
Cardinal Welfarism

Welfarism

■ Welfarist postulate: distribution of individual 
welfare across agents is only legitimate 
yardstick to compare states of the world 

■ In cardinal version individual welfare 
measured by an index of utility and 
comparisons of utilities between individuals 
is meaningful

Welfarism

■ The most basic concept of welfarism is efficiency-
fitness (Pareto optimality) 

■ State y is Pareto superior to x if the move from x to 
y is by unanimous consent. 

■ A state x is Pareto optimal (efficient) if there is no 
feasible state y Pareto superior to x 

■ The task of cardinal welfarism is to pick among the 
feasible utility profiles one of the Pareto optimal 
ones.

Welfarism

■ The task of the welfarist benevolent dictator 
is to compare normatively any two utility 
profiles [(ui),(ui’)] and decide which one is 
best. 

■ Key idea is that the comparison should follow 
the rationality principles of individual 
decision-making: completeness and 
transitivity



Welfarism

■ The preference relation is called a social 
welfare ordering, and the definition and 
comparison of various swo’s is the object 
of cardinal welfarism 

■ The two most prominent instances of swo’s 
are the classical utilitarian and the 
egalitarian one.

Welfarism
Classical utilitarian 

Egalitarian 

The classical utilitarian expresses the sum fitness principle and the 
egalitarian expresses the compensation principles

Welfarism

■ We will focus on “micro” versions of welfarism, e.g., 
problem of locating a facility where utility measures 
distance from facility 

■ The context dictates the interpretation of utility, and 
in turn, influences the choice of the swo 

■ The ability to objectively measure and compare 
utilities can be more or less convincing (distance, 
vitamins vs. pleasure from eating cake, or 
observing art)

Welfarism

■ Microwelfarist viewpoint separates the allocation 
problem at stake from the rest of our agent’s 
characteristics 

Assumes my utility level measured independently of 
unconcerned agents 
Separapility property is the basis of the additive 
representation 

■ From this axiomatic analysis three paramount swo’s 
emerge: classical utilitarianism, egalitarianism, Nash 
collective utility function



Additive Collective Utility Function

■ Two  basic requirements of swo. 
■ Monotonicity:

Additive Collective Utility Functions

■ Most swo’s of importance are represented 
by a collective utility function, namely a 
real-valued function W(u1,…un) with the 
utility profile for argument and the level of 
collective utility for value.

Additive Collective Utility Functions

■ A key property of welfarist rationality is 
independence of unconcerned agents. It means 
that an agent who has no vested interest in the 
choice between u and u’ because his utility is 
the same in both profiles, can be ignored.

Additive Collective Utility Functions

■ Theorem: the SWO is continuous and IUAs 
iff it is represented by an additive CUF, 
where g is an increasing and continuous 
function.  
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Additive Collective Utility Functions

■ The Pigou-Dalton transfer principle (fairness 
property) expresses an aversion for “pure” inequality 

■ Say that u1<u2 at profile u and consider a transfer of 
utility from 2 to 1 where u1’ ,u2’ are the utilities after 
the transfer st: 

■ u1< u1’ ,u2’ <u2 and u1’ +u2’ =u1+u2  
■ The P-D transfer principle requires that swo 

increases in a move reducing inequality between 
agents {for additive g(u1)+g(u2) ≤ g(u1’ )+g(u2’ ) which 
is equivalent to concavity of g}

Additive Collective Utility Functions

■ An invariance property: independence of 
common scale (ICS) requires us to restrict 
attention to positive utilities, and states that a 
simultaneous rescaling of every individual 
utility function does not affect the underlying 
swo. 

Additive Collective Utility Functions

■ For an additive cuf the ICS property holds 
true for a very specific family of power 
functions.  

g(z)=zp for a positive p 
g(z)=log(z) 
g(z) = -z-q for a positive q

Additive Collective Utility Functions

■ The corresponding cuf W take the form



Comparing Classical Utilitarianism, 
Nash, and Leximin
■ The central tension between classical utilitarian 

and egalitarian welfarist objectives is that in the 
former the welfare of a single agent may be 
sacrificed for the sake of improving total welfare 
(the slavery of the talented) while in the latter 
large amounts of joint welfare may be forfeited in 
order to improve the lot of the worst of individual 

■ Examples follow:

Egalitarianism and the Leximin 
Social Welfare Ordering
■ We focus on the welfarist formulation of the compensation 

principle as the equalization of individual utilities 
■ Example 3.1 Pure Lifeboat Problem suppose five agents 

labelled {1,2,3,4,5} and feasible subsets (less dramatic software 
program, background music with 6 programs to choose from): 

■ {1,2} {1,3} {1,4} {2,3,5} {3,4,5} {2,4,5} 
All outcomes Pareto optimal 
Suppose utility of staying on boat is 10, swimming 1 

■ Utilitarian and egalitarian arbitrator make same choice 
■ Subsets of 3 equally good but better than subsets of 2 utilitarian 

30>20, lexicographic (1,1,10,10,10) preferred to (1,1,1,10,10) 
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Agent 1 2 3 4 5
Utility g 10 6 6 5 3
Utility b 0 1 1 1 0

Now assume individual utilities vary across individuals, 
e.g., tastes for radio programs 

■ {1,2}=18, {1,3}=18, {1,4} =16, {2,3,5}=16, {3,4,5}=15, {2,4,5}=15

⇒ {1,2} ∼ {1,3} ≻ {1,4} ≻ {2,3,5} ≻ {3,4,5} ∼ {2,4,5}

Utilitarian calculus:

Example 3.1 Pure Lifeboat Problem 
(different utilities)

(note numbers different from text)
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Example 3.1 Pure Lifeboat Problem 
(different utilities)

The egalitarian arbitrator, by contrast, prefers any three-person 
subset over any two person one; his ranking follows:

Agent 1 2 3 4 5
Utility g 10 6 6 5 3
Utility b 0 1 1 1 0



Leximin swo

■ Also called egalitarian swo and sometimes 
“practical egalitarianism” 

■ Given two feasible utility profiles u and u’ we 
arrange them first in increasing order, from 
the lowest to highest utility, and denote the 
new profiles u* and u’*:

* * * '* '* '*
1 2 1 2... ...n nu u u and u u u≤ ≤ ≤ ≤ ≤ ≤

Leximin swo

Νο Equality/Efficiency Trade-off Equality/Efficiency Trade-off



No equality/efficiency trade-off Equality/efficiency trade-off

Leximin

■ The leximin ordering is preserved under a common 
arbitrary (nonlinear) rescaling of the utilities. Thus 
the comparison of u versus u’ is the same as that of 
v=(u)2 versus v’=(u’)2, or of (eui+Sqrt[ui]) verus 
(eui’+Sqrt[ui’]), etc. 

■ This property is called independence of the 
common utility pace 

■ Leximin is not the only swo icup, but it is the only 
one that also respects the Pigou-Dalton transfer 
principle.

Example: Location of a facility

■ A desirable facility must be located somewhere 
in the interval [0,1], representing a “linear” city 

■ Each agent lives at a specific location xi in 
[0,1]; if the facility is located at y, agent I’s 
disutility is the distance |y-xi|.  

■ The agents are spread arbitrarily along interval 
[0,1] and the problem is to find a fair 
compromise location



Example: Location of a facility

■ The unique egalitarian optimum is the midpoint of the 
range of our agents.  

■ Classical utilitarianism chooses the median of the 
distribution of agents, namely the point yu st at most 
half of the agents live strictly to the left of yu and at 
most half of them strictly to the right 

■ The interpretation of the facility has much to do with 
the choice between the two solutions 

Information booth, swimming pool =>clas. util 
Post office, police station (basic needs)=>egal

Example: Location of a facility

■ The Nash collective utility function is not easy to use 
in this example because the natural zero of individual 
utilities is when the facility is located precisely where 
the agent in question lives, say xi: then we set  
ui(y)=-|y-xi| if the facility is located at y. 

■ The Nash utility is not defined when some utilities are 
negative; therefore we must adjust the zero of each 
agent. 

■ The choice of one or another normalization will affect 
the optimal location for the Nash collective utility.

Example: Location of a facility

■ The great advantage of the classical utilitarian utility is to 
be independent of individual zeros of utilities 

■ If we replace utility ui=-|y-xi| by u1i or u2i for any number 
of agents, the optimal utilitarian location remains the 
median of the distribution and the preference ranking 
between any two locations does not change 

■ This independence property uniquely characterizes the 
classical utilitarian among all cufs. 

u1i (y) = 1− y − xi
u2i (y) = xi − y − xi if xi ≥1/ 2

u2 j (y) = 1− x j − y − x j if x j ≤1/ 2

Example 3.6a Time-Sharing

■ n agents work in a common space (gym) where 
the radio must be turned on one of five available 
stations 

■ As their tastes differ greatly they ask the manager 
to share the time fairly between the five stations 

■ Each agent likes some stations and dislikes some; 
if we set her utility at 0 or 1 for a station she 
dislikes or likes we have a pure lifeboat problem 

■ The difference is that we allow mixing of 
timeshares xk (k=1,...,5) st x1+…+x5=1
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Example 3.6a Time-Sharing
■ Classical utilitarian chooses “tyranny of the 

majority”: station with largest support 
played all the time 

■ Egalitarian manager exactly opposite: pays 
no attention to size of support and plays 
each station 1/5th of the time (provided 
each station has at least one fan) 

■ Nash collective utility picks an appealing 
compromise between the two extremist 
solutions:
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Example 3.6a Time-Sharing
■ The relative size of nk matter and everyone 

is guaranteed some share of her favourite 
station

max
xk

L = nk ln xk + λ(1− xx )∑∑
⇒ xk =

nk
n

Example 3.6b Time-Sharing

A B C D E
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 1 0
4 0 0 0 1 1
5 0 0 1 0 1

Five agents share a radio and the preferences of 3 of them are 
somewhat flexible in the sense that they like two of the five 
stations according to the following pattern
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Example 3.6b Time-Sharing
■ Utilitarian manager shares the time 

between the three stations c, d, and e but 
never plays stations a and b

A B C D E
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 1 0
4 0 0 0 1 1
5 0 0 1 0 1
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Example 3.6b Time-Sharing

xa = xb = 2 7, xc = xd = xe = 1 7

2x + 2x + x + x + x = 1

Note how we get this solution. Individuals 3,4,5 get enjoyment 
from two programs played x of the time so individuals 1,2 require 
2x to achieve equal enjoyment so:

Egalitarian: Everyone listens to the program she enjoys 28.6% of 
the time

38

Example 3.6b Time-Sharing
■ The utilitarian solution seems too hard on agents 1 

and 2 but the egalitarian too soft (3,4,5 should be 
somewhat rewarded for their flexibility) 

■ Nash cuf recommends a sensible compromise 
between utilitarianism and egalitarianism: it plays 
each station with equal probability of 1/5 

■ a and b play symmetrical role hence are allocated 
same time share x, while c,d,e same share y

max x2 (2y)3 s.t. x, y ≥ 0, 2x + 3y = 1
solution x* = y* = 1 5
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Independence of individual 
scales of utilities
■ Consider variant of Example 3.6a with individual 

utilities for listening to the right kind of music differing 
across agents (ui if k is on and 0 otherwise) 

■ Both utilitarian and egalitarian cufs pay a great deal 
of attention to relative intensities of these utilities 
■ Egalitarian arbitrator allocates time share 

proportional to smallest utilities among fans of 
station k 

■ Classical U broadcasts stations with most vocal 
supporters (highest utility) 

■ Nash U is IISU so intensity of preferences has no 
effect

Example 3.6a (variant)

■ The Nash utility function is independent of 
individual scale of utilities (uniquely 
characterized among all cufs)
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Bargaining Compromise
■ Bargaining compromise places bounds on individual utilities 

that depend on physical outcomes of the allocation problem 
(thus moves a step away form strict welfarism) 

■ The choice of the zero and/or the scale of individual utilities 
is crucial whenever a swo picks the solution (exception is 
clas u. that is ind of zeros, Nash ind of utility scales) 

■ The bargaining version of welfarism incorporates an 
objective definition of the zero of individual utilities (which 
corresponds to the worst outcome from the point of view of 
the agent).  

■ The bargaining approach then applies the scale invariant 
solution to the zero normalized problem, which in turn 
ensures that the solution is independent of both individual 
zeros and scales of utilities (Nash and Kalai-Smorodinsky 
two prominent methods)

Example 3.11

A B C
Ann 60 50 30
Bob 80 110 150

■ Two companies (Ann, Bob) selling related 
yet different products and share retail 
outlet 

■ Can set up outlet in three different modes 
denoted a,b,c that bring following volumes 
of sales (000s $)

Example 3.11

A B C
Ann 60 50 30
Bob 80 110 150

■ Only interested in maximising volume of 
sales (not same as profits) and transfers 
not allowed 

■ Only tool for compromise is time-sharing 
among three modes: over years season 
they can mix them in arbitrary proportions 
st x+y+z=1

Example 3.11

A B C
Ann 60 50 30
Bob 80 110 150

■ Applying welfarist solutions to raw utilities 
makes little sense, e.g., egalitarian would 
pick outcome where Ann’s u is highest but 
the fact that her business yields smaller 
volumes of sales should not matter 

■ Issue is to find a compromise between 
three feasible outcomes over which agents 
have oposite preferences



Example 3.11

A B C
Ann 30 20 0
Bob 0 30 70

■ Total u in class util is similarly irrelevant 
■ Need to find a fair compromise that 

depends neither on scale nor on the zero 
of both individuals 

■ For minimal u of either player we pick the 
lowest feasible volume of sales: 30K for 
Ann and 80K for Bob. This yields…

Example 3.11

A B C
Ann 30 20 0
Bob 0 30 70
Time shares x y z

■ The idea of random ordering suggests 
letting Ann and Bob each have their way 
50% of the time x=z=1/2 that would lead to 
a normalized utility vector of (15,35) 

■ However, y’=0.8, z’=2 yields (16,38) hence 
Pareto superior
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Example 3.11

max log(30 20 ) log(30 70 )
1, , , 0

30 20 30 70
max

30 70
1, , , 0

x y y z
under x y z x y z

x y y z

under x y z x y z

+ + +

+ + = ≥

+ +
=

+ + = ≥

Nash 
Eq. (8)

Kalai-
Smorodinksy 
Eq. (9)

The KS solution equalizes the relative gains (fraction of maximal 
feasible gains) of all agents
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Example 3.11

maxln(20y)+ ln(30y + 70(1− y))
= maxln(20)+ log y + ln(70 − 40y))
∂
∂y
: 1
y
− 40
70 − 40y

= 0⇒ 40y = 70 − 40y⇒ y = 7 / 8

Nash solution:

In this case since the feasibility set is a kinked line we know it will 
be either on segment CB or segment BA. Need to check where 
highest utility achieved. In this case it turns out to be on segment 
CB (x=0 and z=1-y)
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Example 3.11 K-S solution:

max 30x + 20y
30

= 30y + 70z
70

st x + y + z = 1

AB : z = 0⇒ y = 1− x
10x + 20
30

= 30 − 30x
70

⇒ x = − 5
16

Can’t have negative so KS must lie on BC

BC : x = 0⇒ z = 1− y
20y
30

= 70 − 40y
70

⇒ y = 21
26

Example 3.11

■ Nash sol: y=7/8, z=1/8 => u1=17.5, u2=35 
■ KS sol: y=21/26, z=5/26=>u1=16.1,u2=37.7 

■ Note that both solutions are superior to the 
random dictator outcome a/2+c/2 (with 
associated utilities 15,35). This is a general 
property of our two bargaining solutions.


