Problem Set 3 2016

- 1. Suppose that we have a farm that produces oranges next to a farm that produces honey. The total cost functions of the two firms are $C_0(q_o, q_h) = \frac{q_o^2}{100} q_h$ and $C_h(q_h) = \frac{q_h^2}{100}$ respectively. The two firms operate as price takers in perfectly competitive markets with $p_o = 4$ and $p_h = 2$.
 - i) How much honey and how many oranges are being produced if the two firms operate independently of one another?
 - Suppose that the two firms merge. Find the optimal amounts of honey and oranges in this new setting and compare it with the Pareto Optimal outcome.s
- 2. We have two agents, with utility functions over a numeraire good m_i , a private good x_i and an externality h. That is, $u_1(m_1, x_1, h) = m_1 + 10 \ln(1 + x_1) + 5h h^2$ and $u_2(m_1, x_1, h) = m_2 + 5 \ln(1 + x_2) h^2$.
 - i) Derive the agents' indirect utility functions depending on their wealth level w and on the price of the private good p (hint: you need to maximize each agent's utility function subject to their budget constraint for given prices).
 - ii) Given that p and w will not change in our partial equilibrium setting, derive the utility functions of the agents depending only on the level of the externality and find the externality level that agent 1 will choose to generate.
 - iii) Find the Pareto Optimal amount of externality.
 - iv) Suppose that agent 2 is given the right to an externality-free environment so that agent 1 must pay a price p_h to agent 2 for each unit of externality that she generates. Also, assume that this price is formed in a competitive market. Derive the necessary conditions for equilibrium in the externality market and find the price and level of the externality.
- 3. (From MWG) A certain lake can be freely accessed by fishermen. When a boat is sent to catch fish, its cost is r > 0. The total quantity of fish caught (Q) is a function of the total boats sent (b), that is Q = f(b), with each boat getting \$\frac{f(b)}{b}\$ fish. We assume concavity of the production function, that is f'(b) > 0and f''(b) < 0. We also assume a competitive market where the fish are sold at a given price p > 0.
 - Characterize the equilibrium number of boats that are sent fishing, if fishermen are allowed freely to fish in the lake (hint: First, find the Total Cost function and the Profits function).

- ii) Characterize the optimal number of boats that are sent fishing.
- 4. We have two consumers, A and B with utility functions $U_A = \log x_A + \log G$ and $U_B = \log x_A + \log G$ respectively. x_i represents the amount of a private good that each person consumes, while G represents the total amount of a public good that is offered and $g_A + g_B = G$, with g_A and g_B being the contributions of the two agents for the public good. Also, we assume that both the prices of the public and the private good equal to 1.
 - i) Find the best response functions of A and B for the public good. That is, we are looking for a function that, for each person, gives the optimal amount of public good that she demands, with respect to the other person's quantity demanded.
 - ii) Solve for the Nash Equilibrium. What will be the optimal contributions to the public good? Show your answer on a diagram with the agents' reaction functions.
 - iii) Find the socially optimal (Pareto Optimal) level of the public good and compare it with your previous result.
- 5. (From MWG) In an economy we have J firms and I individuals. Each firm j generates a level of externality h_j and its profits depend on that externality, that is $\pi_j = \pi_j(h_j)$, while each individual's derived utility function depends in general on the externalities generated by all of the firms, that is $U_i = \Phi_i(h_1, h_2, ..., h_j) + w_i$. In this case we do not have a homogeneous externality.
 - i) Using the proper FOCs derive the Pareto Optimal amounts of externalities for the economy as well as the amounts that will be generated in a competitive equilibrium.
 - ii) What tax/subsidy can restore efficiency?
- 6. (From MWG) Suppose that consumer *i*'s preferences can be represented by the utility function $u_i(x_{1i}, ..., x_{Li}) = \sum_l log(x_{li})$ (Cobb Douglas preferences).
 - i) Derive his demand for good *l*. What is the wealth effect?
 - ii) What happens to the wealth effect as we increase the number of goods?(Calculate the limit as L goes to infinity)
- 7. (From MWG) Consider an economy with two goods, one consumer and one firm. The initial endowment of the numeraire is $\omega_m > 0$ and the initial endowment of good *l* is 0. The consumer's quasilinear utility function is $u(x,m) = m + \varphi(x)$, where $\varphi(x) = \alpha + \beta \ln(x)$, with $\alpha, \beta > 0$. The firm's cost function is $c(q) = \sigma q$, with $\sigma > 0$. Also assume that the consumer

Solutions to Problem Set 3

When they act independently each will maximize its own profit:

$$max\Pi_0 = p_0 q_0 - \frac{q_0^2}{100} + q_h$$

From the FOC we get that $q_0 = 200$

Similarly, $max\Pi_h$ and we get $q_h = 100$

ii) When they merge, they act as one firm:

$$max\Pi = p_0q_0 + p_hq_h - \frac{q_0^2}{100} + q_h - \frac{q_h^2}{100}$$

From the FOCS we have that:

$$\frac{\partial \Pi}{\partial q_o} = 0 \Rightarrow q_0 = 200$$

= 0 \Rightarrow q_h = 150

And
$$\frac{\partial \Pi}{\partial q_h} = 0 \Rightarrow q_h = 150$$

2)

i)

Indirect utility function:

 $maxu_1$ subject to: $p_1x_1 + m_1 \le w_1$

$$L = m_1 + 10\ln(1 + x_1) + 5h - h^2 + \lambda(p_1x_1 + m_1 - w_1)$$

From the FOCS we get that:

$$x_1 = \frac{10}{p_1} - 1$$

And $m_1 = w_1 - 10 + p$

So substituting into u_1 we get:

$$v_1 = w_1 - 10 + p + 10 \ln\left(\frac{10}{p}\right) + 5h - h^2$$

In a similar manner, $v_2 = w_2 - 5 + p + 5 \ln\left(\frac{5}{p}\right) - h^2$ ii) $v_1 = w_1 - 10 + p + 10 \ln\left(\frac{10}{p}\right) + 5h - h^2 \Rightarrow \Phi_1(h) = 5h$

$$v_1 = w_1 - 10 + p + 10 \ln\left(\frac{10}{p}\right) + 5h - h^2 \Rightarrow \Phi_1(h) = 5h - h^2$$
(5)

1)

i)

$$v_2 = w_2 - 5 + p + 5 \ln\left(\frac{-}{p}\right) - h^2 \Rightarrow \Phi_2(h) = -h^2$$

From $max \Phi_1(h)$ we have that h = 5/2

iii)
$$max\Phi_1(h) + \Phi_2(h) = 5h - 2h^2$$

From the FOC we get that $h^* = 5/4$

iv) Programs of the two agents:
Agent 1:

$$max5h - h^2 - p_h h$$
 and from the FOC we get $5 - 2h = p_h$
Agent 2:
 $max(-h^2) + p_h h$ and from the FOC: $p_h = 2h$
Solving the system we have that $h = 5/4$ and $p_h = 5/2$

 MWG chapter 11 exercise 11.D.5 (see solution manual you can find it if you google it)

i) A's maximization problem:

4)

 $maxlog x_A + log G$ s.t. $g_A + g_B = G$ and $g_A + x_A = w$ or: $maxlog(w - g_A) + \log(g_A + g_B)$ From the FOC we get $g_A(g_B) = \frac{w - g_B}{2}$ In a similar manner we have that $g_B(g_A) = \frac{w - g_A}{2}$ (we have assumed that they hold the same amount of wealth as it simplifies the expressions)

ii) Because of symmetry it must be that $g_A = g_B$. So by the above equations, $g_A = g_B = w/3$

iii) $\max \log(w - g_A) \neq \log(g_A + g_B) + \log(w - g_B) + \log(g_A + g_B)$ due to symmetry: $g_A = g_B = g = G/2$ so from the FOC we get: g = w/2

In this case G = w while in the previous case, $G = \frac{2w}{3}$ (underprovision)

- 5) From MWG chapter 11 exercise 11.D.4
- 6) From MWG chapter 10 exercise 10.C.1

7) From MWG chapter 10 exercise 10.C.2

max Leogia or

 $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 0$

$$(-1) \frac{2}{w^{2}g} = \frac{2}{g} = \frac{2}{y} = \frac{1}{w^{2}g^{2}} \frac{w^{2}}{w^{2}g} = \frac{2}{y} = \frac{1}{w^{2}} \frac{w^{2}}{w^{2}g} = \frac{2}{y} = \frac{1}{w^{2}} \frac{w^{2}}{w^{2}g} = \frac{1}{w^{2}} \frac{w^{2}}{w^{2}} = \frac{1}{w^{2}} \frac{w^{2}}{w^{2}$$

x solves Max Hara, C1997SolutionSmanual for microeconomic fileory #2 $x_i \in X_i$

(iii) Market clearing:
$$\sum_{i=1}^{I} x_{1i}^{*} = \omega_{i} + \sum_{j=1}^{J} y_{1j}^{*}$$
 for each $l = 1, ..., L$ - does not

depend on prices at all.

10.C.1. (a) The consumer solves

$$\lim_{\substack{L \\ Max \sum_{i=1}^{L} \log x_{i}} \qquad s.t. \sum_{i=1}^{L'} p_{i}x_{i} \leq w$$

The first-order condition for the Lagrangean of this program can be written as $x_1 = \lambda/p_1$, l=1,...,L, where $\lambda > 0$. Substituting in the budget constraint, we find $\lambda = w/L$, therefore the demand function can be written as $x_1(p,w) = \frac{w}{Lp}$.

The wealth effect is $\partial x_1(p,w)/\partial w = \frac{1}{Lp}$.

(b) As $L \to \infty$, the wealth effect $\partial x_1(p,w)/\partial w \to 0$.

10.C.2. (a) The consumer solves

s.t. $p x + m \leq \omega$. The $Max \alpha + \beta \ln x + m$ (x,m)

first-order condition (assuming interior solution) yields $x(p) = \beta/p$.

The firm solves Max $pq - \sigma q$. $q \ge 0$

The firm's first-order condition (assuming interior solution) is $p = \sigma$.

(b) From the two first-order conditions and the consumer's budget constraint,

10-3

the competitive equilibrium is
$$p^{\bullet} = \sigma$$
, $x^{\bullet} = \beta/\sigma$, $m^{\bullet} = \omega_{m} - \beta$.

10.C.3. (a) Assuming interior solution, the first-order condition is

$$c'_{j}(q'_{j}) = \lambda > 0$$
 for all j.

.

and the FOCs for thisarpc 9997 Solutions manual for microeconomic theory

$$\frac{\partial S}{\partial q_j} = p(Q) - c_q(q_j,Q) - c_Q(q_j,Q) - \sum_{k\neq j} c_Q(q_k,Q) = 0$$

and we can check that the assumptions ensure that the SOC is satisfied. Let q⁰ denote the solution to this program (again, independent of j), and let $Q^{\circ} = Jq^{\circ}$. The optimal Q° will then be determined by (2) $p(Q^{\circ}) = c_{0}(\frac{Q^{\circ}}{1},Q^{\circ}) + c_{0}(\frac{Q^{\circ}}{1},Q^{\circ}) + (J-1)c_{0}(\frac{Q^{\circ}}{1},Q^{\circ})$. (Again, by $c_q > 0$, $c_Q < 0$, and $c_q + Jc_Q > 0$, a solution will exist.) Since $c_0 < 0$, (2) implies that $p(Q^0) < c_0(\frac{Q^0}{J}, Q^0) + c_0(\frac{Q^0}{J}, Q^0)$. Also, since p'(Q) < 0, and $\frac{d}{dO} \left[c_{0}(\frac{Q}{J},Q) + c_{0}(\frac{Q}{J},Q) \right] = \frac{1}{J} \left[c_{0}(\frac{Q}{J},Q) + (J+1)c_{0}(\frac{Q}{J},Q) + Jc_{0}(\frac{Q}{J},Q) \right] > 0$ (by assumption), then we must have that $Q^{\circ} > Q^*$. This is intuitive since firms ignore the positive externality that they create, and we have an under-production competitive equilibrium. To restore efficiency the government can subsidize production with a subsidy of $s = -(J-1)c_0(\frac{Q^0}{L},Q^0)$. Firm j's FOC will then be $p - (J-1)c_0(\frac{Q}{J}, Q^0) = c_0(q_i, Q) + c_0(q_i, Q)$, and it is easy to see that $Q = Q^{\circ}$ and $p = p(Q^{\circ})$ will cause $q_i = \frac{Q^{\circ}}{J}$ to solve this FOC.

For the Pareto optimal outcome we solve 11.D.4

$$\max_{\{h_i\}} \sum_{i=1}^{I} \phi_i(h_1, \dots, h_J) + \sum_{j=1}^{J} \pi_j(h_j)$$

which yields the FOCs
$$\sum_{i=1}^{I} \left(\frac{\partial \phi_i(h_1^0, \dots, h_j^0)}{\partial h_j} \right) \le \pi'_j(h_j^0)$$
 with equality if $h_j^0 > 0$

for all j=1,...J. On the other hand, in a competitive equilibrium each firm maximizes profits individually, and we get the FOC shown in condition (11.D.1) in the textbook. To restore the Pareto optimal outcome in a competitive equilibrium, we must set an individual tax for each j of

only if we have
$$\sum_{i=1}^{I} \left(\frac{\partial \phi_i(h_1^0, \dots, h_j^0)}{\partial h_j} \right) = \sum_{i=1}^{I} \left(\frac{\partial \phi_i(h_1^0, \dots, h_j^0)}{\partial h_k} \right)$$
 for all j,k.

11.D.5 [First Printing Errata: the assumption that f(0)=0 should be added.] This is a model of free entry so fishermen will send out boats as (a) long as there are positive profits from doing so. Therefore, the equilibrium number of boats, b*, will be reached when $p \cdot \frac{f(b^*)}{b^*} - r = 0$, or, $\frac{f(b^*)}{b^*} = \frac{r}{p}$. This condition is that average revenue equals average cost. (We ignore integer problems, but if we are to give the integer equilibrium number then it is b* such that $p \cdot \frac{f(b^*)}{b^*} - r \ge 0$ and $p \cdot \frac{f(b^{*+1})}{b^{*+1}} - r < 0$.)

To characterize the optimal number of boats we must solve for maximum (b) total surplus, i.e., $Max_b p \cdot f(b) - r \cdot b$, the FOC is $p \cdot f'(b^0) - r \le 0$, which is necessary and sufficient since the SOC, $p \cdot f''(b) < 0$, is satisfied. Therefore, the condition for the optimal number of boats is $f'(b^0) = \frac{r}{p}$, i.e., that marginal revenue equals marginal (and in this case average) cost. Assuming that f(0) = 0 ensures that $b^0 \le b^*$ (equality only at 0).

(c) To restore efficiency we need the equilibrium condition satisfied at b^o, i.e., we need the tax level to satisfy $\frac{f(b^*)}{b^*} = \frac{r+t}{p}$, or $t = p \cdot \frac{f(b^*)}{b^*} - r$.

(d) Clearly, if owned by a single individual, the problem to be solved is exactly that solved in part (b) above, which results in b^0

11.D.6 (a) First, if the firm decides to go off and generate any level of the externality, absent of an agreement, it solves $Max_h p(h) = \alpha + \beta h - \mu h^2$, the (necessary and sufficient) FOC is $\beta - 2\mu h^* = 0$, or $h^* = \frac{\beta}{2\mu}$. This yields the firm profits of $\pi(h^*) = \alpha + \frac{\beta^2}{4\mu}$, which is the firm's reservation profits. A coalition of OI consumers making a take-it-or-leave-it offer to the firm

11 - 12