
Exercise #1 - Externalities and car accidents

1. Consider an economy with two individuals i = f1; 2g with the following quasi-linear
utility function

ui(s
i; qi) = vi(si) + �wi

where si denotes the speed at which individual i drives his car, wi is his wealth, and

� > 0. The utility that individual i obtains from driving fast is vi(si), which is

increasing but concave in speed, whereby @vi(si)
@si

> 0 and @2vi(si)

(@si)2
< 0. Driving fast,

however, increases the probability of su¤ering a car accident, represented by 
(si; sj).

This probability is increasing both in the speed at which individual i drives, si, and

the speed at which other individuals drive, sj, where j 6= i. Hence, the speed of other
individuals imposes a negative externality on driver i, since it increases his risk of

su¤ering a car accident. If individual i su¤ers an accident, he bears a cost of ci > 0,

which intuitively embodies the cost of �xing his car, health-care expenses, etc.

(a) Unregulated equilibrium. Set up individual i�s expected utility maximization prob-

lem. Take �rst-order conditions with respect to si, and denote the (implicit)

solution to this �rst-order condition as bsi.
� With probability 
(si; sj), the individual su¤ers a car accident, and thus his
utility is vi(si)+�wi� ci, and with probability 1�
(si; sj) he does not su¤er
the accident, leaving his utility level at vi(si) + �wi.

� Hence, his expected utility is


(si; sj)[vi(si) + �wi � ci] + (1� 
(si; sj))[vi(si)� �wi];

which reduces to vi(si)+�wi�
(si; sj)ci. Hence, every individual imaximizes
his expected utility by choosing an speed level si that solves

max
si

vi(si) + �wi � 
(si; sj)� ci

Taking �rst-order conditions with respect to si we obtain

@vi(si)

@si
� @


@si
ci = 0 (4)

Hence, driver i independently selects the speed, bsi, that solves @vi(si)
@si

= @

@si
ci.

� Intuitively, driver i increases his speed si until the point where the additional
utility from marginally increasing si, @v

i(si)
@si

, coincides with its associated ex-

pected individual cost from speed, i.e., a higher probability of su¤ering a car
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accident times its associated cost, as measured by @

@si
ci.

� Parametric example. Consider, for instance, a utility from driving fast of

v(si) =
p
si (which is increasing and concave in si, as required), and that the

probability of su¤ering a car accident is 
(si; sj) = �is
i+�js

j, where �i > �j
(indicating that my own speed increases the probability that I su¤er a car

accident more than other drivers�speeds). First order condition (1) in this

context becomes
1

2
p
si
= �ic

i;

and solving for si, we obtain an equilibrium speed of bsi = 1

4(�ic
i)2
for every

individual driver i = f1; 2g.

(b) Social optimum. Set up the social planner�s expected welfare maximization prob-

lem. Take �rst-order conditions with respect to s1 and s2. Denote the (implicit)

solution to this �rst-order condition as si.

� The social planner solves the expected welfare maximization problem

max
s1;s2

v1(s1) + �w1 + v2(s2) + �w2 � 
(s1; s2)�
�
c1 + c2

�
Taking �rst-order conditions with respect to s1, we obtain that �s1 solves

@v1(s1)

@s1
=
@


@s1
�
c1 + c2

�
(5)

and similarly with respect to s2, we obtain that �s2 solves

@v2(s2)

@s2
=
@


@s2
�
c1 + c2

�
(6)

Intuitively, at the social optimum every driver i increases his speed si until

the point where the additional utility from marginally increasing si coincides

with its associated expected social cost from speed, measured by not only

the higher probability of him su¤ering a car accident but also by the higher

probability that the other individual j 6= i su¤ers a car accident because of
the speed si of individual i.

(c) Comparison. Show that drivers have individual incentives to drive too fast, rela-

tive to the socially optimal speed, i.e., show that bsi > si.
� Comparing expressions (1) and (2), yields

@v1(ŝ1)

@s1
<
@v1(�s1)

@s1
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Since @2vi(si)

(@si)2
< 0 by de�nition, @v

i(si)
@si

is a decreasing function. Therefore, the

speed that individual 1 independently selects, bs1, is excessive from a social

point of view, i.e., bs1 > s1. Similarly, comparing (1) and (3), we have thatbs2 > s2. Intuitively, every driver does not internalize the negative externality
that his speed imposes on other drivers (in the form of a higher probability

of su¤ering a car accident) when he independently selects his driving speed.

� Figure 9.1 represents the marginal utility, @v
i(si)
@si

, and marginal expected costs,

individual marginal costs, @

@si
ci, and social marginal costs, @


@si
(ci+cj), to sup-

port the above explanation. Since the social marginal cost curve is higher for

any speed level si than the individual marginal cost curve, the former crosses

the marginal utility curve at a lower speed level, i.e., si < bsi. Intuitively, the
social planner internalizes the externality that additional speed imposes on

other drivers (who could su¤er a car accident due to the speed of driver i),

and thus reduces the speed of both drivers.

Figure 9.1. E¢ cient and socially optimal speed.

�Note that for simplicity, we consider that the marginal utility decreases
in si at a constant rate, i.e., @2vi(si)

@si2
is constant in si or, alternatively,

@3vi(si)

(@si)3
= 0; implying that the marginal utility curve is a straight line. In

addition, we also assume that further increases in speed si imply a con-

stant increase in the probability of an accident, i.e., @2

(@si)2

> 0 but constant

or, alternatively, that @3

(@si)3

= 0. This property entails the marginal cost

curve is also a straight line.
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�Parametric example. Continuing with the previous example in which

vi(si) =
p
si and 
(si; sj) = �is

i + �js
j, the socially optimal speed that

the social planner would select, si, is that satisfying

1

2
p
si
= �i(c

i + cj)

and solving for si yields si = 1
4[�i(c

i+cj)]2
, which clearly falls below the

speed level independently selected by every driver bsi = 1
4(�ic

i)2
.

(d) Restoring the social optimum. Let us now evaluate the e¤ect of speeding tick-

ets (�nes) to individuals driving too fast, i.e., to those drivers with a speed bsi
satisfying, bsi > si. What is the dollar amount of the �ne mi that induces every

individual i to fully internalize the externality he imposes onto others?

� Comparing (1) and (2) for driver 1, we must impose a �ne of m1 = c2 in

order to guarantee that (1) coincides with (2). Intuitively, this �ne induces

driver 1 to internalize the negative externality (higher chances of su¤ering a

car accident and, in this case, an associated monetary cost of repairs) that he

imposes on driver 2. Similarly comparing (1) and (3) for driver 2, we must

impose a �ne of m2 = c1 in order to guarantee that (1) coincides with (3).

(e) Let us now consider that individuals obtain a utility from driving fast, vi(si), only

in the case that no accident occurs. Repeat steps (a)-(c), �nding the optimal �ne

mi that induces individuals to fully internalize the externality.

� Equilibrium speed. In this section of the exercise, driver i only obtains utility

from driving fast, vi(si), when no accident occurs. Given that the probability

that an accident does not occur is 1� 
(s1; s2), the utility of driver i is

�
1� 
(s1; s2)

� �
vi(si) + �wi

�| {z }
No accident

+ 
(si; sj)(�wi � ci)| {z }
Accident

which can be rearranged as

vi(si) + �wi � 
(si; sj)
�
ci + vi(si)

�
Taking �rst order conditions with respect to si, we obtain that the individual

driver i independently selects the speed si that solves

@vi(si)

@si
�
1� 
(si; sj)

�
=
@


@si
(ci + vi(si)) (4)

where conveniently separates the marginal utility of driving faster in the left-
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hand side, which only arises if driver i does not su¤er a car accident, an event

with probability 1 � 
(si; sj); and its associated marginal cost in the right-
hand side, which captures the higher probability of su¤ering a car accident,
@

@si
, and its two costs: one explicit, ci, and one implicit, namely, the utility

from driving that driver i would have to give up (since he can only bene�t

from driving when he does not su¤er a car accident).

�Parametric example. Following with the on-going parametric example,
the above �rst order condition (4) becomes

1

2
p
si

�
1� (�isi + �jsj)

�
= �i(c

i +
p
si);

and similarly for driver j. Before solving for si in order to driver i�s best

response function, let us assume (in order to keep our parametric example

compact) that �i = �j =
1
2
and ci = cj = 2

3
. In this context, solving for

si we obtain

si(sj) = 2� 3sj � 4
3

p
sj

Since both drivers are symmetric, si = sj, we can solve for si yielding a

symmetric equilibrium speed level of si = 0:313.

� Socially optimal speed. The social planner�s maximization problem in this

case becomes

max
s1;s2

v1(s1)+�w1�
(s1; s2)
�
c1 + v1(s1)

�
+v2(s2)+�w2�
(s1; s2)

�
c2 + v2(s2)

�
Taking �rst order conditions with respect to si, we obtain that the socially

optimal speed, bsi, solves
@vi(si)

@si
�
1� 
(si; sj)

�
=
@


@si
�
ci + vi(si)

�
+
@


@si
�
cj + vj(sj)

�
(5)

� Comparison. Comparing expressions (4) and (5), we obtain that the �ne mi

that induces every individual i to internalize the externality that his driving

imposes on others is

mi = cj + vj(sj)

Intuitively, now an increase in the speed of driver i not only increases the

probability that driver j su¤ers a car accident, and thus needs to incur a cost

of cj, it also reduces the utility from driving that driver j can only experience

if he is not involved in a car accident.
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�Parametric example. Following with the on-going parametric example,
the above �rst order condition (4) becomes

1

2
pbsii �1� (�ibsi + �jbsj)� = �i

h
(ci +

pbsi) + (cj +pbsj)i ;
Before solving for bsi in order to driver i�s best response function, let us
assume (in order to keep our parametric example compact) that �i =

�j =
1
2
and ci = cj = 2

3
. In this context, we can simultaneously solve for

s

when drivers independently choose their own driving speed, si = 0:313.














 
 


Exercise #3 - Positive and Negative Externalities

3. Consider an economy with two �rms which produce a homogeneous good. Firm 1

produces q1 units of the good, and its cost function is c1(q1; q2) = 2q21 + 5q1 + q2,

while �rm 2 produces q2 units of the same good and its cost function is c2(q2; q1) =

q22 + 3q2 � 4q1. Note that every �rm i�s costs depends on its rival�s output, qj, where

j 6= i. Finally, inverse market demand is given by p(Q) = 34 � Q, where Q = q1 + q2
denotes aggregate output.

(a) Unregulated equilibrium. Considering that every �rm independently and simul-

taneously selects its production level, determine equilibrium output q1 and q2.

What are the associated pro�ts for each �rm? Measure consumer surplus, pro�ts

and social welfare.

� Since @c1(q1;q2)
@q2

= 1 > 0 and @c2(q2;q1)
@q1

= �4 < 0, �rm 2 generates a negative

externality on �rm 1 (i.e., q2 increases �rm 1�s costs), while �rm 1 produces

a positive externality on �rm 2. In order to determine the equilibrium level

of q1 and q2, we need to separately consider each �rm�s pro�t-maximization

problem. First, �rm 1 chooses the level of q1 that solves

max
q1�0

(34� q1 � q2) q1 �
�
2q21 + 5q1 + q2

�
Taking �rst order condition with respect to q1, we obtain 29� 6q1 � q2 = 0.
Solving for q1 we �nd �rm 1�s best response function, q1(q2) =

29�q2
6
. Similarly,
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�rm 2 solves

max
q2�0

(34� q1 � q2) q2 �
�
q22 + 3q2 � 4q1

�
and taking �rst order condition with respect to q2, we have 31� q1� 4q2 = 0.
Thus, solving for q2 we obtain �rm 2�s best response function, q2(q1) =

31�q1
4
.

Plugging q2(q1) into q1(q2), we �nd the equilibrium output levels q�1 =
85
23
'

3:69 and q�2 =
157
23

' 6:82. Therefore, the aggregate supply is QS(p) =

q�1+q
�
2 =

242
23
' 10:52, with an equilibrium price of p = 34� 242

23
= 540

23
' $23:47.

� Equilibrium pro�ts are therefore �1 = 34:14 and �2 = 107:97 for �rm 1 and

2, respectively, and aggregate pro�ts are � = 142:11.

� Consumer surplus is, hence, given by the area of the triangle below the inverse
demand curve and above the equilibrium price of $23:47.

CS =
1

2
(34� 23:47) � 10:52 = 55:39:

Thus, social welfare is W = CS + � = 197:5.

� Finally, notice that this output allocation is ine¢ cient: �rm 1 (the agent who
generates the positive externality) produces too little, whereas �rm 2 (the

agent who causes the negative externality) produces too much. We formally

show this result in the next question, where �rms are allowed to merge and

thus internalize the positive and negative externalities of their production

decisions.

(b) Merger. Assume that the government is aware of these mutual externalities be-

tween �rm 1 and 2, but does not want to directly regulate their production by the

imposition of quotas or fees. Instead, the regulator allows both �rms to merge.

Determine the equilibrium level of q1 and q2 that the newly merged �rm will

choose, and check if �rm 1 and 2 have incentives to merge.

� This merge is equivalent to a horizontal integration, whereby �rms choose the
level of q1 and q2 in order to maximize their joint pro�ts, as follows

max
q1�0;q2�0

(34� q1 � q2) (q1 + q2)�
�
2q21 + 5q1 + q2

�
�
�
q22 + 3q2 � 4q1

�
Taking �rst order conditions with respect to q1 and q2, we obtain

33� 6q1 � 2q2 = 0, and

30� 2q1 � 4q2 = 0

where we can simultaneously solve for q1 and q2 to �nd q1 = 18
5
= 3:6 and
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q2 =
57
10
= 5:7.

� Thus, the production of �rm 2 (which generates a negative externality on �rm
1) is signi�cantly reduced, from 6.28 to 5.7 units. Aggregate supply is hence

QS(p) = 93
10
= 9:3 units, with an equilibrium price of p = 34 � 9:3 = $24:7.

Aggregate output thus decreases and the equilibrium price increases as a

consequence, from $23:47 to $24:7.

� Equilibrium pro�ts are therefore �1 = 39:3 and �2 = 105:6 for �rm 1 and 2,

respectively, and aggregate pro�ts are � = 144:9. Aggregate pro�ts increase

as a result of the merger, and hence �rms have incentives to merge.(While

aggregate pro�ts increase, the individual pro�ts of �rm 2 decrease, suggesting

that �rm 2 will only be attracted to merge if �rm 1 compensates it.)

(c) Comparisons. Compare consumer surplus, pro�ts and welfare after the merger (as

you found in part b) and before the merger (as found in part a). Does the merger

ameliorate the negative externality that the production of �rm 2 generates? Does

social welfare increase as a result of the merger?

� After the merge, consumer surplus is

CS =
1

2
(34� 24:7) � 9:3 = 43:24

Thus, social welfare is W = CS + � = 188:14.

� Comparing our results in parts (a) and (b), we can summarize that, as a
result of the merger �rms are better o¤, they not only maximize joint prof-

its, as in a standard cartel exercise, but, in addition, they solve the mutual

externality problem they face in part (a). However, the merger leads �rms

to reduce aggregate production, which increases market prices, ultimately re-

ducing consumer surplus (and aggregate welfare). Hence, while the mutual

externalities are internalized by the merger, their monopolistic e¤ects yield a

net welfare loss.



Exercise #5 - Regulating externalities under incomplete informa-

tion

5. Consider a polluting �rm with pro�t function �(q) = 10q� q2 where q denotes units of
the externality-generating activity (for instance, q can represent units of output if each

unit generates one unit of pollution). Pollution damage to consumers is given by the

convex damage function d(q) = 3q2. Let us analyze a context in which the regulator

does not observe the �rm�s pro�t function, but observes the damage which additional

pollution causes on consumers. In particular, the regulator estimates that marginal

pro�ts are
@�(q; a)

@q
= 10� 2aq,

where the random parameter a takes two equally likely values, a = 1 or a = 1
2
. (Note

that in our above description we assume that the �rm privately observes that the

realization of parameter a is a = 1, thus yielding a marginal pro�t function of 10�2q:)
We will �rst determine which is the best quota and emission fee that the regulator

can design given that he operates under incomplete information. Afterwards, we will

evaluate the welfare that arises under each of these policy instruments, to determine

which is better from a social point of view.

(a) Unregulated equilibrium. Find the equilibrium amount of pollution, qE, if the �rm

is unregulated and no bargaining occurs between the a¤ected consumers and the

�rm.

� In this setting, the �rm maximizes its pro�ts by solving

max
q
�(q)

Taking �rst-order conditions with respect to q, yields @�(qE)
@q

� 0. Since
@�(q)
@q

= 10� 2q by de�nition, then

@�(qE; �)

@q
= 10� 2qE � 0, with equality for qE > 0

Solving for qE we obtain an equilibrium amount of pollution (in interior so-

lutions) of qE = 5 units.

(b) Setting a quota. In this incomplete information setting, determine which is the

best quota xq that a social planner can select in order to maximize the expected

value of aggregate surplus.
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� The �rm must produce an output level exactly equal to the quota. The social
planner determines the optimal quantity bq by choosing the value of q that
maximizes the expected value of aggregate surplus (since the social planner

does not know the precise realization of parameter a),

max
q

Ea[�(q; a)]� d(q)

And taking �rst order condition with respect to q, we obtain

Ea

�
@�(bq; a)
@q

�
� @d(bq)

@q
� 0

We can now substitute the functional forms for the marginal damage for con-

sumers, @d(q)
@q
, and the expected marginal pro�ts for the �rm, @�(q;a)

@q
, yielding

1

2
(10� 2 � bq) + 1

2

�
10� 2 � 1

2
� bq�� 6bq � 0:

which reduces to

5� bq + 5� 1
2
� bq � 6bq � 0, or bq � 4

3
:

(c) Setting an emission fee. Find the best tax t� that this social planner can set under

the context of incomplete information described above.

� Given a tax t�, the government predicts �rm�s expected best response function
by maximizing its expected pro�ts.

max
t

Ea[�(q; a)]� tq

Taking �rst order condition with respect to t, yields

Ea

�
@�(q; a)

@q

�
� t = 0

and plugging our functional forms we obtain

5� q + 5� 1
2
� q = t

which yields an output function q (t) = 20�2t
3
. Provided this expected output

function, we can now �nd the optimal tax that the social planner imposes,
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anticipating the �rm�s expected best response function, as follows

max
t

Ea[�(q(t); a)]� d (q (t))

Taking �rst order conditions with respect to t, and applying the chain rule,

yields

E

�
@�(q(t); a)

@q
� @q(t)
@t

�
=
@d (q (t))

@q
� @q(t)
@t

where we use the chain rule. Intuitively, the regulator equals the marginal

disutility of additional pollution to consumers (which he can perfectly assess),

as represented in the right-hand side of the equality; and the expected mar-

ginal pro�ts from additional pollution for the �rm (which he cannot observe),

represented in the left-hand side of the above expression.

� Since q (t) = 20�2t
3

then the derivative @q(t)
@t

= �2
3
is a constant, that can be

taken out of the expectation operator. That is,

@q(t)

@t
E

�
@�(q(t); a)

@q

�
=
@d (q (t))

@q
� @q(t)
@t

Therefore, we can cancel out the @q(t)
@t

term on both sides of the equality,

which yields

E

�
@�(q(t); a)

@q

�
=
@d (q (t))

@q
:

Substituting the functional form of our marginal bene�t and marginal pro�t

functions, the above �rst-order condition becomes

1

2
(10� 2 � q (t)) + 1

2

�
10� 2 � 1

2
� q (t)

�
= 6q (t)

q (t) =
4

3

Substituting q (t) = 20�2t
3
; we can �nally �nd the optimal tax t� that solves

20� 2t�
3

=
4

3
, or t� = 8.

(d) Policy comparison. Compare the emission fee and the quota in terms of their as-

sociated deadweight loss. Under which conditions an uninformed regulator prefers

to choose the emission fee?

� We need to compare the expected di¤erence in losses in order to determine
when a tax or a quota instrument is better. Figure 9.2 illustrates the welfare
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loss associated to tax t�, which induces an externality level of q (t�) :

Figure 9.2. Welfare loss from a tax.

The �gure considers that the regulator sets a tax based on the certain mar-

ginal disutility from the externality and the expected marginal pro�t. How-

ever, the realization of parameter a implies that the real and expected mar-

ginal pro�ts do not coincide, thus giving rise to a welfare loss associated to a

suboptimal tax due to the regulator�s imprecise information.

� If the regulator, instead, imposes a quota, q̂, �gure 9.3 illustrates the associ-
ated welfare loss.

Figure 9.3. Welfare loss from a quota.

� Welfare loss from the fee. In order to compute the welfare loss from the tax,
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WLt, we �rst need to �nd the socially optimal level of externality, qSO, given

the true a = 1. In particular, qSO solves

@d(qSO)

@q
=

@�(qSO)

@q

6qSO = 10� 2qSO

qSO =
5

4

Moreover, given an emission fee, the �rm maximizes pro�ts. That is, it

chooses the level of q that maximizes its pro�ts (net of tax payments), as

follows

max
q
� (q)� q � t

The �rm, hence, takes �rst order condition with repect to q, yielding

@� (q)

@q
� t = 0

Since the �rm knows its true marginal pro�t @�(q)
@q

= 10 � 2q, the above
expression becomes 10� 2q � t = 0, which yields an output function q (t) =
5� 1

2
t. Given that t� = 8, such fee induces an externality level of

q(t�) = 5� t
�

2
= 1

Finally, we need to evaluate the marginal disutility function @d(q)
@q

= 6q at

q(t�) = 1, which yields
@d (q)

@q
= 6q(t�) = 6

Hence, the WLt is given by the area of the shaded triangle in �gure 9.2,

WLt =
1

2

�
qSO � q(t�)

�
� [t� � 6q(t�)]

=
1

2

�
5

4
� 1
�
� [8� 6]

=
1

4

� Welfare loss from the quota. If, in contrast, the regulator uses a quota ofbq = 4
3
, then we �rst need to evaluate the real marginal pro�ts of the quota,

that is

10� 2q = 10� 2� 4
3
=
30

3
� 8
3
=
22

3
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Second, we need to evaluate the expected marginal pro�t, 1
2
(10� 2 � q) +

1
2

�
10� 2 � 1

2
� q
�
, at the quota bq = 4

3
, i.e.,

1

2

�
10� 2 � 4

3

�
+
1

2

�
10� 2 � 1

2
� 4
3

�
= 8:

Therefore, the welfare loss from the quota is the area of the shaded triangle

in �gure 9.3. That is,

WLq =
1

2
(q̂ � qSO)

�
8� 22

3

�
=

1

2
(
4

3
� 5
4
)

�
24

3
� 22
3

�
=

1

36

� Comparing welfare losses. Comparing WLt and WLq, we obtain that

WLt =
1

4
>
1

36
= WLq

Hence, setting a quota is better than imposing an emission fee in this case.33

For more details about the welfare properties of emission fees and quotas under contexts in which the
regulator is imperfectly informed, see Weitzman (1974).
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Exercise #11 - Externalities in consumption

11. Consider two consumers with utility functions over two goods, x1 and x2, given by

uA = log(xA1 ) + x
A
2 �

1

2
log(xB1 ) for consumer A, and

uB = log(xB1 ) + x
B
2 �

1

2
log(xA1 ) for consumer B.

where the consumption of good 1 by individual i = fA;Bg creates a negative external-
ity on individual j 6= i (see the third term, which enters negatively on each individual�s
utility function). For simplicity, consider that both individuals have the same wealth,

m, and that the price for both goods is 1.

(a) Unregulated equilibrium. Set up consumer A�s utility maximization problem, and

determine his demand for goods 1 and 2, as xA1 and x
A
2 . Then operate similarly
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to �nd consumer B�s demand for good 1 and 2, as xB1 and x
B
2 .

� Consumer A chooses xA1 and xA2 to solve

max
(xA1 ;x

A
2 )
log(xA1 ) + x

A
2 �

1

2
log(xB1 )

subject to xA1 + x
A
2 =M

The Lagrangian for this optimization problem is

L = log(xA1 ) + xA2 �
1

2
log(xB1 ) + �

A(M � xA1 � xA2 );

which yields �rst-order conditions

@L
@xA1

=
1

xA1
� �A = 0

@L
@xA2

= 1� �A = 0

@L
@�

=M � xA1 � xA2 = 0

Solving for xA1 , we obtain
1
xA1
= 1, i.e., xA1 = 1, which impliesM �1�xA2 = 0,

or xA2 =M � 1. Hence, consumer A�s optimal consumption is

xA1 = 1 and xA2 =M � 1

A similar argument applies to consumer B,

xB1 = 1 and xB2 =M � 1

(b) Social optimum. Calculate the socially optimal amounts of xA1 , x
A
2 , x

B
1 and x

B
2 ,

considering that the social planner maximizes a utilitarian social welfare function,

namely, W = UA + UB.

� The socially optimal consumption in this case solves

max
(xA1 ;x

A
2 )
UA + UB subject to xA1 + x

A
2 =M and xB1 + x

B
2 =M

The Lagrangian for this social planner�s problem is

L = 1

2
log(xA1 )+

1

2
log(xB1 )+x

A
2 +x

B
2 +�

A(M �xA1 �xA2 )+�B(M �xB1 �xB2 )
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Taking �rst-order conditions, we �nd the socially optimal consumption pro�le:

xA1 =
1

2
and xA2 =M � 1

2

xB1 =
1

2
and xB2 =M � 1

2

Intuitively, the social planner recommends a lower consumption of good 1

(the good that generates the negative externality), and an increase in the

consumption of good 2, for both individuals.

(c) Restoring e¢ ciency. Show that the social optimum you found in part (b) can be

induced by a tax on good 1 (so the after-tax price becomes 1+ t) with the revenue

returned equally to both consumers in a lump-sum transfer.36

� With tax tA placed on good 1 and with lump-sum transfer TA, consumer A

solves

max
(xA1 ;x

A
2 )
log(xA1 ) + x

A
2 �

1

2
log(xB1 )

subject to (1 + tA)xA1 + x
A
2 =M + TA

where note that the price of good 1 increased from 1 to (1 + tA), but this

consumer also sees his wealth increase by the lump sum TA. The Lagrangian

for this optimization problem is

L = log(xA1 ) + xA2 �
1

2
log(xB1 ) + �

A(M + TA � (1 + tA)xA1 � xA2 )

Taking �rst-order conditions, we obtain

@L
@xA1

=
1

xA1
� �A(1 + tA) = 0

@L
@xA2

= 1� �A = 0

@L
@�

=M + TA � (1 + tA)xA1 � xA2 = 0

Simultaneously solving for xA1 and x
A
2 , we �nd that consumer A�s consumption

36Similarly as in the exercises about a polluting monopoly or oligopoly subject to emission fees, we assume
that tax revenue is entirely returned to the agents being taxed as a lump-sum transfer. This assumption
guarantees that the tax is revenue neutral, yet it helps modify agents�incentives ultimately correcting the
externality, i.e., inducing the social optimum.
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bundles after introducing the tax become

xA1 =
1

1 + tA
and xA2 =M + TA � 1

Similarly we �nd the optimal consumption of consumer B who pays tax tBon

good 1 and receives TBas a lump-sum transfer:

xB1 =
1

1 + tB
and xB2 =M + TB � 1

� Comparison. Comparing the optimal consumption levels found in part (b)
with the equilibrium outcomes found in part (c), the tax imposed on any

individual i = A;B must hence satisfy

1

2
=

1

1 + ti
;

which would guarantee that equilibrium and socially optimal amounts coin-

cide. Solving for the tax ti yields ti = $1. Hence, by setting a tax of ti = $1 on

the consumption of good 1, and returning the tax revenue to this individual

in a lump-sum transfer, e¢ ciency is restored, yielding a consumption

xi1 =
1

1 + 1
=
1

2
of good 1,

and

xi2 = M + T i � 1

= M +
1

2
� 1 =M � 1

2
of good 2,

as described in the socially optimal amounts found in part (b).


