LECTURE 4 MICROECONOMIC THEORY CONSUMER THEORY Consumer Welfare

Lecturer: Andreas Papandreou

USING CONSUMER THEORY

- Consumer analysis is not just a matter of consumers' reactions to prices.
- We pick up the effect of prices on incomes on attainable utility - consumer's welfare.
- This is useful in the design of economic policy, for example.

The tax structure?

- We can use a number of tools that have become standard in applied microeconomics
 - price indices?

Consumer welfare

...

Interpreting the outcome of the optimisation in problem in welfare terms Utility and income

CV and EV

Consumer's surplus

HOW TO MEASURE A PERSON'S "WELFARE"?

- We could use some concepts that we already have.
- Assume that people know what's best for them...
- So that the preference map can be used as a guide.
- We need to look more closely at the concept of "maximised utility"...
- …the indirect utility function again.

THE TWO ASPECTS OF THE PROBLEM

UTILITY AND INCOME: SUMMARY

- This gives us a framework for the evaluation of marginal changes of income...
- ...and an interpretation of the Lagrange multipliers
- The Lagrange multiplier on the income constraint (primal problem) is the marginal utility of income.
- The Lagrange multiplier on the utility constraint (dual problem) is the marginal cost of utility.
- But does this give us all we need?

UTILITY AND INCOME: LIMITATIONS

- This gives us some useful insights but is limited:
- 1. We have focused only on marginal effects
 - infinitesimal income changes.
- 2. We have dealt only with income
 - not the effect of changes in prices
- We need a general method of characterising the impact of budget changes:
 - valid for arbitrary price changes
 - easily interpretable
- For the essence of the problem re-examine the basic diagram.

THE PROBLEM...

APPROACHES TO VALUING UTILITY CHANGE

depends on the **units** of the U function depends on the **origin** of the U function

depends on the **cardinalisation** of the U function

- A more productive idea:
 - Use income not utility as a measuring rod
 - 1. To do the transformation we use the V function
 - 2. We can do this in (at least) two ways...

STORY NUMBER 1

- Suppose p is the original price vector and p' is vector after good 1 becomes cheaper.
- **This causes utility to rise from** υ to υ '.

- Express this rise in money terms?
 - What hypothetical change in income would bring the person back to the starting point?
 - (and is this the right question to ask...?)
- Gives us a standard definition....

IN THIS VERSION OF THE STORY WE GET THE COMPENSATING VARIATION

$$\upsilon = V(\mathbf{p}, w)$$

the original utility level at prices **p** and income w

$$v = V(\mathbf{p'}, w - \mathbf{CV})$$
 the original utility level
restored at new prices $\mathbf{p'}$

The amount CV is just sufficient to "undo" the effect of going from p to p'.

THE COMPENSATING VARIATION

CV - ASSESSMENT

- The CV gives us a clear and interpretable measure of welfare change.
- It values the change in terms of money (or goods).
- But the approach is based on one specific reference point.
- The assumption that the "right" thing to do is to use the original utility level.
- There are alternative assumptions we might reasonably make. For instance...

HERE'S STORY NUMBER 2

Again suppose:

- **p** is the original price vector
- p' is the price vector after good 1 becomes cheaper.
- **This again causes utility to rise from** υ to υ' .
- But now, ask ourselves a different question:
 - Suppose the price fall had never happened
 - What hypothetical change in income would have been needed ...
 - ...to bring the person to the *new* utility level?

IN THIS VERSION OF THE STORY WE GET THE EQUIVALENT

I/ARIATION

$$\upsilon' = \nu(\mathbf{p'}, w)$$

the utility level at new prices **p'** and income w

$v' = v(\mathbf{p}, w + \mathbf{EV})$ the new utility level reached at original prices \mathbf{p}

 The amount EV is just sufficient to "mimic" the effect of going from p to p'.

UIVALENT HE E

(–) change in cost of hitting utility level υ. If positive we have a welfare *increase*.

• Assume that the price of good 1 changes from p_1 to p_1' while other prices remain unchanged. Then we can rewrite the above as:

• Use the cost-differ ce definit after

 $CV(\mathbf{p}\rightarrow\mathbf{p'}) = C(\mathbf{p}, \upsilon) - C(\mathbf{p'}, \upsilon)$

Prices

before

(Just using the definition of a definite integral)

Reference

utility level

So CV can be seen as an area under the compensated demand curve

utility level • Use the cost-differ ce definit after

Reference

 $CV(\mathbf{p} \rightarrow \mathbf{p'}) = C(\mathbf{p}, \upsilon) - C(\mathbf{p'}, \upsilon)$

Prices

before

• Assume that the price of good 1 changes from p_1 to p_1' while other prices remain unchanged. Then we can rewrite the above as:

change in cost of hitting utility level υ . If positive we have a welfare increase.

(the CV can be found by integrating the cost function over a sequence of small changes in prices from **p** to **p**')

$$CV(\mathbf{p} \rightarrow \mathbf{p'}) = \int_{p_1'}^{p_1} dC$$
Hicksian (compensated)
demand for good 1

• Further rewrite as:

$$CV(\mathbf{p} \rightarrow \mathbf{p'}) = \int_{p_1'}^{p_1} H^1(\mathbf{p}, \upsilon) dp_1$$
You're right. It's using
Shephard's lemma again

So CV can be seen as an area under the compensated demand curve

COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL

COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL (2)

ORDINARY DEMAND AND THE VALUE OF A PRICE FALL

THREE WAYS OF MEASURING THE BENEFITS OF A PRICE

Summary of the three approaches.

 Conditions for <u>normal</u> goods

•So, for normal goods: $CV \le CS \le EV$

For inferior goods:
 CV >CS >EV

SUMMARY: KEY CONCEPTS

- Interpretation of Lagrange multiplier
- Compensating variation
- Equivalent variation
 - CV and EV are measured in monetary units.
- Consumer's surplus
 - The CS is a convenient approximation
 - For normal goods: $CV \leq CS \leq EV$.
 - For inferior goods: CV > CS > EV.