LECTURE 4 MIICROECONOMIC THEORY CONSUMER THEORY Consumer Welfare

Lecturer: Andreas Papandreou

- Consumer analysis is not just a matter of consumers' reactions to prices.
- We pick up the effect of prices on incomes on attainable utility - consumer's welfare.
- This is useful in the design of economic policy, for example.
- The tax structure?
- We can use a number of tools that have become standard in applied microeconomics
- price indices?

OYERYIEX...
 Consumer welfare

Utility and income

Interpreting the outcome of the optimisation in problem in welfare terms

```
CV and EV
```

Consumer's surplus

HOX TO MEASURE A PERSON'S "WELFARE"?

- We could use some concepts that we already have.
- Assume that people know what's best for them...
- ...So that the preference map can be used as a guide.
- We need to look more closely at the concept of "maximised utility"...
口 ...the indirect utility function again.

THE TXO ASPECTS OF THE PROBLEM

- This gives us a framework for the evaluation of marginal changes of income...
- ...and an interpretation of the Lagrange multipliers
- The Lagrange multiplier on the income constraint (primal problem) is the marginal utility of income.
- The Lagrange multiplier on the utility constraint (dual problem) is the marginal cost of utility.
- But does this give us all we need?

UTILITY AND INCOME: LIMITATIONS

- This gives us some useful insights but is limited:

1. We have focused only on marginal effects

- infinitesimal income changes.

2. We have dealt only with income

- not the effect of changes in prices
- We need a general method of characterising the impact of budget changes:
- valid for arbitrary price changes
- easily interpretable
- For the essence of the problem re-examine the basic diagram.

OYERYIEX...

Consumer welfare

Exact money measures of welfare

```
CV and EV
Consumer's surplus
```


THE PROBLEM...

APPROACHES TO YALUING UTILITY CHANGE

- Three | $\begin{array}{l}\text { Utility } \\ \text { differences }\end{array}$ |
| :--- | are not much use:

- some distance function

1. $d\left(v^{\prime}, v\right)$
depends on the units of the U function depends on the origin of the U function
depends on the cardinalisation of the U function

- A more productive idea:
- Use income not utility as a measuring rod

1. To do the transformation we use the V function
2. We can do this in (at least) two ways...
\square Suppose \mathbf{p} is the original price vector and \mathbf{p}^{\prime} is vector after good 1 becomes cheaper.

- This causes utility to rise from v to v^{\prime}.
- $v=v(\mathbf{p}, w)$
$\square v^{\prime}=v\left(\mathbf{p}^{\prime}, w\right)$
- Express this rise in money terms?
- What hypothetical change in income would bring the person back to the starting point?
- (and is this the right question to ask...?)
- Gives us a standard definition....

IN THIS YERSION OF THE STORY XE GET THE COMPENSATING VARLATION

$v=V(\mathbf{p}, w)$
the original utility level at prices \mathbf{p} and income w
the original utility level restored at new prices \mathbf{p}^{\prime}

- The amount CV is just sufficient to "undo" the effect of going from \boldsymbol{p} to \boldsymbol{p} '.

THE COMPENSATING YARIATION

- The CV gives us a clear and interpretable measure of welfare change.
- It values the change in terms of money (or goods).
- But the approach is based on one specific reference point.
- The assumption that the "right" thing to do is to use the original utility level.
- There are alternative assumptions we might reasonably make. For instance...

HERE'S STORY NUMBER 2

■ Again suppose:

- \mathbf{p} is the original price vector
- \mathbf{p}^{\prime} is the price vector after good 1 becomes cheaper.
- This again causes utility to rise from v to v^{\prime}.
- But now, ask ourselves a different question:
- Suppose the price fall had never happened
- What hypothetical change in income would have been needed ...
- ...to bring the person to the new utility level?

IN THIS YERSION OF THE STORY WE GET THE EQUIV ALENT TヶARTATTANT

$$
v^{\prime}=v\left(\mathbf{p}^{\prime}, w\right)
$$

the utility level at new prices \mathbf{p}^{\prime} and income w
$v^{\prime}=v(\mathbf{p}, w+\mathrm{EV})$
the new utility level reached at original prices \mathbf{p}

- The amount EV is just sufficient to "mimic" the effect of going from \boldsymbol{p} to \boldsymbol{p} '.

THE EQUFYALENT YARIATION

OVERYIEIW...

Consumer welfare

A simple, practical approach?

CV and EV

Consumer's surplus

- Assume that the price of good 1 changes from p_{1} to $p_{1}{ }^{\prime}$ while other prices remain unchanged. Then we can rewrite the above as:
(Just using the definition of a definite integral)

$$
\begin{aligned}
& \text { Hicksian (compensated) } \\
& \text { demand for good } 1
\end{aligned}
$$

- Further rewrite as:
$\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=\int_{p_{1}{ }^{\prime}}^{p_{1}} H^{1}(\mathbf{p}, \cup) \mathrm{d} p_{1}$

So CV can be seen as an area under the compensated demand curve

ANOTHER (EOUI \backslash A I ENTT) FORM FOR CV
 - Use the cost-differy ce detini

 $\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C(\mathbf{p}, \mathrm{v})-C\left(\mathbf{p}^{\prime}, \mathrm{v}^{\prime}\right)$ utility level v. If positive we have a welfare increase.- Assume that the price of good 1 changes from p_{1} to $p_{1}{ }^{\prime}$ while other prices remain unchanged. Then we can rewrite the above as:
(the CV can be found by integrating the cost function ove a sequence of small changes in prices from \mathbf{p} to \mathbf{p}^{\prime})

$$
\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=\int_{p_{1}^{\prime}}^{p_{1}} d C
$$

$$
\begin{aligned}
& \text { Hicksian (compensated) } \\
& \text { demand for good } 1
\end{aligned}
$$

- Further rewrite as:
$\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=\int_{p_{1}{ }^{\prime}}^{p_{1}} H^{1}(\mathbf{p}, v) \mathrm{d} p_{1}$

You're right. It's using Shephard's lemma again

So CV can be seen as an area under the compensated demand curve

COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL

COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL (2)

-The EV provides another exact welfare measure.

- But based on a different reference point
- Other possibilities...

ORDINARY DEMAND AND THE VALUE OF A PRICE FALL

-CS provides an approximate welfare measure.

THREE XAYS OF MEASURING THE BENEFITS OF A PRICE

- Summary of the three approaches.
-Conditions for normal goods
-So, for normal goods: $\mathrm{CV} \leq \mathrm{CS} \leq \mathrm{EV}$
- For inferior goods: CV $>\mathrm{CS}>\mathrm{EV}$

SUMMARY: KEY
 CONCEPTS

- Interpretation of Lagrange multiplier
- Compensating variation
- Equivalent variation
- CV and EV are measured in monetary units.
- Consumer's surplus
- The CS is a convenient approximation
- For normal goods: $\mathrm{CV} \leq \mathrm{CS} \leq \mathrm{EV}$.
- For inferior goods: CV > CS > EV.

