same probability as
fair queuing selects the sequence {ixN , ixN −1, . . . , i2, i1}; see figure 2.3.

This definition is not very intuitive, but fortunately a more direct one is available: fair
queuing* gives the first job to one of the agents with largest demand xi (with equal prob-
ability among these agents if they are two or more); the (t + 1)th job goes (with equal

11. More on duality appears in the next section.
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X2 X

X1

•

Figure 2.3
Fair queuing* in example 2.6

probability) to one of the agents with the largest remaining demand zi after the first t peri-
ods. This algorithm is entirely similar to the algorithm provided in exercise 2.6 to compute
the uniform losses solution. Hence, in particular, the expected distribution of jobs served
after t periods is given by the uniform losses formula (5).

The scheduling example uncovers several properties of great relevance for the general
deficit-sharing problem when the resources are divisible and shares are deterministic—
formulas (1), (4), and (5). First of all it suggests a dynamic interpretation of the three basic
methods, proportional, uniform gains and uniform losses in the case t < xN . Think of the
resources t as being distributed progressively, at a rate of 1 unit per unit of time. Uniform
gains shares the incremental resources dt equally among all agents whose demand xi is
not yet met at date t . Uniform losses shares dt equally among all agents with the largest
remaining demand at date t . Proportional simply shares dt in proportion to xi at all time.

Next we check that the two properties of fair queuing discussed above apply to the uniform
gains solution as well. First, consider the effect on agent 1 of raising the claim/demand of
another agent, say agent 2, whose demand was larger than agent 1’s in the first place. That
is, we start from claim x1, x2, x3, . . . with x1 ≤ x2, and raise x2 to x ′

2, x ′
2 > x2, leaving

all other claims and the resources t unchanged. Under the uniform gains solution, agent
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1′s share does not change either. To see this, consider equation (4), with solution λ before
and λ′ after the raise of agent 2’s claim. If λ ≤ x2, then λ′ = λ solves (4) in both cases;
hence agent 1’s share min{λ, x1} does not change. If λ > x2, λ

′ is smaller than λ but cannot
fall below x2 : λ′ ≥ x2 (exercise: Why?). The assumption x1 ≤ x2 now implies that agent
1’s share is x1 before and after the raise. Exercise 2.3 shows that this property (known as
independence of higher claims) is in fact characteristic of the uniform gains solution.

The second idea emerging from the discussion of example 2.5 is the immunity to a
strategic misreport of one’s characteristics, in this case the report of an inflated demand:
under the proportional method such a report is profitable, under fair queuing/uniform gains
it is not. The immunity in question is called strategy-proofness in microeconomic jargon; it
plays a central role in chapters 4 and 6. It turns out that uniform gains is the only equitable
and strategyproof division method. Exercise 2.4 explains this remarkable property.

*2.3 Contested Garment Method

Consider an inheritance or bankruptcy problem where agent i’s claim xi is the debt he holds
on the bankrupt firm or a legitimate deed he received from the deceased. The liquidation
value of the firm—or the actual value of the estate—is t and t < xN .

Suppose that agent i holds a claim xi and xi ≥ t . This means that this agent claims the entire
estate. In this case the uniform gains solution does not pay attention to the unfeasible claim
xi − t . For instance, two agents i, j such that xi ≥ t and x j ≥ t must receive the same
share under uniform gains, though xi and x j may be very different. Formally, the uniform
gains solution is unchanged when we replace claim xi by x ′

i = min{xi , t}. This follows at
once from the fact that the solution λ of equation (4) cannot exceed t (exercise: Why?).
Therefore min{λ, xi } = min{λ, min{xi , t}}, and λ is still the solution of (4) in the problem
with claims x ′

i .

We call the truncation property the fact that we can truncate any claim larger than t at the
level t without affecting the distribution. Obviously neither the proportional solution nor
the uniform losses have the truncation property, but we have seen that the uniform gains
solution does.

A property related to truncation (the link will become clear only after we define the
duality operation below) rests on the idea of concession. In the problem x, t , the quantity
t − xN\i represents what is left of the resources after all agents but i have received their full
claim. Naturally this number may be negative or zero, but if it is positive, it is a share of the
resources that agent i will necessarily receive.12 We write ci = max{t − xN\i , 0} and call
this quantity the concession by N\i to agent i.

12. This is because y j ≤ x j for all j and t − xNi < xi .
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In the example 2.5 nobody gets a concession if t = 20 or t = 40. However, if t = 50,

we have c1 = 10, c2 = 6, ci = 0, for i = 3, 4, 5. We take away these concessions from
the initial claims and distribute the 50 − 10 − 6 = 34 remaining units given the profile of
reduced claims (10, 10, 10, 8, 6). Under the uniform losses solution we can simply compute
the shares for this reduced problem, namely (8, 8, 8, 6, 4) where everyone loses two units.
The solution to the initial problem obtains by adding the profile of concessions, namely
(10, 6, 0, 0, 0).

The decomposition above does not work for the uniform gains (or proportional) solution
because the uniform gains shares of the reduced problem are (7, 7, 7, 7, 6), and

(7, 7, 7, 7, 6) + (10, 6, 0, 0, 0) ̸= (13, 13, 10, 8, 6)

We call the concession property the fact that the distribution of t units can be done in
two steps, first giving concession ci to each agent i, next sharing t − cN units according to
the profile of reduced claims xi − ci . We note that the uniform losses solution satisfies the
concession property,13 but neither uniform gains nor proportional does.

The contested garment solution to the deficit problem t, x1, x2 takes its name from the
following passage in the Talmud: “Two people cling to a garment; the decision is that one
takes as much as his grasp reaches, the other takes as much as his grasp reaches, and the rest
is divided equally among them.”

We interpret agent i’s concession ci as his “grasp,” namely the part of the garment that
the other agent is not claiming. In a two-person problem the definition of ci is

ci = max{t − x j , 0} = t − min{x j , t}, where {i, j} = {1, 2}

The contested garment (CG) solution gives concession ci to agent i for i = 1, 2, and it
divides the remaining resources t −(c1 + c2) equally: agent i receives ci + (t − c1 − c2)/2.
Rearranging this expression with the help of the formula for ci above, we get the contested
garment shares:

y1 = 1
2 (t + min{x1, t} − min{x2, t})

y2 = 1
2 (t − min{x1, t} + min{x2, t})

(6)

Recall that in example 2.4b, we had xT = 50K, xD = 100K, and t = 90K. Here cT = 0,

cD = 40, and (6) gives yT = 25, yD = 65.

Unlike any of our three earlier solutions, the contested garment solution meets both the
concession property and the truncation property. This is clear for the truncation property,

13. To prove this fact, observe that a solution r meets the concession property if and only if its dual r∗ (defined
below) meets truncation.



moulin-79027 book October 22, 2002 11:48

39 2.3 Contested Garment Method
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Figure 2.4
Contested garment method

since formula (6) depends only on min{xi , t}, i = 1, 2. It takes some work to check the
concession property. Moreover the the contested garment solution is the only two-person
solution for which both concession and truncation hold: exercise 2.9 explains this axioma-
tization of the contested garment.

Figure 2.4 depicts the path among which the vector of shares (y1, y2) given in (6) varies
as the resources t vary from zero to x1 + x2. It reveals that our new solution coincides with
uniform gains for small t (i.e., when t ≤ min{x1, x2}) and with uniform losses for large t
(when t ≥ max{x1, x2}). These two observations follow respectively from the truncation
and concession properties (exercise: Why?).

In figure 2.4 we see that the path between 0 and x is symmetric around the midpoint
x/2. If (y1, y2) is on this path, so is (x1 − y1, x2 − y2). In words, if the contested garment
solution divides t as (y1, y2), it divides x1 + x2 − t as (x1 − y1, x2 − y2), meaning it also
divides a deficit of t as (y1, y2)—receiving x1 − y1 is the same for agent 1 as incurring a
deficit y1.

This property is called self-duality: the method divides a deficit exactly as it divides a
gain (so a bottle half full is really the same as a bottle half empty). The relevant concept
here is the duality operation. Given a solution y = r(t, x), where x stands for the vector
(xi ) of claims, and y for the vector (yi ) of shares, the dual solution r∗ is defined as follows:

r∗
i (t, x) = xi − ri (xN − t, x)
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Thus r∗ divides t units of “gain” exactly as r divides t units of deficit. For instance, the
proportional solution is self-dual because it divides gains and deficits alike in proportion to
claims.

The dual of the uniform gains method is the uniform losses method, and vice versa.
Taking example 2.5, let us compare uniform gains and uniform losses at t = 20 and t = 40,
meaning 20 units of gains and 20 units of deficit. Agent 1 with claim 20 has a uniform
losses share 11.3 at t = 20 and a uniform gains share 8.7 = 20 − 11.3 at t = 40. Similarly
he has a uniform gains share 4 at t = 20 and uniform losses share 16 = 20 − 4 at t = 40.

The same comparison applies to all agents.
The normative appeal of a self-dual method (r = r∗) is to eliminate the difference

between a gain and a loss with respect to the individual claims. The choice of the reference
point (at the full or null satisfaction of one’s claim) does not matter.

In particular, if the bottle is exactly half full, t = xN /2, a self-dual method gives half
of his claim to every agent, yi = xi/2. The method requires one to be oblivious to the
orientation of the units to be divided as gains or losses.

How can we generalize the two-person contested garment solution to an arbitrary number
of agents? There are two natural ways to do so. They both preserve the truncation and
concession properties, as well as self-duality. In view of truncation, whenever every agent
claims the entire resources (t ≤ xi for all i), the resources t are split equally just like uniform
gains does. By concession, whenever the deficit can be covered by any agent (xN − t ≤ xi

for all i), this deficit is split equally, as under uniform losses.14

The first idea to generalize contested garment is random priority. Taking a two-agent
problem, let us suppose that the two agents toss a fair coin to decide whose claim has
absolute priority over the other claim. If agent 1 wins, the shares are y1 = min{x1, t},
y2 = t − min{x1, t}; if agent 2 wins, the shares are y′

1 = t − min{x2, t}; y′
2 = min{x2, t}.

The average of these two vectors is precisely the vector of shares (6). Exercise 2.10 describes
the application of the random priority idea with an arbitrary number of agents.

The second generalization of the contested garment solution to any number of agents is a
clever hybrid between a uniform gains solution whenever the bottle is more than half empty
−t ≤ xN /2, and a uniform losses solution when it is more than half full −t ≥ xN /2. It is
the subject of exercise 2.11.

14. Indeed, ci = t − xN\i ≥ 0; hence after distribution of cN , agent i ′s remaining claim is xi − ci = xN − t. In
the reduced problem each agent has the same claim, so each gets 1/n of t − cN = (n − 1)(xN − t). This in turn
yields the UL shares.
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Progressive and regressive methods

*2.4 Equal Sacrifice in Taxation

In the taxation problem, xi represents agent i ′s taxable income, and a given amount of tax
must be divided among the n agents. We choose to write t for the total aftertax income so
that xN − t is the total tax to be levied, and the share yi is agent i ′s aftertax income.15

The simple property called fair ranking places some minimal equity constraints on tax
shares:

xi ≤ x j $⇒ yi ≤ y j and xi − yi ≤ x j − y j (7)

A higher taxable income warrants a higher after-tax income as well as a higher tax burden.
In particular, equal incomes are equally taxed. In figure 2.5 the shaded area represents, in
the case n = 2, the vectors (y1, y2) circumscribed by inequalities (7). Notice that the path
of the uniform gains solution forms the northeastern boundary of this region, while that of
the uniform losses solution forms the southwestern boundary.

15. The dual representation where t is total tax and yi is i ′s tax share can be used just as easily.
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Next consider the familiar ideas of progressivity and regressivity:

progressivity: xi ≤ x j ⇒ xi − yi

xi
≤ x j − y j

x j

regressivity: xi ≤ x j ⇒ xi − yi

xi
≥ x j − y j

x j

(8)

Under a progressive tax scheme, the higher the (taxable) income, the higher will be the tax
rate, namely the fraction taxed away. The opposite statement holds true under a regressive
scheme. Observe that the proportional solution (flat tax) is both progressive and regressive.

In figure 2.5 progressivity means that the vector (y1, y2) must be above the straight line
from 0 to (x1, x2), and regressivity means that it must be below this line. Thus the uniform
gains solution is progressive, whereas uniform losses is a regressive solution.

Uniform gains (resp. uniform losses) is in fact the most progressive (resp. the most
regressive) solution among those meeting fair ranking. This is intuitively clear in figure 2.5,
and exercise 2.7 gives a precise statement of these facts for an arbitrary number of agents.

The idea of equal sacrifice yields a rich family of taxation schemes that contains our three
basic solutions, proportional, uniform gains, uniform losses, and much more. J. S. Mill
introduced this idea first in the context of taxation: “Equality of taxation means equality
of sacrifice. It means apportioning the contribution of each person towards the expenses of
government, so that he shall feel neither more nor less inconvenience from his share of the
payment than every other person experiences from his.”

We pick an arbitrary increasing (continuous) function z → u(z) representing the con-
ventional “utility” associated with the income z. Then the u-equal sacrifice method chooses
aftertax incomes yi so as to satisfy

u(xi ) − u(yi ) = u(x j ) − u(y j ) for all i, j (9)

For a given vector of taxable incomes (xi ) and total after-tax income t , we may or may
not be able to find a vector (yi ) satisfying the system above and

∑

i yi = t. For instance,
with the function u(z) = log z it reads xi/yi = x j/y j and yields the proportional solution.
On the other hand, if we set u(z) = z , the u-equal sacrifice method resembles the uniform
losses solution but the system (9) may yield some negative shares yi . In order to guarantee
a solution meeting the constraint yi ≥ 0 for all i , we modify the system as follows:

for all i : yi > 0 ⇒ u(xi ) − u(yi ) = max
j

{u(x j ) − u(y j )} (10)

Only those agents who get a positive after-tax income incur the largest sacrifice. The
system (10), together with

∑

i yi = t , always has a unique solution (exercise: prove this
claim). With u(z) = z this solution is uniform losses.
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An equal sacrifice method always meets half of the fair ranking property (7), namely
xi ≤ x j ⇒ yi ≤ y j . The other half, xi ≤ x j ⇒ xi − yi ≤ x j − y j , is satisfied if and only if
u is a concave function (u′(z) nonincreasing in z).

The u-equal sacrifice method is progressive if and only if z · u′(z) is nonincreasing in z,
namely u is more concave than the log function;16 it is regressive if and only if z · u′(z) is
nondecreasing in z, meaning that u is less concave than the log function.17

The simplest family of equal sacrifice methods comes from taking for u a power function.
This allows the u-equal sacrifice method to be scale invariant: if we multiply all taxable
incomes as well as the aftertax total income by a common factor, the corresponding aftertax
incomes are also multiplied by the same factor. Thus only the relative incomes xi/x j and
total tax ratio (xN − t)/xN matter. Two subfamilies arise.

First consider the utility function u(z) = −1/z p, where p is a positive parameter. This
function is increasing, concave, and more concave than the log function. Therefore it defines
a progressive taxation method. Notice that this method never gives yi = 0 whenever xi > 0,
and guarantees equal sacrifice for all: 1/y p

i − 1/x p
i = 1/y p

j −1/x p
j for all i, j ; together with

yN = t , the system (9) has a unique solution with yi > 0 for all i .
In the case n = 2, the path t → (y1, y2) is depicted in figure 2.5 for p = 1 and p = 3.

Two important facts: the p-method approaches the proportional one when p goes to zero;
it approaches uniform gains when p goes to infinity. Thus the positive parameter p ad-
justs the degree of progressivity of our methods, and the u-methods connect smoothly the
proportional to the uniform gains method.

Next we consider the utility function u(z) = zq , where q is a positive parameter,
0 ≤ q ≤ 1. This function is increasing and concave, and less concave than the log func-
tion; therefore it defines a regressive taxation method. Note that the system (10) must be
used, because for small values of t some agents end up with yi = 0. The corresponding
path t → (y1, y2) is depicted in figure 2.5 for q = 1

2 . When q goes to zero, the u-method
approaches the proportional one, and it shows uniform losses when q = 1.

When q > 1, the function u(z) = zq is convex instead of concave, so the u-equal sacrifice
method violates fair ranking. Indeed, (9) implies that the smaller the income xi , the higher
is the tax xi − yi . For instance, when q goes to infinity, the u-method approaches the
hyperregressive method, taxing exclusively the poor: the tax burden xN − t is allocated first
to the agent(s) with the smallest xi ; if xi < xN − t (i.e., taxing away all of agent i ′s income
is not enough), the method taxes the next smallest x j , and so on. See exercises 2.7 and 2.14.

16. This means that we can write u as u(z) = a(log z) for all z, where a is concave and increasing.

17. In other words, we can write u(z) = b(log z), where b is convex and increasing.
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2.5 Sum-Fitness and Equality

The principles of compensation and of sum-fitness come into play with interesting dif-
ferences in the simple utilitarian model of resource allocation that is our subject in this
section. This model is a prelude to the more general welfarist approach in the next chapter
(in particular, section 3.4). It is different from but related to the model of sections 2.2 to 2.4.
The benevolent dictator must share t units of resources between n agents, and each agent
has his own utility function ui to “produce” utility from resources: ui (yi ) is agent i ′s utility
when consuming the share yi .

The function ui is a personalized measurement of the benefitness derived by this agent
from any possible share of resources. Depending on the context, this measure may be
subjective or objective. In one instance, t may be the size of a cake and ui (yi ) the subjective
pleasure derived by child i from a piece of size yi . In another, t measures some medical
resource (e.g., blood or a certain drug) and ui (yi ) is patient i ′s objective chance of recovery
(measured before treatment) if he receives the quantity yi .

The two principles of compensation and sum-fitness (section 2.1) correspond to, respec-
tively, the solution that equalizes individual utilities and the solution that maximizes the
sum of individual utilities:

egalitarian solution: find yi ≥ 0 such that ui (yi ) = u j (y j ) and yN = t

(classical) utilitarian: find yi ≥ 0 maximizing
∑

i
ui (yi ) under yN = t

(11)

If the utilitarian solution is always well-defined mathematically (provided that each func-
tion ui is increasing and continuous), the egalitarian one is not. For instance, the ranges of
the functions u1 and u2 may not overlap. The proper formulation is that some agents may
receive zero, yi = 0, but only if they enjoy the largest utility level:

egalitarian∗ solution: find yi ≥ 0 such that yN = t and for all i

yi > 0 ⇒ ui (yi ) = min j u j (y j )
(12)

Whenever each function ui is continuous and nondecreasing, this definition is unambiguous.
See exercise 2.15 for the mathematical discussion of this fact.

A crucial factor influencing the comparison of the egalitarian* and (classical) utilitarian
solutions is whether or not the marginal utility functions decrease, namely whether or not
the functions ui are concave. They are if consuming one more unit of resources always
increases an agent’s utility less than did the previous unit.

This fundamental property of utility functions plays a central role in chapters 5 and 6, as
in most of economic analysis. It is quite plausible in the cake-tasting example: the first bite is
always the most enjoyable! Much less so in the case of medical drugs (one pill of antibiotics
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won’t do any good but 20 may cure you) and other commodities whose consumption must
reach a certain threshold in order to have an impact.

We will discuss the utilitarian model of resources allocation first in the case where all
utility functions are concave. We emphasize that the classical utilitarian and egalitarian*
solutions are different and yet that at a deeper level they are identical. We will show that the
three solutions discussed earlier—proportional, uniform gains, uniform losses—are simple
special cases of this model.

However, if utility functions are not concave, the egalitarian* and classical utilitarian
solutions are irreconcilable, and they lead to radically different conceptions of distributive
justice.

Example 2.7 Common Utility and Unequal Endowments The base utility function is u
and agent i is initially endowed with xi units of the resources. Upon receiving the share yi

of the resources, her final utility is ui (yi ) = u(xi + yi ). One interpretation is redistribution
of income: xi is the income before the division of the subsidy t .

Assume that u is increasing and concave. A simple observation, due to Mill, is that the
egalitarian* and classical utilitarian programs coincide in this case. Their recommendation
is to equalize the net income xi + yi , taking into account the nonnegativity constraint on
yi . We compute the egalitarian* solution first. The system (12) gives

for all i : yi > 0 ⇒ xi + yi = min
j

{x j + y j } (13)

Upon writing zi = xi + yi for the net income, we recognize here the uniform gains solution
which allocates the resources s = xN + t (the surplus t) given the claims xi .

The classical utilitarian solution maximizes
∑

i u(xi + yi ) under the constraints yi ≥ 0,

yN = t. Because u is a concave function, the first-order optimality conditions capture the
optimal solution:

yi > 0 ⇒ u′(xi + yi ) = max
j

u′(x j + y j )

which is the same system as (13) because u′ is decreasing.
Next we consider the case of an increasing and strictly convex utility function u (strictly

increasing marginal utility). The egalitarian* solution is still computed as the uniform gains
solution of the problem with claims xi and resources xN + t. It is entirely independent of
the choice of the increasing utility function u. The classical utilitarian solution, on the other
hand, allocates the entire subsidy to one agent with the largest initial endowment. In other
words, the richest agent takes all!

To check this claim, consider two agents i, j such that xi ≥ x j , and assume that they
receive positive shares yi , y j . Convexity of u implies that

u(xi + yi ) + u(x j + y j ) < u(xi + yi + y j ) + u(x j )
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Hence transferring y j to the “richer” agent i increases the sum of individual utilities, as
required by classical utilitarianism. It is now a simple matter to deduce that an allocation
is optimal for the classical utilitarian criterion if and only if it gives all the resources to an
agent i with the largest initial endowment xi (if there is exactly one such agent, the optimal
allocation is unique).

In the context of redistribution of income, a convex utility function makes little sense. It
does in the medical triage problem: if we have barely enough medicine to save two patients,
it is ethically sensible to concentrate on the two most promising patients and ignore the
others altogether. Another example is the distribution of subsidies among ailing firms in a
regulated economy.

A difficulty of the “richest takes all” solution is its discontinuity with respect to individual
characteristics. A small increase in the initial endowment xi may result in a dramatic shift
of the share yi : it may give agent i the largest initial endowment, thus shifting all the
resources onto his plate. This unpalatable feature never occurs with the classical utilitarian
solution if utilities are concave, or with the egalitarian* solution for any utility functions;
see exercises 2.15 and 2.16.

Example 2.8 Constant Utility Ratios The base utility function u is strictly concave, and
agent i ′s utility from taking a bite of cake piece yi is ui (yi ) = ai u(yi ). The constant factor ai

measures agent i ′s productivity in generating utility. Here the compensation and sum-fitness
principles make two opposite recommendations.

Assume for simplicity that u(0) = 0. The egalitarian* solution simply equalizes net
utilities

ai u(yi ) = a j u(y j ) for all i, j

Therefore ai > a j ⇒ y j > yi : a larger share compensates the agents with low productivity.
By contrast, the classical utilitarian solution rewards productivity and gives a larger share
to the agents with a larger coefficient ai . To see this, we write the first-order optimality
condition of the maximization problem:18

ai u′(yi ) = a j u′(y j )

and the conclusion ai > a j ⇒ yi > y j follows because u′ is decreasing.

The link between the classical utilitarian and egalitarian solutions when individual utility
functions are concave is apparent when we write the first-order optimality conditions of the

18. In order to avoid boundary solutions, let us assume, for instance, that u′(0) = +∞. Then the first unit of the
good is infinitely more valuable than the next one.
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classical utilitarian program (11). Because each ui is concave, these conditions completely
characterize the optimal solution. They are written as follows:

for all i : yi > 0 ⇒ u′
i (yi ) = max

j
u′

j (y j )

Hence the utilitarian solution with utilities ui equals the egalitarian solution with utilities
−u′

i . Symmetrically the egalitarian solution with utilities ui equals the classical utilitarian
one with utilities Ui =

∫

(A−ui ), where the constant A is large enough to ensure ui (yi ) ≤ A
for all yi .

An important property shared by the classical utilitarian solution when utilities are con-
cave and the egalitarian* solution for any individual utilities is resource monotonicity: when t
increases, every individual share yi increases. The proof is the subject of exercises 2.15
and 2.16.

Given resource monotonicity, we can think of the allocation process with given utility
functions ui and varying t , as one of pouring water into individual vessels of arbitrary shapes.
In figure 2.6 are depicted three such vessels connected to a common reservoir. If the height
reached by the quantity yi of water in vessel i equals ui (yi )—the width at this level being
1/u′

i (yi )—the law of gravity delivers the egalitarian* solution for these utility functions.
A property related to resource monotonicity is population monotonicity: when an agent

absconds and the resources to be divided remain the same, this is good news for all remaining

agent 1 agent 2 agent 3

Water

Figure 2.6
Hydraulic method
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agents. This property is clear in the hydraulic representation: when agent i ′s vessel is shut
down or destroyed, “his” water share is redistributed to all other vessels, so the level of
water does not fall.

We check now that our three basic solutions, proportional, uniform gains, and uni-
form losses, admit a hydraulic representation. The corresponding vessels are depicted in
figures 2.7 to 2.9.

In figure 2.7 the width of agent i ′s vessel is proportional to her claim, resulting in the
proportional solution. In figures 2.8 and 2.9 the vessels are of equal width, or reduce to a
tube of insignificant width. In figure 2.8 agent 4 with the largest claim x4 receives the first
(x4 − x3) units of water; the next 2(x3 − x2) units are split equally between agents 3 and 4;
the next 3(x2 − x1) units are split equally among 2, 3, and 4; all additional units are split
equally among all four agents. This algorithm delivers precisely the uniform losses solution
in the deficit case (see exercise 2.6), and the equal surplus solution is the excess case. We
see similarly (again with the help of exercise 2.6) that the hydraulic method in figure 2.9
illustrates the uniform gains method in the deficit as well as excess cases.

Water

agent 1 agent 2 agent 3 agent 4

x1 x2 x3 x4

Figure 2.7
Proportional method
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agent 1 agent 2 agent 3 agent 4

Water

x1

x3

x2

x4

Figure 2.8
Uniform losses/equal surplus

In the hydraulic representation of the proportional solution, the height of agent i ′s vessel
when it contains yi units of water is ui (yi ) = yi/xi , up to the normalization at one when the
vessel contains exactly xi units. For this choice of utilities, this solution is egalitarian* as in
system (12). If we choose instead the utility functions ui (yi ) = Ayi − (y2

i /2xi ), where A
is larger than the ratio t/xN , the proportional solution becomes classical utilitarianism as
in (11).

Computing similarly the “volume to height” function in figures 2.8 and 2.9 yields a
representation of uniform losses/equal surplus and of uniform gains as egalitarian* methods
in the sense of (12),19 or classical utilitarian in the sense of (11). For instance, the uniform
losses solution is classical utilitarian for ui (yi ) = xi yi − (y2

i /2).

We conclude this chapter with an example where individual utilities are not concave, and
the classical utilitarian solution is neither resource nor population monotonic.

19. The utility functions are, however, discontinuous, and this creates a minor technical difficulty.
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a = x4  – x1

Water

agent 1 agent 2 agent 3 agent 4

a
a

a
a

x1
x2

x3
x4

Figure 2.9
Uniform gains

Example 2.9 Failure of Resource and Population Monotonicity Two agents have the
following utility functions:

u1(y1) = 2y1, all y1 ≥ 0

u2(y2) = y2 for 0 ≤ y2 ≤ 10

= 4y2 − 30 for y2 ≥ 10

Agent 1’s marginal utility is constant and equal to 2; agent 2’s is 1 up to ten units and rises
to 4 afterward.

The classical utilitarian solution gives all the resources t to agent 1 or all to agent 2:

t < 15 ⇒ u1(t) > u2(t) ⇒ y1 = t, y2 = 0

t > 15 ⇒ u2(t) > u1(t) ⇒ y1 = 0, y2 = t

Notice that for t = 15, the solution can give t to either agent, with no possibility of
compromise.
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Thus an increase of the resources from t = 10 to t = 20 wipes out agent 1’s share, and
resource monotonicity is violated. Compare this with the egalitarian solution:

t ≤ 15 ⇒ y1 = 1
3 t, y2 = 2

3 t

t ≥ 15 ⇒ y1 = 2
3 t − 5, y2 = 1

3 t + 5

To check that the classical utilitarian solution is not population monotonic, fix t = 18
and consider a third agent with a marginal utility of 4 up to five units and zero afterward:

u3(y3) = 4y3 for 0 ≤ y3 ≤ 5

u3(y3) = 20 for 5 ≤ y3

The classical utilitarian distribution of 18 units is y1 = 13, y2 = 0, y3 = 5. Upon dropping
agent 3, the distribution becomes y1 = 0, y2 = 18. So that agent 1’s share vanishes, in
violation of population monotonicity.

2.6 Introduction to the Literature

The four principles of section 2.1 are inspired by similar taxonomies in the social psychology
literature: see Deutsch (1975), Rescher (1966), and Cook and Hegtvedt (1983).

The lifeboat stories in example 2.1 are discussed by the literature on medical triage, in
particular, Winslow (1982). Elster (1992) provides many examples of rationing problems,
inspiring some of your examples in section 2.2 as well as in exercise 2.1. The indexes of
voting power alluded to in example 2.3 are discussed extensively in two introductory books,
Straffin (1980) and Felsenthal and Machover (1998).

The model of fair division developed in sections 2.2 to 2.4 appeared first in the papers by
Banker (1981) and O’Neill (1982), and inspired a sizable body of axiomatic research. Recent
surveys include Moulin (1988, ch. 6), Herrero and Villar (2001), and Moulin (2001a).

Aumann and Maschler (1985) focused on the contested garment method (section 2.3) and
its generalization to an arbitrary number of agents (exercise 2.11). This article, together with
O’Neill (1982), stresses the origin of the problem in the Talmudic literature; Rabinovitch
(1973) is the historical source from which the contested garment quote is borrowed. See
also exercises 2.10.

The entire section 2.4 is inspired by Young’s (1988, 1990) work on equal sacrifice meth-
ods. He provides axiomatic characterizations of these methods based on the separability
property known as consistency, already used by Aumann and Maschler (1985). The general
characterization of consistent methods in Young (1987) is related to the hydraulic repre-
sentation of deficit and surplus-sharing methods in section 2.5. Kaminski (2000) introduces
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this intuitive representation and explains its link with consistency. Finally the scheduling
story in example 2.6 is inspired by the work on fair queuing due to Shenker (1995) and
Demers et al. (1990).

Exercise 2.2 borrows ideas from Moulin (1987), and exercises 2.3 and 2.9 from Herrero
and Villar (2001). Exercise 2.4 is generalized by Sprumont (1991) into a characterization
of the uniform gains solution.

Exercises to Chapter 2

Exercise 2.1

In the following examples, identify the principle or principles in section 2.1 of which a given
policy is an example. Find more policies and connect them similarly to the four principles.

a. For the education of which child should we spend more resources?

• The hardworking but not very gifted
• The good tempered and parent loving
• The least academically gifted
• The most academically gifted
• Equally, irrespective of gift or work

b. How to allocate scarce legal resources, namely public defenders?

• Favor defendants with the cleanest criminal record
• Favor defendants accused of the lesser crimes
• Favor defendants accused of the worst crimes
• Equalize the lawyer x hours expense on all defendants
• Minimize the total number of jail years awarded to the group of defendants
• Minimize the maximal number of jail years awarded to any one defendant

c. How to prioritize the restoration of electric power after a storm?

• Easy customers first (near to source)
• Hospitals, fire station first
• Elderly residential customers first
• Big industrial users first
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• Small residential users first
• Important citizens first

Exercise 2.2 Merging and Splitting

We start with the resources t and a vector of claims (xi ), i = 1, . . . , n. Both cases t ≤ xN

and t ≥ xN are possible. We say that agents i and j merge their claims if j transfers his
claim x j to i so that the new problem has (n − 1) agents and agent i’s claim is xi + x j .
Symmetrically we say that agent i splits his claim xi if i is replaced by two agents i1, i2

with claims xi1 , xi2 such that xi1 + xi2 = xi , so the new problem has (n + 1) agents.

a. Under the proportional solution in both cases, deficit or excess, show that merging or
splitting is a matter of indifference.

b. Show that under the uniform gains solution in both cases, merging is bad and splitting
is good:

• After-merging share y′
i ≤ before-merging shares yi + y j

• After-splitting shares y′
i1

+ y′
i2

≥ before-splitting share yi

c. Show that under the equal surplus solution, merging is bad and splitting is good. Show
that under the uniform losses solution, merging is good and splitting is bad.

*d. For the deficit case, t ≤ xN , the proportional solution is characterized by the indiffer-
ence to merging/splitting property.

*Exercise 2.3 Independence of Higher Claims

For a distribution problem with deficit, t, xi , t ≤ xN , the property independence of higher
claims (IHC) is discussed at the end of section 2.2:

for all i, j : xi ≤ x j ≤ x ′
j ⇒ yi = y′

i

where yi and y′
i are respectively agent i’s share for the initial profile of claims xi and for

the profile where x ′
j replaces x j , everything else equal.

The goal of the exercise is to show that there is only one solution satisfying equal
treatment of equals and independence of higher claims, and it is uniform gains. Fix a
profile of claims xi , and label the agents in such a way that x1 ≤ x2 ≤ · · · ≤ xn. Define
for k = 1, 2, . . . , n, zk =

∑k−1
j=1 x j + (n − k + 1)xk so that z1 = nx1 ≤ z2 ≤ z3 ≤ · · · ≤

zn = xN .

a. Choose t such that 0 ≤ t ≤ z1. By ETE, at the profile x ′
i , x ′

i = x1 for all i, each agent
gets t/n. Show that by ETE and IHC, the same is true at the profile x ′′

i where x ′′
1 = x1,
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x ′′
i = x2 for i = 2, . . . , n. Repeat the argument to show that equal shares still prevail at

profile x ′′′
i where x ′′′

1 = x1, x ′′′
2 = x2, x ′′′

i = x3, for i = 3, . . . , n. Conclude that a method
meeting ETE and IHC coincides with uniform gains whenever t ≤ z1.

b. Choose t such that z1 ≤ t ≤ z2 and consider first the profile of claims x∗
i , x∗

1 = x1, x∗
i =

t−x1
n−1 for i = 2, . . . , n. Show by a similar argument that ETE and IHC force the uniform
gains solution for the interval [z1, z2]. Generalize to any t, 0 ≤ t ≤ zn.

Exercise 2.4 Strategy-Proofness of the Uniform Gains Solution

a. Consider a problem with deficit, t, xi , t ≤ xN , and denote the uniform gains shares
by (yi ). Show that an agent’s share yi is nondecreasing in his claim: if xi increases to
x ′

i , everything else (t and x j , for all j ̸= i) equal, agent i ′s new share y′
i is not smaller

than yi.

Show that if yi is strictly smaller than xi , and xi increases to x ′
i , everything else equal,

agent i ′s share does not change: y′
i = yi .

Deduce that if agent i prefers a larger share to a smaller one—provided they are both
below xi —he cannot benefit from altering (increasing or decreasing) his claim xi .

b. Consider now a problem with excess, t ≥ xN . Show similarly that yi is nondecreasing
in xi and show the following:

{yi > xi and x ′
i < xi } ⇒ yi = y′

i

Deduce that if among two shares not smaller than xi , agent i prefers the smaller one, he
cannot benefit from altering his claim xi .

c. Under the proportional method, check that increasing one’s claim is profitable in the
deficit case, and that decreasing it is profitable in the excess case (preferences over shares
are as in questions a and b respectively).

d. Under the uniform losses/equal surplus solution, which distortion of one’s claim is
profitable?

*Exercise 2.5

a. We fix a profile of claims xi , ranking increasingly as x1 ≤ x2 ≤ · · · ≤ xn. Prove that
agent 1 and agent n have unambiguous preferences over the three basic methods, in the
sense that the three corresponding shares are always ranked in the same way.

Denoting by yi (X) agent i’s share under the method X, prove the following inequalities:

Deficit

y1(UL) ≤ y1(PRO) ≤ y1(UG)

yn(UG) ≤ yn(PRO) ≤ yn(UL)



moulin-79027 book October 22, 2002 11:48

55 Exercises to Chapter 2

Excess

y1(PRO) ≤ y1(ES) ≤ y1(UG)

yn(UG) ≤ yn(ES) ≤ yn(PRO)

b. Find an example of a three person deficit problem, x1 < x2 < x3, t < x1 + x2 + x3,

such that the proportional method is the worst for agent 2:

y2(PRO) < y2(UG) and y2(PRO) < y2(UL)

c. For an arbitrary excess problem with an arbitrary number of agents, show that the equal
surplus method cannot be the worst of the three for anyone, namely that the two inequalities

yi (ES) < yi (PRO) and yi (ES) < yi (UL)

are incompatible for i.

Exercise 2.6 Other Algorithms to Compute the Uniform Gains and Uniform Losses
Solutions

a. Given is a problem with excess, t, xi , xN ≤ t, where the claims are ordered increasingly,
x1 ≤ x2 ≤ · · · ≤ xn. Consider the following algorithm:

Step 1. Increase agent 1’s claims by up to (x2 − x1) units

Step 2. Increase agent 1, 2’s claims by up to (x3 − x2) units each

Step 3. Increase agent 1, 2, 3’s claims by up to (x4 − x3) units each
...

The algorithm stops when (t − xN ) units have been distributed.

Show that the outcome is the uniform gains solution.

b. Given is a problem with deficit t ≤ xN , and with the claims increasingly ordered
x1 ≤ x2 ≤ · · · ≤ xn. The following algorithm reduces the individual claims, starting from
the highest claims:

Step 1. Decrease n’s claim by up to (xn − xn−1) units

Step 2. Decrease n and (n − 1)’s claim by up to (xn−1 − xn−2) units each

Step 3. Decrease n, (n − 1) and (n − 2)’s claim by up to (xn−2 − xn−3) units each
...

We stop whenever total reduction in claims reaches (xN − t) units. At this point, each agent
receives his reduced claim
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Show that this algorithm delivers the uniform gains solution.

c. Given a deficit problem as in question b, consider the following algorithm:

Step 1. Give the first (xn − xn−1) units to agent n

Step 2. Split up to 2(xn−1 − xn−2) units equally between agents n, n − 1

Step 3. Split up to 3(xn−2 − xn−3) units equally between agents n, n − 1, n − 2
...

The algorithm stops when t units have been distributed.

Show that the outcome is the uniform losses solution.

*Exercise 2.7

We are in the deficit case, t ≤ xN .

a. The goal is to show formally that uniform gains is the most progressive among all methods
meeting fair ranking, which is property (7) in section 2.4. We fix a list of increasing claims
x1 ≤ x2 ≤ · · · ≤ xn . Let y∗

i be agent i’s share under uniform gains and yi be his share under
an arbitrary method satisfying fair ranking. Prove that

y1 ≤ y∗
1 ⇔ x1 − y∗

1

x1
≤ x1 − y1

x1

If y1 = y∗
1 , prove similarly that y2 ≤ y∗

2 ; if y1 = y∗
1 and y2 ≤ y∗

2 , prove that y3 ≤ y∗
3 ; and so

on. State and prove an analogue sequence of properties establishing that the uniform losses
method is the most regressive among those meeting fair ranking.

b. Consider the hyperregressive solution r alluded to at the end of section 2.4; the profile
of shares y = r(t, x) is defined by the following property:

{xi < x j and y j < x j } ⇒ yi = 0 for all i, j

and by equal treatment of equals. Show that this corresponds to the definition given at the
end of section 2.4. Show that this solution violates fair ranking, property (7). Show that
among all solutions r of the deficit problem where 0 ≤ yi ≤ xi for all i, the solution above
is the most regressive one.

c. Define similarly the hyperprogressive method, the dual of the hyperregressive one, and
show that it is the most progressive of all solutions r of the deficit problem.
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*Exercise 2.8 Lower Bounds, Upper Bounds

We are in the deficit case, t < xN .

a. We fix t the resources, n the number of agents and xi the claim of a certain agent i . Show
that under uniform gains, agent i’s share is bounded below as follows:

yi ≥ min
{

xi ,
t
n

}

The inequality above holds true for any choice of the variables x j , j ̸= i, provided t ≤ xN .

b. Show that under uniform losses or proportional, agent i’s share can only be bounded
below by zero if we do not know the variables x j , j ̸= i (we only know that they satisfy
xi +

∑

j x j ≥ t).

c. Now we fix n, xi and the deficit t∗ (i.e., t∗ = xN − t); we do not know the variables
x j , j ̸= i (except that we must have t∗ ≤ xN ). Show that under uniform losses agent i’s
share is bounded above as follows:

yi ≤ max
{

xi − 1
n

t∗, 0
}

What is the corresponding upper bound under proportional or uniform gains?

Exercise 2.9 Truncation and Concession

a. Fix a two-person solution for the deficit problems of section 2.3, satisfying equal treat-
ment of equals, truncation, and concession. Fix a profile of claims x1, x2 with x1 ≤ x2. For t
such that 0 ≤ t ≤ x1, use T and ETE to show that t is split equally. For x2 ≤ t ≤ x1 + x2

use similarly C and ETE to compute the shares. Finally compute the shares for x1 ≤ t ≤ x2

and conclude that our method is the contested garment solution.

b. Show that a solution satisfies truncation if and only if its dual (section 2.3) satisfies
concession.

Exercise 2.10 Run to the Bank

We are in the deficit case, t ≤ xN . Given a rationing problem, we let the agents run to the
bank, and we suppose that the ordering of their arrival is random and without bias: each
ordering is equally plausible. The bank then serves the agents in the order of their arrival;
the first agent receives his full claim or the entire resources, whichever is less; if there is
something left after the first agent, the second one gets his full claim or all the remaining
resources, whichever is less; and so on.
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a. Show that for a two-person problem, “run to the bank” coincides with the contested
garment method.

b. Consider the following inheritance problem, due to the Talmudic scholar Ibn Ezra:

Jacob died and his son Reuben produced a deed duly witnessed that Jacob willed to him his entire
estate on his death, his son Simeon also produced a deed that his father willed to him half of the estate,
Levi produced a deed giving him one-third and Judah brought forth a deed giving him one-quarter.
All of them bear the same date.

Compute the division of the estate under “run to the bank.”
Compare it to the divisions under proportional, uniform gains, and uniform losses.

c. In example 2.5 compute the “run to the bank” solution for the values, t = 20, 40, and 50.

*d. Show that run to the bank is self-dual. Show it satisfies truncation and concession (recall
from exercise 2.9 that T and C are dual properties).

*e. To a problem with deficit t, xi , we associate the following cooperative game (see
chapter 5):

v(S) = min

{

t,
∑

i∈S

xi

}

Show that the Shapley value of this cooperative game is precisely the “run to the bank”
solution.

*Exercise 2.11 The Talmudic Solution

We are in the deficit case t ≤ xN . The Talmudic solution is a hybrid of the uniform gains
and uniform losses solutions. The method divides t∗ = xN /2 in proportions to the claims xi :

at t∗ = xN

2
we have y∗

i = xi

2
for all i

Then the method follows uniform gains with respect to the halved claims for t, between 0
and t∗. It follows uniform losses with respect to the halved claims for t, between t∗ and xN :

yi = UG
(

t; xi

2
, i ∈ N

)

if 0 ≤ t ≤ t∗

yi = UL
(

t − t∗; xi

2
, i ∈ N

)

+ xi

2
if t∗ ≤ t ≤ xN

a. Check that this method is the contested garment solution when n = 2.
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Water

agent 1 agent 2 agent 3 agent 4

x1/2
x2/2

x3/2

x4

x3/2
x2/2

x1/2

Figure 2.10
Talmudic method

b. Check its hydraulic representation on figure 2.10.

c. Compute the Talmudic solution in the numerical example of question b of the previous
exercise.

d. Compute the Talmudic solution in example 2.5 for the three values t = 20, 40, and 50.

*e. Show that the Talmudic solution is self-dual. Show it satisfies truncation and concession.

Exercise 2.12

Consider a society N = {1, 2, 3, 4, 5, 6, 7} and the method that

• Gives absolute priority to any agent in {1, 2} over any agent in {3, 4, 5} and absolute
priority to any agent in {3, 4, 5} over any agent in {6, 7}
• Between agents 1 and 2 is the proportional method
• Between agents 3, 4, and 5, is the uniform gains method
• Between agents 6 and 7 is the uniform losses method
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Claims: x1=10,  x2=20,  x3=40,  x4=50

x1 x2 x3 x4

Water

agent 1 agent 2 agent 3 agent 4

Figure 2.11
Method of exercise 2.13

a. Compute the solution it recommends in the following examples:

Agent 1 2 3 4 5 6 7 Resources
Claim 10 0 0 10 15 0 15 12 or 40
Claim 5 10 80 70 10 5 0 50 or 120
Claim 100 50 10 10 20 15 25 130 or 180 or 200

b. Give, as in section 2.5, a “hydraulic” representation of this method.

Exercise 2.13

Consider the rationing method of which the hydraulic representation is given on
figure 2.11.

a. Compute the allocation it recommends for t = 20, t = 50, t = 80, and t = 90.

b. Is this method progressive? Regressive?



moulin-79027 book October 22, 2002 11:48

61 Exercises to Chapter 2

*c. Generalize the method to an arbitrary number of agents and give a formula to compute
the shares it recommends. Hint: Compare it to the Talmudic method in exercise 2.11.

Exercise 2.14

We consider the equal sacrifice methods of section 2.4.

a. Show that the method where u(z) = zq for all z, converges to the proportional solution
when q is positive and approaches zero. To this end, fix a problem t, xi , with t < xN and
write y(q) its solution under this method. Show that the limit y of y(q) as q approaches
zero is the proportional solution. Show that as q goes to infinity, the limit of y(q) is the
hyperregressive solution defined in exercise 2.7.

b. Consider the method where u(z) = −1/z p for all z. Show that it converges to the
proportional solution when p is positive and approaches zero, and to uniform gains when p
becomes arbitrarily large.

c. Show that the u-method meets fair ranking (7) if and only if u is concave.

d. Show that the u-method is progressive (resp. regressive)—see (8)—if and only if z.u′(z)
is nonincreasing (resp. nondecreasing) in z.

*Exercise 2.15

We consider the egalitarian∗ solution to the problem t , ui , defined by the system (12) in
section 2.5.

a. Show that if ui is continuous and strictly increasing, system (12) always has a unique
solution. Show that if ui is continuous and nondecreasing, the system (12) may have several
solutions, but they all yield the same utilities ui (yi ).

b. Assume that ui is strictly increasing and continuous. Show that the egalitarian* solution
is strictly resource monotonic: t < t ′ ⇒ yi < y′

i for all i .

c. Show that the egalitarian* solution is robust to a small change in the utility functions. To
this end, assume that ui takes the form ui (ai , xi ) where ai is a real parameter and that ui is
continuous in the pair (ai , xi ), as well as strictly increasing in xi . Show that the egalitarian*
solution depends continuously on ai .

Exercise 2.16

Consider the classical utilitarian solution (11) to the allocation problem t, ui of
section 2.5.
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a. Assume that each function ui is strictly increasing and strictly convex (marginal utility
u′

i is strictly increasing). Show that the utilitarian solution gives all the resources to a single
agent (this generalizes the argument given in example 2.7).

b. Assume that each function ui is strictly increasing and strictly concave. Recall from
section 2.5 that the utilitarian solution coincides with the egalitarian∗ solution for the utilities
−u′

i . Deduce that it is strictly resource monotonic. Show that it is robust to a small change
in the utility function ui , as in question c of exercise 2.15.


