Simple Partial equilibrium example with linear functions

Linear PE example

- Two individuals with the following utility functions:
- $u_{1}\left(m_{1}, x_{1}\right)=m_{1}+5 x_{1}-0.5 x_{1}^{2}$
- $u_{2}\left(m_{2}, x_{2}\right)=m_{2}+3 x_{2}-0.5 x_{2}^{2}$
- $\phi_{1}=5 x_{1}-0.5 x_{1}^{2}$ and $\phi_{2}=3 x_{2}-0.5 x_{2}^{2}$

Linear PE example

- Two firms with the following cost functions:

Linear PE example

- Competitive equilibrium requires all agents maximize subject to their constraints
- $C_{1}\left(q_{1}\right)=0.3 q_{1}^{2}$
- $C_{2}\left(q_{2}\right)=0.6 q_{2}^{2}$

Linear PE example

- $\operatorname{Max}_{x_{1}} 5 x_{1}-0.5 x_{1}^{2}-p x_{1}+\left[\omega_{m_{1}}+\theta_{11}\left(p q_{1}-\right.\right.$
$\left.\left.c_{1}\left(q_{1}\right)\right)+\theta_{12}\left(p q_{2}-c_{2}\left(q_{2}\right)\right)\right]$
- FOC gives us consumer 1's demand function
- $5-x_{1}-p=0 \Rightarrow x_{1}=5-p$
- Can easily see that consumer 2 will have:
- $3-x_{2}-p=0 \Rightarrow x_{2}=3-p$

Profit maximization

- $\operatorname{Max}_{q_{1}} p q_{1}-C_{1}\left(q_{1}\right)$ or $p q_{1}-0.3 q^{2}$
- $\operatorname{FOC} p-0.6 q_{1}=0 \Rightarrow q_{1}=\frac{p}{0.6}$
- Likewise for firm $2 \Rightarrow q_{2}=\frac{p}{1.2}$

Competitive Equilibrium

- For a C.E. we must have markets clearing
- $x_{1}+x_{2}=q_{1}+q_{2}$
- So
- $5-p+3-p=\frac{p}{0.6}+\frac{p}{1.2}$
- Solving for p we find $p=1.77$
- Competitive equilibrium allocation is
- $\left(x_{1}^{*}, x_{2}^{*}, q_{1}^{*}, q_{2}^{*} ; p^{*}\right)=(3.22,1.22,2.96,1.48)$
- You may note that in the market clearing there is no wealth (this has dropped out due to demand for good being independent of wealth)

Aggregate demand

Competitive equilibrium

Pareto optimal allocations

- It follows that the optimal consumption and production levels of the good in question can be obtained as the solution to
- $\operatorname{Max}_{x_{1}, x_{2}>0} \phi_{1}\left(x_{1}\right)+\phi_{2}\left(x_{2}\right)+\omega_{m}-C_{1}\left(q_{1}\right)-C_{2}\left(q_{2}\right)$ $q_{1}, q_{2}>0$
- Subject to $x_{1}+x_{2}=q_{1}+q_{2}$

Pareto optimal allocations

- With μ as multiplier in constraint the optimal values ($x_{1}^{*}, x_{2}^{*}, q_{1}^{*}, q_{2}^{*}$) satisfy the following $2+2+1$ conditions:

$$
\begin{gathered}
\mu \leq \mathrm{C}_{1}^{\prime}\left(\mathrm{q}_{1}^{*}\right) \\
\mu \leq \mathrm{C}_{2}^{\prime}\left(\mathrm{q}_{2}^{*}\right) \\
\phi_{1}^{\prime}\left(x_{1}^{\prime}\right) \leq \mu \\
\phi_{2}^{\prime}\left(x_{2}^{\prime}\right) \leq \mu \\
x_{1}+x_{2}=q_{1}+q_{2}
\end{gathered}
$$

Linear utility possibility frontier

