
2 Arrow’s impossibility
result

2.1. The axiom system and the theorem

When Arrow showed the general impossibility of the existence of a social
welfare function in 1951, quite a few welfare economists were confused. Hadn’t
Bergson, in his seminal paper of 1938, developed the notion of a social welfare
function and hadn’t Samuelson (1947) successfully employed this concept in
various welfare-economic analyses? What went wrong? Was Arrow right and
were Bergson and Samuelson wrong or was it just the other way round?

First of all, Arrow’s notion of a social welfare function is different from
the Bergson–Samuelson concept in so far as Arrow considered an aggregation
mechanism that specifies social orderings for any logically possible set of indi-
vidual preferences (the multiple profile approach). Bergson claimed that for
a given set of individual preferences there always exists the real-valued rep-
resentation of an ordering for the society (single or fixed profile approach).
Furthermore, while Bergson emphasized that any set of value propositions
may be introduced when the welfare of a community is being analysed (see
section 1.2 above), Arrow was very specific on what basic properties a process
should fulfil that maps any set of individual orderings into a social preference.

Let us consider a few examples. Imagine that there is a society with n mem-
bers one of whom is constantly expressing opinions that all the other members
of this society view as unacceptable or at least very strange. Therefore, the
aggregation scheme could be such that whenever this particular person prefers
a to b, society should prefer b to a. Let us assume now that with respect to
two particular alternatives c and d , there happens to be complete unanimity,
i.e. everybody strictly prefers c to d . Should society now prefer d to c? This
outcome would violate one of the basic properties in the sense used above, viz.
the weak Pareto principle to be defined below.

Another aggregation rule could declare that whenever a particular option
z is among those alternatives about which the members of the society should
make up their mind, alternative z should always be preferred to each of the
other options. If one requires that this rule be applied to any given set of
individual preferences, a clash with the Pareto principle will again occur.

Finally, a third example. Imagine that in a decision between two social
alternatives x and y , not only the individuals’ preferences between these two
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alternatives but also the individuals’ preferences between x and some other
options z and w and also the individuals’ preferences between y and the
options z and w should be taken into consideration. Actually, there is a class of
aggregation rules which does exactly this. Then again, one of Arrow’s basic
properties would be violated as we shall see in a moment.

We now wish to state and discuss Arrow’s general result in greater detail.
In order to do this, we will use the notation and definitions introduced in
section 1.3.

Let E denote the set of preference orderings on X and let E ′ stand for a subset
of orderings that satisfies a particular restriction. E ′n will denote the cartesian
product E ′ × · · · × E ′, n times. An element of E ′n is an n-tuple of preference
orderings (R1, . . . , Rn) or the profile of an n-member society consisting of
preference orderings.

A social welfare function in the sense of Arrow is a mapping from E ′n to
E . Arrow’s fundamental result says that there does not exist a social welfare
function if this mapping which we denote by f (R1, . . . , Rn) is to satisfy the
following four conditions:

Condition U (Unrestricted domain). The domain of the mapping f includes
all logically possible n-tuples of individual orderings on X(E ′ = E).

Condition P (Weak Pareto principle). For any x , y in X , if everyone in society
strictly prefers x to y , then xPy .

Condition I (Independence of irrelevant alternatives). If for two profiles of
individual orderings (R1, . . . , Rn) and (R′

1, . . . , R′
n), every individual in society

has exactly the same preference with respect to any two alternatives x and y ,
then the social preference with respect to x and y must be the same for the two
profiles. In other words, if for any pair x , y and for all i, xRiy iff xR′

iy , and yRix
iff yR′

ix , then f (R1, . . . , Rn) and f (R′
1, . . . , R′

n) must order x and y in exactly
the same way.

Condition D (Non-dictatorship). There is no individual i in society such
that for all profiles in the domain of f and for all pairs of alternatives x and y
in X , if xPiy , then xPy .

Condition U requires that no individual preference ordering be excluded
a priori. Even the ‘most odd’ ordering(s) should be taken into consideration.
Condition P , the weak Pareto rule, prescribes that if all individuals unanim-
ously strictly prefer x to an alternative y , the same should hold for society’s
preference. Condition I , perhaps a bit more difficult to understand than the
other conditions, demands that the social welfare function be parsimonious
in informational requirements. More concretely, if society is to take a decision
with respect to some pair of alternatives (x , y), only the individuals’ preferences
with respect to this pair should be taken into consideration and not more. The
individuals’ preferences between x and a third alternative z and the preferences
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between y and z should not count, nor should the individuals’ preferences
between z and a fourth alternative w play any role in the social decision between
x and y . Finally, there should be no individual in society such that whenever
this person strictly prefers x over y , let’s say, this preference must become soci-
ety’s preference; and this for all pairs of alternatives from X and for all profiles
in the domain of f . Such a person who always has his or her way in terms of
strict preferences would have dictatorial power in the preference aggregation
procedure, and this is to be excluded.

For Arrow, his four conditions on f (or five conditions if the demand that the
social preference relation be an ordering is counted as a separate requirement)
were necessary requirements in the sense that ‘taken together they express the
doctrines of citizens’ sovereignty and rationality in a very general form, with
the citizens being allowed to have a wide range of values’ (Arrow, 1951, 1963,
p. 31). The aspect of sovereignty shows itself very clearly in conditions U , P ,
and D.

Theorem 2.1 (Arrow’s general possibility theorem (1951, 1963)). For a finite
number of individuals and at least three distinct social alternatives, there is no
social welfare function f satisfying conditions U , P , I , and D.

2.2. The original proof

On the following pages, we shall prove Arrow’s result. Actually, we shall provide
three different proofs of his theorem. These proofs highlight different aspects
within his impossibility result and we hope that the three ways of proving
his theorem provide sufficient insight into why, at the end, there is a general
impossibility. The first proof follows very closely Arrow’s own proof from
the 1963 edition of his book as well as Sen’s proof in chapter 3∗ of his book
from 1970. Both proofs show in a transparent way that decisiveness over some
pair of social alternatives spreads to decisiveness over all pairs of alternatives
which belong to a finite set of alternatives. This phenomenon has sometimes
been called a contagion property. Sen (1995) speaks of ‘field-expansion’ in this
context. We start with two definitions which will prove to be very helpful in
the sequel.

Definition 2.1. A set of individuals V is almost decisive for some x against
some y if, whenever xPiy for every i in V and yPix for every i outside of V , x
is socially preferred to y (xPy).

Definition 2.2. A set of individuals V is decisive for some x against some y
if, whenever xPiy for every i in V , xPy .

We now concentrate on a particular individual J and denote the ‘fact’ that
person J is almost decisive for x against y by D(x , y) and the ‘fact’ that J is
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decisive for x against y by D̄(x , y). It is immediately clear that D̄(x , y) implies
D(x , y); so the former is stronger than the latter. If J is decisive no matter how
the preferences of all the other individuals look, J is decisive a fortiori if all
the other individuals’ preferences are strictly opposed to J ’s. Now comes a very
important contagion result which contains the hardest part of the proof.

Lemma 2.1. If there is some individual J who is almost decisive for some
ordered pair of alternatives (x , y), an Arrovian social welfare function f
satisfying conditions U , P , and I implies that J must have dictatorial power.

Proof. Let us assume that person J is almost decisive for some x against some
alternative y , i.e. for some x , y ∈ X , D(x , y). Let there be a third alternative z
and let index i refer to all the other members of the society. According to condi-
tion U , we are absolutely free to choose any of the logically possible preference
profiles for this society. Let us suppose that the following preferences hold:

xPJ y , yPJ z and
yPix , yPiz .

The reader should notice that for all persons other than J the preference
relation between x and z remains unspecified. Since D(x , y), we obtain xPy .
Then, because yPJ z and yPiz for all other persons, the weak Pareto principle
yields yPz . But since f per definitionem is to generate orderings, we obtain, by
transitivity from xPy and yPz , xPz .

The reader will realize that we started off by using condition U . In the
next step, we applied condition P . Then, our argumentation used the order-
ing property of the social preference relation. What about the independence
condition? We arrived at xPz without any information about the preferences
of individuals other than person J on alternatives x and z . We have, of course,
assumed yPix and yPiz , but according to condition I , these preferences have no
role to play in the social decision between x and z . Therefore, xPz must be the
consequence of xPJ z alone, regardless of the other orderings (remember that
individual preferences are assumed to be transitive). But this means that per-
son J is decisive for x against z and for the first step in our proof, we obtain:
D(x , y) → D̄(x , z).

Let us consider the second step. Again assume that D(x , y) but the
preferences of all members of the society now read

zPJ x , xPJ y and
zPix , yPix .

Notice that this time i’s preferences between z and y remain unspecified.
We obtain, of course, xPy from D(x , y) and zPx from condition P . The trans-
itivity requirement now yields zPy . An argument analogous to the one in
the previous case, using the independence condition, shows that zPy must
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be the consequence of zPJ y alone. Therefore, in the present situation we obtain:
D(x , y) → D̄(z , y).

In order to demonstrate the contagion phenomenon, we could continue
along the lines of the first two steps. This, however, would be a bit boring for
the reader. We could also argue via permutations of alternatives. For example,
since we have already shown that D̄(x , z) and therefore D(x , z), we could inter-
change y and z in [D(x , y) → D̄(z , y)] and show that D(x , z) implies D̄(y , z).
Other interchanges would provide further steps in our proof of the lemma.

Given the verbal argumentation in steps 1 and 2, we want to prove the
lemma in a rather schematic way. We shall reiterate steps 1 and 2. In the fol-
lowing scheme, x −→ y stands for ‘x is preferred to y ’ and x ←− y stands for
‘y is preferred to x ’. The following six steps can be distinguished:

1. J : x −→ y −→ z

xPy , yPz → xPz

i : x ←− y −→ z

D(x , y) → D̄(x , z) → D(x , z)

2. J : z −→ x −→ y

zPx , xPy → zPy

i : z −→ x ←− y

D(x , y) → D̄(z , y) → D(z , y)

3. J : y −→ x −→ z

yPx , xPz → yPz

i : y −→ x ←− z

D(x , z) → D̄(y , z) → D(y , z)

4. J : y −→ z −→ x

yPz , zPx → yPx

i : y ←− z −→ x

D(y , z) → D̄(y , x) → D(y , x)

5. J : z −→ y −→ x

zPy , yPx → zPx
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i : z −→ y ←− x

D(y , x) → D̄(z , x) → D(z , x)

6. J : x −→ z −→ y

xPz , zPy → xPy

i : x ←− z −→ y

D(x , z) → D̄(x , y) → D(x , y).

Our scheme shows that starting from D(x , y), individual J is decisive (and
therefore almost decisive) for every ordered pair from the triple of alternatives
(x , y , z), given conditions U , P , and I . Therefore, individual J is a dictator for
any three alternatives that contain x and y .

Can this contagion property be extended beyond three alternatives? The
answer is ‘yes’. We do not want to provide the full argument since the reader
will easily see how the reasoning works. Let us consider four elements, viz.
x , y , u, and v where both u and v are different from x and y . We start with the
triple (x , y , u). Due to the result above and due to condition U , we arrive at
D̄(x , u) and D(x , u). Next, we take the triple (x , u, v). Since we have D(x , u),
the argumentation above shows that D̄(u, v) and D̄(v , u) follow. Therefore,
D(x , y) for some x and y implies D̄(u, v) for all possible ordered pairs (u, v).
Thus, the contagion result holds for any finite number of alternatives and the
lemma is proved.

The remainder of the proof of Arrow’s theorem is rather easy. The logical
consequence of the lemma above is that we cannot allow an individual to be
almost decisive over some ordered pair of alternatives since this would clash
with the condition of non-dictatorship. Let us therefore assume that there is
no almost decisive individual. As the reader will see shortly, this leads to a
contradiction.

Remember that our frame of argumentation is given by conditions U , P ,
and I together with the ordering property of f .

By condition P , there is at least one decisive set for any ordered pair (x , y),
viz. the set of all individuals. Therefore, there also exists at least one almost
decisive set. Among all the sets of individuals that are almost decisive for some
pair of alternatives, let us choose the smallest one (not necessarily unique).
According to the result of the lemma, it must contain at least two individuals,
for the case of one almost decisive person would yield dictatorship, and the
proof were complete. Let us call this set V and let V be almost decisive for
(x , y). We now divide V into two parts: V1 contains only a single individual,
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V2 contains all the others from V . Let V3 be the individuals outside of V . Due
to condition U , we postulate the following profile:

For i in V1 : xPiy and yPiz
For all j in V2 : zPj x and xPj y
For all k in V3 : yPkz and zPkx .

Since V is almost decisive for (x , y), we obtain xPy . Can zPy hold? If this
were the case, then V2 would be almost decisive for (z , y) due to condition I,
since zPj y and all the other individuals (in V1 and V3) prefer y to z . However,
according to our assumption, V is a smallest decisive set, and V2 is a strict
subset of V . Therefore, zPy is impossible and thus yRz . Transitivity of the
social relation now yields xPz . But then the single member of V1 would be
almost decisive, in contradiction to what we have assumed at the outset. The
impossibility result now follows from the lemma.

The reader should note two points. The first refers to the profile that we
have used above. It has the structure of the so-called paradox of voting to
which we shall come back in the next chapter. The second refers to the fact that
the preferences of the individuals in V3 are not needed in our argumentation.
In other words, we could have dispensed with a part of the profile of the voting
paradox. It would, perhaps, be a good exercise for the reader to check that the
last statement actually holds.

2.3. A second proof

The second proof can be found in Jehle and Reny (2001) and in Reny (2001).
It is largely based on Geanakoplos (1996). While the first proof was particularly
good in bringing out the contagion property of decisiveness, the second proof
shows very clearly the function of Arrow’s independence condition.

The proof starts by postulating a finite set of alternatives X and n individuals
who have strict orderings over these alternatives. The social ordering is assumed
to be a weak order. We pick any two distinct alternatives a and b from X .
In step 1, alternative a is ranked highest and alternative b lowest by every
person i ∈ {1, . . . , n}. Condition P then requires that a is strictly at the top
of the social ordering. Imagine now that alternative b is raised, step by step
or rank by rank, to the top of individual 1’s ordering, while the ranking of
all other alternatives is left unchanged. Due to the independence condition, a
either remains at the top of the social ordering or is replaced by b. If a remains
at the top, raise b in individual 2’s ranking until it reaches the top, then do the
same in the third, fourth, . . . individual’s ranking. We know from the weak
Pareto condition that ‘in the end’, when we have moved b to the top of every
individual’s ranking, the social relation will rank b above a. We now focus on
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individual m where, after b has risen to the top in his or her ordering, b for the
first time is socially preferred to a. Figures 2.1 and 2.2 show the situation just
before and just after b was raised to the top of individual m’s ordering.

R1 . . . Rm−1 Rm Rm+1 . . . Rn social order R
b . . . b a a . . . a a
a a b · · ·
· · · · · b
· · · · · ·
· · · b b ·

Figure 2.1.

R1 . . . Rm−1 Rm Rm+1 . . . Rn social order R
b . . . b b a . . . a b
a a a · · a
· · · · · ·
· · · · · ·
· · · b b ·

Figure 2.2.

In step 2, we introduce the following changes into figures 2.1 and 2.2.
We move alternative a to the lowest position of individual i’s ordering for
i < m and move a to the second lowest position in the orderings of i > m.
With respect to figure 2.2, the reader will realize that moving a downwards
does not alter anything in the relationship between b and any of the other
alternatives. Therefore, due to condition I , b must remain top-ranked in the
social ordering. The only difference between the new constellations, let’s call
them 1′ and 2′, lies in m’s ranking of alternatives a and b. Therefore, due
to condition I , b must in situation 1′ remain socially ordered above every
alternative but possibly a. But if b were socially ordered at least as high as
a in situation 1′, then, again due to condition I , b would have to be socially
ranked at least as high as a in figure 2.1. But this would be in contradiction of
what we had obtained in step 1. Therefore, in constellation 1′, a is top-ranked
socially.

In step 3, we focus on any third alternative c which is distinct from a and b.
Remember that in situation 1′,a was ranked lowest for i < m and second lowest
for i > m. Individual m had a at the top of the ordering. We now construct a
profile in figure 2.3 which is such that the ranking of a in relation to any other
alternative in any individual’s ordering remains the same as in situation 1′.
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A preference profile is picked where every individual has c ordered above b.
The main insight within this step is that due to condition I , alternative a must
again be top-ranked socially.

R1 . . . Rm−1 Rm Rm+1 . . . Rn social order R
· · a · · a
· · c · · ·
c c b c c ·
b b · a a ·
a a · b b ·

Figure 2.3.

In step 4, the preference profile from figure 2.3 is modified in the following
way, and this is the only change: for individuals i > m, the rankings of altern-
atives a and b are reversed. What are the consequences of this alteration? Due
to condition I , the social ranking of a versus all the other alternatives except
for b remains the same. Can b become top-ranked socially? The answer is ‘no’
since c must be socially preferred to b due to the Pareto condition. Therefore,
a is at the top of the social ordering and c is socially ranked above b.

In the final step 5, we construct an arbitrary profile of orderings with a
above b in the ordering of person m. For example, the profile could have, as
depicted in figure 2.4, alternative c between a and b in m’s ordering whereas
all the other individuals order c at the top. Condition I disallows the ranking
of c to have any effect on the social ranking between a and b. The ranking of a
versus c is as in step 4. Due to our inferences in step 4, a must be ranked above
c due to condition I , and c is Pareto-preferred to b. Therefore, by transitivity
of the social relation, a is preferred to b, and this holds whenever person m
orders a above b.

R1 . . . Rm−1 Rm Rm+1 . . . Rn social order R
c c a c c a
· · c · · ·
· · b · · c
b b · b b ·
a a · a a b

Figure 2.4.

If we now permute alternatives b and c in the arguments above, we obtain
the same qualitative result. The ranking of a is above alternative c when person
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m orders a above that alternative. And this holds for any alternative distinct
from a. In other words, individual m has dictatorial power over a versus any
other alternative. Since alternative a was chosen arbitrarily in step 1, it is now
evident that there is a dictator for every a from X . But can there be different
dictators for different alternatives? The reader will easily see that this would
lead to contradictions in the construction of a social ranking whenever these
‘potential dictators’ have individual orderings that are not the same. Therefore,
there can only be one dictator for all elements from X .

2.4. A third diagrammatic proof

The third proof provides a diagrammatic representation of Arrow’s theorem
and was introduced by Blackorby, Donaldson, and Weymark (1984). In order
to keep the diagrams two-dimensional, the proof was given for only two indi-
viduals (though the authors briefly indicate how their proof can be extended
to more than two persons). The reader certainly remembers our remark at the
end of the first (original) proof that two individuals would suffice to show the
Arrovian impossibility.

The diagrammatic proof unfolds in utility space. Strictly speaking, this
would require us to redefine the whole Arrovian set-up in terms of utility
functions that are defined in Euclidian space. This would be extremely cum-
bersome and very tiring for the reader. Therefore, in the process of redefining
concepts, we shall try to be as parsimonious as possible.

The first thing for the reader is to remember from a basic course in micro-
economics that a preference ordering can be transformed into a utility function
if continuity is postulated in addition to the other properties that turn a
binary preference relation into an ordering. In other words, the better-than-or-
indifferent set and the worse-than-or-indifferent set with reference to any point
in Euclidian space are assumed to be closed sets. The second point to remember
is that given any preference ordering and its corresponding utility function,
any other utility function which is generated by applying a strictly monotone
transformation to the original utility function has the same informational
content as the original. This property of ordinal utility will prove to be import-
ant in the sequel (remember that the Arrovian framework is purely ordinal).
Different individuals can pick different strictly monotone transformations
without changing or distorting the original information contained in the
preference orderings of the n members of the society. This being said, it is
very clear that any ‘degree’ of comparability of utilities across individuals is
excluded. When looking back to our reasoning in the first two proofs, the
reader will immediately agree that comparability assumptions had nowhere
been postulated.
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The social welfare function f à la Arrow is now turned into a social evaluation
functional F . Its domain are sets of n-tuples of individual utility functions
u1, u2, . . . , un . Each individual i ∈ {1, . . . , n} evaluates social states x ∈ X in
terms of utility function ui(x). We postulate that all logically possible n-tuples
of utility functions are admissible (unrestricted domain). The functional F
then is a mapping from the set of all logically possible n-tuples or profiles
of utility functions into the set of all orderings of X , which we denoted by E
earlier on. For U = (u1, u2, . . . , un) being a profile, F(U ) = RU is the ordering
generated by F , when the utility profile is U .

After unrestricted domain, the second condition on F that we introduce is
Arrow’s independence of irrelevant alternatives, now defined for n-tuples of
individual utility functions. The meaning of condition I is precisely the same as
before. If for any two social alternatives x , y ∈ X and two utility profiles U ′ and
U ′′, both x and y obtain the same n-tuple of utilities in U ′ and U ′′, then RU ′
and RU ′′ must coincide on {x , y}. As promised above, we abstain from giving a
redefinition of the independence condition (see, however, section 7.3). Nor do
we want to redefine the weak Pareto condition which, of course, also has the
same meaning as before. However, we now introduce a condition called Pareto
indifference, which requires that if all members of the society are indifferent
between a pair of alternatives, the same should hold for society’s preference
over this pair.

Condition PI (Pareto indifference). For all x , y ∈ X and for all U from the
(unrestricted) domain, if U (x) = U (y), then xIU y .

xIU y means that xRU y and yRU x , and U (x) = U (y) means that ui(x) =
ui(y) for all i ∈ {1, . . . , n}.

Conditions U , I and PI have very strong implications for F . Sen (1977b)
has shown that the three conditions together imposed on F are equivalent to
a property called strong neutrality. Strong neutrality requires that the social
evaluation functional F ignore all non-utility information with respect to the
alternatives, such as names or rights or claims or procedural aspects. The only
information that counts is the vector of individual utilities associated with
any social alternative. This ‘fact’ has been termed ‘welfarism’ in the literature of
social choice theory as well as bargaining theory (we briefly discussed this issue
in our introduction) and has been sharply criticized from different angles. The
total disregard of non-utility information holds not only within a single utility
profile but also across profiles. All this is rather debatable and we shall return
to the welfarism issue later on in this book.

For the present analysis, however, the welfaristic set-up has a great advantage.
Instead of considering the orderings RU generated by F , we can focus on
an ordering R∗ of IRn , the space of utility n-tuples, that orders vectors of
individual utilities which correspond to the social alternatives from the given
set X . The formal result that Blackorby et al. state in this context (it is due to
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D’Aspremont and Gevers (1977)) says that if the social evaluation functional
F satisfies the three axioms of welfarism (viz. conditions U , I , and PI ), there
exists an ordering R∗ of IRn such that for all x , y ∈ X and all logically possible
utility profiles U , xRU y ↔ ūR∗ ¯̄u, where ū = U (x) and ¯̄u = U (y).

D’Aspremont and Gevers show that when the functional F fulfils the three
axioms of welfarism, the ordering R∗ in utility space inherits these properties.
Therefore, one can redefine these conditions together with other requirements
and impose them directly on R∗. However, we shall refrain from doing this
except for one case, because otherwise the reader would, perhaps, feel terribly
bored. Let us just look at the formulation of dictatorship within the new
framework. The ordering R∗ is a dictatorship if and only if there exists an
individual i ∈ {1, . . . , n} such that for all ū, ¯̄u ∈ IRn , if ūi > ¯̄ui , then ūP∗ ¯̄u.
Whenever individual i gets more utility under vector ū than under vector ¯̄u, ū
is socially ordered above ¯̄u.

What is now shown diagrammatically is that if the social evaluation func-
tional F satisfies the three axioms of welfarism, the framework of ordinally
measurable, and non-comparable utilities together with the weak Pareto rule
are necessary and sufficient for the social ordering R∗ to be a dictatorship.

The diagram in figure 2.5 will be widely used in the following proof for the
two-person case. Let ū in IR2 be our point of reference. The plane has been
divided into four regions. For the moment, we do not consider the boundaries
between the regions but only the interior of the four regions. From the weak
Pareto principle, it is clear that all utility vectors in region I are socially preferred
to the reference point ū, and the latter is preferred to all vectors in region III.

What can be said about the points in region II in comparison with ū and the
points in region IV against ū? In the following, it will be shown in several
steps that either all points in II are preferred to ū and the latter is pre-
ferred to all points in IV or all points in IV are preferred to ū and ū again
is preferred to all points in II.

u2

u1

a
b

c

d III

III IV

_
u

Figure 2.5.
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Let us show first that all points in region II (region IV) must be ranked
identically against ū. Notice that points in II are such that u1 < ū1 and u2 > ū2.
Consider the points a and b in II and let us assume that aP∗ū. We will now
argue that we then obtain bP∗ū as well. Why? Remember that each of the two
persons is totally free to map his or her utility scale into another one by a
strictly increasing transformation. It is easy to find a transformation (there are
infinitely many) that maps a1 into b1 and ū1 into ū1. Similarly, one can find
another transformation that maps a2 into b2 and ū2 into itself. Figures 2.6(a)
and (b) depict two such transformations.

We know that since we are in the framework of ordinal and non-comparable
utilities, these transformations do not change the rankings of the two per-
sons. Therefore, if aP∗ū as assumed, then bP∗ū. Notice that this result
holds for any points a, b in the interior of region II. Therefore, all points
in the interior of region II are ranked identically with respect to reference
point ū (but not, of course, ranked identically with respect to each other).
The reasoning above holds analogously for all points in region IV with
respect to ū.

Since R∗ is an ordering, three ways of ranking points in region II against ū
are possible: the points in II could be preferred, indifferent, or worse. In our
argument above, we had postulated a strict preference against ū. We could also
have started by assuming ū to be preferable to all points in II. The inferences
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_
u1

_
u2

_
u1

_
u2 a2

(a)

(b)

Figure 2.6.
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would have been completely analogous. However, indifference between points
in II and ū would lead to a contradiction. We would, for example, have aI∗ū and
bI∗ū. But since R∗ is an ordering, we would also obtain aI∗b. Clearly, point
a in figure 2.5 must be Pareto-preferred to point b. Therefore, indifference
cannot hold.

We now wish to show that the ranking of points in region II against ū must
be opposite to the ranking of points in region IV against ū. Again, we shall
use the argument that strictly monotone transformations of individual utility
scales do not change the informational content. Let us assume once more that
points in region II are preferred to ū, more concretely that (a1, a2)P∗(ū1, ū2).
Consider the following transformations for individuals 1 and 2. Change person
1’s utility scale such that each point is shifted to the right by ū1 −a1, a constant
amount, and change person 2’s scale such that each point is shifted downwards
by a2 − ū2, another constant amount. This means that (a1, a2) is moved to
(a1 + (ū1 −a1), a2 − (a2 − ū2)) = (ū1, ū2) and (ū1, ū2) is shifted ‘south-east’ to
(2ū1 − a1, 2ū2 − a2) = (c1, c2). More briefly, the independent transformations
map a into ū and ū into c . Since a, by assumption, is preferred to ū, this
relationship continues to hold after the transformations, viz. ū is preferred to
c . And from our earlier steps in this proof we infer that ū is preferred to all
points in region IV. Remember that assuming region II to be preferred to ū
was arbitrary. If region II had been assumed to be worse than ū, all points in
region IV would turn out to be better than ū.

The proof is almost complete. We still have to deal with points on the
boundaries. Consider, for example, point d in figure 2.5. Suppose region II is
preferred to ū. For d , there always exists a point in II (such as a) that is Pareto-
inferior to d . Therefore, dP∗a and aP∗ū. Transitivity of R∗ yields dP∗ū. This
result holds for any choice of d . In other words, if two adjacent regions have
the same preference relationship to ū, the same ranking holds for any point on
their common boundary.

Let us lean back for a moment and see what we have shown. There are two
cases possible that are depicted in figures 2.7(a) and (b). If we assume that
region II is preferred to ū, then regions I and II and their common boundary
are preferred to ū. In this case, the direction of social preference is vertical,
and person 2 is a dictator in the sense defined. If region IV is preferred to
ū, then regions I and IV and their common boundary are preferred to ū.
In this case, the direction of social preference is horizontal, and person 1 is a
dictator.

Let us add two more remarks. The first refers to the chosen reference point
ū. The position of this point is totally arbitrary for the arguments above.
Any other point ¯̄u can be reached by transforming the utility scales of per-
son 1 and 2 by adding ¯̄u1 − ū1 and ¯̄u2 − ū2 to person 1’s scale and person
2’s scale, respectively. The proof would then proceed in the same way as
before.
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The second remark refers to the fact that we have said nothing about points
lying on the dotted lines. As a matter of fact, without introducing a further
assumption, nothing precise can be said about the relationship among points
on the dotted lines. What we can say is the following. Consider, for example,
figure 2.7(a). Because of the informational set-up, any two points on the hori-
zontal dotted line can be ranked either that one of the two points is better than
the other, or that it is worse than the other, or that the two points are indifferent.
Take a point to the right of ū. If this point is, for example, better than ū, then
whenever one moves to the right on any horizontal line, this is an improve-
ment socially. Two things could be done to ‘remedy’ this situation. One would
be to introduce a continuity requirement with respect to R∗. Then all points
on the dotted line through ū would become indifferent to each other. The
second thing would be to introduce a strong version of the Pareto principle.
A consequence of this assumption would be that whenever the dictator (either
person 1 or person 2) is indifferent between two utility allocations, the second
person becomes decisive, i.e. determines the social preference. In other words,
we obtain a serial or lexicographic dictatorship. Finally, the reader should note
how important and far-reaching the assumption of informational invariance
with respect to strictly monotone transformations of the individuals’ utility
scales has been in the proof above.
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2.5. A short summary

When Arrow published his by now famous impossibility theorem, the result
came as a surprise to various welfare economists. Arrow’s negative result was
met with disbelief by some. Others, such as Samuelson (1967), claimed that
this result might have importance for politics but not so much for econom-
ics proper. Others again tried to construct counterexamples to the theorem.
Actually, Blau (1957) had a good point which forced Arrow to reformulate the
original statement of his theorem to some, though minor degree.

We presented three different proofs to make the logical implications within
the Arrovian set-up more transparent and to show the generality of his result.
The spread of decisiveness from a single ‘cell’ (strict preference over one pair)
to all other ‘cells’ in the first proof may be quite stunning for the beginner.
The second proof reveals how restrictive (in terms of barring profile inform-
ation) Arrow’s condition of independence of irrelevant alternatives is. The
third proof demonstrates the far-reaching consequences of the purely ordinal
approach where utilities are determined up to arbitrary strictly monotone
transformations, a property that remains largely in the dark in the first two
proofs. All the different properties interact, of course, but each proof seems to
highlight one of these in particular.

2.6. Some exercises

2.1 Why does the majority rule briefly introduced in Chapter 1 not qualify
for an Arrow social welfare function? Please discuss. Show that the weak
Pareto principle does not qualify either for an Arrow social welfare
function.

2.2 Why is the Borda rule which assigns ranks to positions of alternatives not
a counter-example to Arrow’s impossibility result? Please discuss.

2.3 Consider the following preference profile for three individuals:

xP1yP1zP1w ; yP2zP2xP2w ; zP3xP3yP3w .

According to the simple majority rule we get yPzPxPw . Nevertheless,
there is something ‘going wrong’ with this profile. Please discuss.

2.4 Show that if an individual J is decisive over any triple (x , y , z), this
individual is also decisive over the quintuple (x , y , z , u, v).

2.5 Show that in the latter part of Arrow’s own proof, only the individuals in
V1 and V2 are needed in order to arrive at a contradiction.
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2.6 Write out explicitly so-called constellation 1′ in the second Arrow proof
(section 2.3) and give arguments why b cannot be top-ranked socially
though a has lost so many positions in comparison with the situation in
figure 2.1.

2.7 Why isn’t it possible, in the situation of figure 2.4, for alternative c to be
top-ranked socially? This alternative is at the top of n − 1 orderings and
just beaten by a in m’s ranking. Please discuss.

2.8 Please construct a positive affine transformation ϕ(z) = α + βz such
that a1 is mapped into b1 and ū1 is mapped into ū1 in figure 2.6(a). Do
the same in figure 2.6(b) for ψ(z) = γ + δz , i.e. ū2 is mapped into ū2

and a2 is mapped into b2.

2.9 Show that if the two regions I and II in figure 2.5 are ranked the same in
relation to ū, then all points on their common boundary have the same
preference relationship to ū.

2.10 Why doesn’t the weak Pareto principle help us to determine a pref-
erence relationship between points on the dotted line and point ū in
figures 2.7(a) and (b)?
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