LECTURE 3 MICROECONOMIC THEORY CONSUMER THEORY Classical Demand Theory

Lecturer: Andreas Papandreou

Introduction and definitions

- In this chapter we will assume that demand is based on the maximization of rational preferences

ㅁ Remember:

- I. Rationality. A preference relation \succ is rational if it implies a complete and transitive ordering of all consumption bundles within a consumption set X (see lecture 1).

ㅁ Background: without rationality of individuals, normative conclusions cannot be based on methodological individualism,

- i.e. explaining and understanding broad society-wide developments as the aggregation of decisions by individuals
- In addition to rationality, specific economic problems may suggest the appropriateness (desirability) of additional assumptions (see next slides).

Introduction and definitions

\square Notation of vector inequalities:

Introduction and definitions

- Monotonicity (more is better). The preference relation \succeq is

```
Strictly Greater means > in all components
> Greater means }\geq\mathrm{ in all component
Greater or Equal means }\geq\mathrm{ in all components
. 2 in all components
```

- monotone if $\mathrm{y} \gg \mathrm{x} \Rightarrow \mathrm{y} \succ \mathrm{x}$.
- strongly monotone if $\mathrm{y} \geq \mathrm{x} \quad \Rightarrow \mathrm{y} \succ \mathrm{x}$.
- "bads" (e.g. garbage) violate monotonicity assumption. Trick: redefine commodity as "absence of bads"
- monotonicity sometimes justified by defining preferences over goods available for consumption - rather than consumption itself - and assuming free disposal
\square Remember that
- $y \gg x$ means that $y_{\mathrm{n}}>x_{\mathrm{n}}$ for all $n=1, \ldots$, N , i.e. each element of the y vector is larger than the corresponding element of the x vector
- $\mathrm{y} \geq \mathrm{x}$ means $y_{n} \geq x_{n}$ for all $n=1, \ldots, \mathrm{~N}$

Introduction and definitions

Introduction and definitions

- Illustration of monotonicity:

Monotonicity: More of all good Monotonicity: M the blue dark area not including x or the dotted lines is strictly preferred\}

- Strong monotonicity: More of any
oods increases utility
the blue dark area including the dotted lines but not x is strictly preferred\}

NOTE: If a preference relation is monotone, we may have indifference with respect to an increase in the amount of some but not all commodities. In contrast strong monotonicity says that if y is larger than x for some commodity, then y is strictly preferred to x.

- Local nonsatiation. (you can always increase utility by making a small change in your consumption bundle)
The preference relation \succeq is nonsatiated if for every x and every $\varepsilon>0$, there is y such that $||y-x|| \leq \varepsilon$ and $y \succ x$ measure of distance

Introduction and definitions

- Implications of local non-satiation.

That all goods are bads

- If all goods were bads, zero consumption would be a satiation point. But then all "neighboring" bundles would be worse, conflicting with local non-satiation

Introduction and definitions

- Given the preference relation \approx, three related sets of consumption bundles can be defined w.r.t. a given bundle x
- indifference set: $\{y \in X: y \sim x\}$
- upper contour set: $\{y \in X: y \geq x\}$
- lower contour set: $\{y \in X: y \approx x\}$

Introduction and definitions

- Convexity

Recall that a set of points, X, is convex if for any two points in the set the (straight) line segment between them is also in the set.
Formally, a set X is convex if for any points x and x^{\prime} in X , every point z on the line joining them,
$z=t x+(1-t) x^{\prime}$ for some t in $[0,1]$, is also in X.

- Before we move on, let's do a thought experiment.
- Consider two possible commodity bundles, x and x^{\prime}. Relative to the extreme bundles x and x^{\prime}, how do you think a typical consumer feels about an average bundle, $z=t x+(1-t) x^{\prime}, t$ in $(0,1)$?
\square Although not always true, in general, people tend to prefer bundles with medium amounts of many goods to bundles with a lot of some things and very little of others (examples?). Since real people tend to behave this way, and we are interested in modeling how real people behave, we often want to impose this idea on our model of preferences

CONYENTIONALLY SHAPED INDIFFERENCE CURVES

OTHER TYPES OF IC: KINKS

-Strictly qua -But not everywhere smooth

OTHER TYPES OF IC: NOT
STRICTLY QUASICONCAVE

Introduction and definitions

- justification of convexity assumption
- diminishing marginal rates of substitution: starting at $x \in \mathbb{R}^{2}$, it takes increasingly larger amounts of one commodity to compensate for losses of the other
- inclination for diversification, esp. for situations with uncertainty
- nevertheless, convexity is a debatable assumption
- e.g. you may prefer milk or orange juice to a mixture of both
- sometimes, convexity can be obtained by appropriate aggregation, e.g. milk and orange juice over a week

Preference and Utility

- The previous analysis about preferences is not extremely useful because you have to do it one bundle at a time.
- If we could somehow describe preferences using mathematical formulas, we could use math techniques to analyze consumer behaviour.
- The tool we use is the utility function (already introduced in lecture 1).
- A utility function assigns a number to every consumption bundle x in X. According to its definition, the utility function assigns a number to x that is at least as large as the number it assigns to y if and only if x is at least as good as y.

Preference and Utility

Preference and Utility

- lexicographic preferences.

$$
X=\mathbb{R}_{+}^{L} \quad \text { be represented by a utility function? }
$$

As it turns out rationality is not sufficient.
For example, define on $X=R^{2}$ as + follows:
$x \succeq y$ if either $x_{1}>y_{1}$ or $x_{1}=y_{1}$ and $x_{2} \geq y_{2}$.

- i.e. good 1 has highest priority, as the first letter in dictionary

x_{2}		$x y \in X: y \gtrsim x\}$ $\{y \in X: y \gtrsim x\}$

- upper contour set: all points to the right of vertical line or on its solid part

These lexicographic preferences cannot be represented by a utility function.

- intuition: no two distinct bundles are indifferent so that indifference sets are singletons
- no point is indifferent to x;
- hence, since x has been chosen arbitrarily, all indifference sets are singletons

Preference and Utility

An additional property is needed
Continuity. The preference relation \approx on $X=\mathbb{R}_{+}^{L}$ is continuous if it is preserved under limits. That is, for any sequence of pairs
$\left\{\left(x^{n}, y^{n}\right)\right\}_{n=1}^{\infty}$ with $x^{n} \succ y^{n}$ for all n,
$x=\lim _{n \rightarrow \infty} x^{n}$, and $y=\lim _{n \rightarrow \infty} y^{n}$, we have $x \succ y$

- continuity rules out ,jumps" in the preferences
- e.g. that a consumer prefers each element in the sequence $\left\{x^{n}\right\}$ to the corresponding element in the sequence $\left\{y^{n}\right\}$, but suddenly reverses her preferences to $\mathrm{y}>\mathrm{x}$

Preference and Utility

- continuity rules out lexicographic preferences.

Preference and Utility

Preference and Utility

- Proposition:

If \succeq is rational and continuous then we can always have a continuous utility function to represent these preferences

Axiom

1. Completeness
2. Transitivity
3. Nonsatiation
4. Diminishing Marginal

Rate of Substitution (Strict Convexity) space. Any two bu
can be compared.

Orders bundles in terms of preferences.
A household can alway do a little bit better. Averages are preferred to extremes.

Preference and Utility

IRRELEVANCE OF CARDINALISATION

- $\quad U\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
transformation of a utility function $u($.$) that represents the preference$ relation \succ also represents \succ
- Suppose f strictly increasing. Suppose that u is a utility function representing a preference relation. If $x>y$, then $u(x)>u(y)$. With f strictly increasing $f(u(\underline{x}))>f(u(\underline{y}))$. Therefore $f(u()$.$) is also a utility function representing the$ same preference relation.

The difference between the utility of two bundles doesn't mean anything. This makes it hard to compare things such as the impact of two different tax programs by looking at changes in utility.

- Common assumptions w.r.t. the utility function
- Continuity
- Differentiability
but: some preferences cannot be represented by a differentiable utility function, - e.g. Leontief preferences $u(x)=\min \left(x_{1}, x_{2}\right)$
- $\log \left(U\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
- $\exp \left(U\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
- So take any utility function. - This transformation represents the same
preferences.. preferences...
- ...and so do both of these
- And, for any monotone increasing φ, this repres
the same preferences.
- $\sqrt{ }\left(U\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$
- U is defined up to a
- $\varphi\left(U\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$ monotonic transformation
Each of these forms will generate the same contours.
-Let's view this graphically.

A UTILITY FUNCTION
ANOTHER UTILITY FUNCTION

Preference and Utility

Assumptions about the preference relation translate into implications for the utility function.

- Monotonicity of the preferences imply that the utility function is increasing: $u(x)>u(y)$ if $x \gg y$.
- Convex preferences lead to quasiconcave utility, i.e
- for convex preferences
$u(\alpha x+(1-\alpha) y) \geq \operatorname{Min}\{u(x), u(y)\}$ for any x, y and all $\alpha \in[0,1]$,
The utility maximization problem
- We compute the maximal level of utility than can be obtained at given prices and wealth.
- Difference with choice-based approach:
- In choice-based approach we never said anything about why consumers make the choices they do.

Now we say that the consumer acts to maximise utility with certain properties.

The utility maximization problem

- In order to ensure that the problem is "wellbehaved", we assume that:
- Preferences are rational, continuous, convex and nonsatiated.
- Therefore, the utility function $u(x)$ is continuous and the consumer's choices will satisfy Walras' law.
- We further assume that $u(x)$ is differentiable in each of its arguments, so that we can use calculus techniques (the indifference curves have no kinks).

The utility maximization problem

- Consumer utility maximization problem (UMP)
$\max _{x \geq 0} u(x)$ s.t. $p \cdot x \leq w$
- Proposition (MWG 3.D.1): If $p \gg 0$ and $u($.$) is continuous, then the utility$ maximization problem has a solution.
- If the optimal set $x(p, w)$ is single valued, we call it the Walrasian (or ordinary or market) demand function

The utility maximization problem

- Properties of Walrasian demand (assuming that $\mathrm{u}($.$) is$ continuous and represents a locally nonsatiated preference relation)
i. Homogeneity of degree zero in p and $w: x(p, w)=x(\alpha p$, αw), for any p, w and scalar $\alpha>0$.
ii. Walras law: $p \cdot x=w$ for any x in the optimal set $x(p, w)$. iii. Convexity/uniqueness: if \succ is convex, so that $u($.$) is$ quasiconcave, then $\mathrm{x}(\mathrm{p}, \mathrm{w})$ is a convex set. Moreover, if \succeq is strictly convex so that $u($.$) is concave, then \mathrm{x}(\mathrm{p}, \mathrm{w})$ consists of a single element.

The utility maximization problem
The UMP with single and multiple solutions

The utility maximization problem

If U is strictly quasiconcave we have an interior solution.

A set of $n+1$ First-Order Conditions

From the FOC

If both goods i and j are purchased and MRS is defined then...

$$
\begin{array}{cl}
\frac{U_{i}\left(\mathbf{x}^{*}\right)}{U_{j}\left(\mathbf{x}^{*}\right)}=\frac{p_{i}}{p_{j}} & \text { :(same as before) } \\
\text { MRS }=\text { price ratio } & \text { - "implicit" price }=\text { market price }
\end{array}
$$

If good i could be zero then...

$$
\frac{U_{i}\left(\mathbf{x}^{*}\right)}{U_{j}\left(\mathbf{x}^{*}\right)} \leq \frac{p_{i}}{p_{j}}
$$

$\operatorname{MRS}_{j i} \leq$ price ratio

- "implicit" price \leq market price
one for
each goo
each good
$U_{1}\left(\mathbf{x}^{*}\right)=\lambda^{*} p_{1}$
$U_{2}\left(\mathbf{x}^{*}\right)=\lambda^{*} p_{2}$
$\cdots \cdots \cdots$
$U_{n}\left(\mathbf{x}^{*}\right)=\lambda^{*} p_{n}$
$w=\sum_{i=1}^{n} p_{i} x_{i}^{*}$
$U_{1}\left(\mathbf{x}^{*}\right)=\lambda^{*} p_{1}$
$U_{2}\left(\mathbf{x}^{*}\right)=\lambda^{*} p_{2}$
$\cdots \quad \cdots \quad \cdots$
$\sum_{i=1}$

The solution...

Solving the FOC, you get a utility-maximising value for each good...

$$
\mathbf{x}_{i}^{*}=D^{i}(\mathbf{p}, w)
$$

...for the Lagrange multiplier

$$
\lambda^{*}=\lambda^{*}(\mathbf{p}, w)
$$

- ...and for the maximised value of utility itself.

Remark: In general the Largrange multiplier is the shadow value of
the constraint, meaning that it is the increase in the value of the
objective function resulting from a small relaxation of the constraint.
The Lagrange multiplier is the marginal utility of
wealth or income (mathematical property of the Lagrange multiplier).

Interpreting the Lagrangian Multiplier

$$
\begin{gathered}
\lambda=\frac{\partial U / \partial x_{1}}{p_{1}}=\frac{\partial U / \partial x_{2}}{p_{2}}=\ldots=\frac{\partial U / \partial x_{n}}{p_{n}} \\
\lambda=\frac{M U_{x_{1}}}{p_{1}}=\frac{M U_{x_{2}}}{p_{2}}=\ldots=\frac{M U_{x_{n}}}{p_{n}}
\end{gathered}
$$

- At the optimal allocation, each good purchased yields the same marginal utility per $€$ spent on that good
- So, each good must have identical marginal benefit (MU) to price ratio
- If different goods have different marginal benefit/price ratio, you could reallocate consumption among goods and increase utility. Hence, you would not be maximizing utility.

A two-goods example

- The general form for an indifference curve is
$\mathrm{U}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \equiv \mathrm{k}$, a constant.
Taking the total derivative:

$$
\frac{\partial U}{\partial x_{1}} d x_{1}+\frac{\partial U}{\partial x_{2}} d x_{2}=0
$$

Or $\frac{\partial U}{\partial x_{2}} d x_{2}=-\frac{\partial U}{\partial x_{1}} d x_{1}$ or $\frac{d x_{2}}{d x_{1}}=-\frac{\partial U / \partial x_{1}}{\partial U / \partial x_{2}}=\frac{M U_{1}}{M U_{2}}$.

We call this the Marginal Rate of Substitution

A two-goods example

A Numerical Illustration

- Assume that the individual's $M R S=1$
- willing to trade one unit of x for one unit of y
- Suppose the price of $x=\$ 2$ and the price of y = \$1
- The individual can be made better off - trade 1 unit of x for 2 units of y in the marketplace
- So, it cannot be an optimal bundle if MRS is different from the ratio of prices

The indirect utility function
The Indirect Utility Function has some properties..
(All of these can be established using the known properties of the Walrasian demand function)
Solving the FOC, you get a utility-maximising value for each good, for the Lagrange multiplier and for the maximised value

- Non-increasing in every price. Decreasing in at least one price

I call it indirect because while utility is a function of the commodity bundle consumed, x, the indirect utility function $V(\mathbf{p}, w)$ is a function of \mathbf{p} and w.

ㅁ Increasing in wealth w.

The indirect utility function

- The definition of the indirect utility function implies that the following identity is true:
$V(\mathbf{p}, w) \equiv u(x(\mathbf{p}, w))$
Differentiating both sides w.r.t. $p_{l}: \quad \frac{\partial V}{\partial p_{I}}=\sum_{i=1}^{L} \frac{\partial u}{\partial x_{i}} \frac{\partial x_{i}}{\partial p_{l}}$

Using that $\partial u / \partial x_{i}=\lambda p_{i}$ and that $\lambda=\partial V / \partial w$, after some manipulations we get:

$$
\boldsymbol{x}_{\boldsymbol{l}}(\mathbf{p}, \boldsymbol{w})=-\frac{\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{p}_{\boldsymbol{l}}}}{\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{w}}} \quad \begin{aligned}
& \text { Roy's identity: } \\
& \begin{array}{l}
\text { allows us to derive } \\
\text { the demand } \\
\text { function from the } \\
\text { indirect utility } \\
\text { function }
\end{array}
\end{aligned}
$$

The expenditure minimization problem

- The expenditure minimization problem asks the question "if prices were \mathbf{p}, what is the minimum amount the consumer would have to spend to achieve utility level u ?"
- Officially:

$$
\min _{x \geq 0} \mathrm{p} \cdot \mathrm{x} \quad \text { s.t. } \mathrm{u}(\mathrm{x}) \geq u
$$

In other words, the EMP computes the minimal level of wealth required to reach utility level u.

The primal problem (Utility Maximization Problem)

The Primal and the Dual...

- There's an attractive symmetry about the two approaches to the problem

In both cases the p s are given and you choose the x. But...
...constraint in the primal becomes objective in the dual...

- ...and vice versa.

The expenditure minimization problem

The expenditure minimization problem

Solving the FOC, you get a cost-minimising value for each good...

$$
\mathbf{x}^{*}=h(\mathbf{p}, u)
$$

...for the Lagrange multiplier

$$
\lambda^{*}=\lambda^{*}(\mathbf{p}, u)
$$

...and for the minimised value of expenditure itself.

- The consumer's cost function or expenditure function is defined as
$e(\mathbf{p}, u):=\min _{\{U(\mathbf{x})} \Sigma p_{i} h^{i}(\mathbf{p}, u)$
It is equal to the minimum cost of achieving utility u, for any given p and u
 Specified
utility level

Duality properties

- The UMP picks out the point that max utility given the budget constraint.

- The EMP picks the point that achieves certain utility at min cost.
- The two points are the same!

The

Duality properties

- If x^{*} solves the UMP when prices are \mathbf{p} and wealth is w, then x^{*} solves the EMP when prices are \mathbf{p} and the target utility level is $u\left(x^{*}\right)$.
- Further, maximal utility in the UMP is $u\left(x^{*}\right)$ and minimum expenditure in the EMP is w.
- This result is called the "duality" of the EMP and the UMP.

Duality properties

$\square \underline{\underline{x}}(\underline{p}, w)=\underline{\mathrm{h}}(\underline{p}, \mathrm{v}(\underline{p}, w))$ i.e. the commodity bundle that maximizes your utility when prices are p and wealth is w, is the same bundle that minimizes the cost of achieving the maximum utility you can achieve when prices are p and wealth is w.
solution to the EMP
(minimum expenditure)
$\square \underline{\mathrm{h}}(\underline{\mathrm{p}}, u)=\underline{\mathrm{x}}(\underline{\mathrm{p}}, \underline{\mathrm{p}} \cdot \underline{\mathrm{h}}(\underline{\mathrm{p}}, u)=\underline{\mathrm{x}}(\underline{\mathrm{p}}, e(\underline{\mathrm{p}}, u))$ i.e. the commodity bundle that minimizes the cost of achieving utility u when prices are p, is the same bundle that maximizes utility when prices are p and wealth is equal to the minimum amount of wealth needed to achieve utility u at those prices.

A USEFUL CONNECTION

- The indirect utility function maps prices and budget into maximal utility

$$
\mathrm{u}=v(\mathbf{p}, w)
$$

- The cost function maps prices and utility into minimal budget

$$
w=e(\mathbf{p}, u)
$$

- Therefore we have:
$u=v(\mathbf{p}, e(\mathbf{p}, u))$

$$
w=e(\mathbf{p}, v(\mathbf{p}, w))
$$

The indirect utility function works like an "inverse" to the cost function

The two solution functions have to be consistent with each other Two sides of the same coin

Odd-looking identities like these can be useful

Duality properties

Relationship between Expenditure function and

 Hicksian demand function\square Start from: $\quad e(p, \bar{u}) \equiv p \cdot h(p, \bar{u})$
\square Differentiating w.r.t. $p_{i}: \quad \frac{\partial e}{\partial p_{i}} \equiv h_{i}(p, \bar{u})+\sum_{j} p_{j} \frac{\partial h_{j}}{\partial p_{i}}$.
\square Substituting the FOC, $p_{j}=\lambda u_{j}$

$$
\begin{equation*}
\frac{\partial e}{\partial p_{i}} \equiv h_{i}(p, \bar{u})+\lambda \sum_{j} u_{j} \frac{\partial h_{j}}{\partial p_{i}} . \tag{1}
\end{equation*}
$$

Relationship between Expenditure function and Hicksian demand function

- The constraint is binding at any optimum of the EMP,

$$
u(h(p, \bar{u})) \equiv \bar{u}
$$

- Differentiate w.r.t. p_{i} :

$$
\sum_{j} u_{j} \frac{\partial h_{j}}{\partial p_{i}}=0
$$

- Substituting into (1):

$$
\frac{\partial e}{\partial p_{j}} \equiv h_{j}(p, \bar{u}) .
$$

I.e. the derivative of the expenditure function w.r.t. p_{j} is just the Hicksian demand for commodity j.
Importance: we can derive the Hicksian demand function from the expenditure function.

The Hicksian demand function

Hicksian compensation

We have:

$$
h(p, u)=x(p, \underbrace{e(p, u)}_{w})
$$

When prices vary, $h(p, u)$ indicates how the Marshallian demand would adjust if wealth was modified to ensure that the consumer still obtains utility u (i.e. adjusting the consumer's wealth so that the new wealth exactly enables him to buy a quantity that will yield the utility level u when spent efficiently).

The Hicksian compensation

Hicksian Compensation

The Hicksian demand curve is also known as the compensated demand curve The reason for this is that implicit in the definition of the Hicksian demand curve is the idea that following a price change, you will be given enough wealth to maintain the same utility level you did before the price change (since demand is calculated for given \underline{p} and u). When prices change from p to p^{\prime}, the consumer is compensated by changing wealth from w to w ' so that he is exactly as well off in utility terms after the price change as he was before. E.g. if prices increase, (p^{\prime}, u) would imply some kind of wealth compensation.

Hicksian compensation is the variation in wealth Δw following a variation in price $\left(p \rightarrow p^{\prime}\right)$ such that the utility-maximizing consumer keeps the same initial utility $v(p, w)$.

Other properties of the Hicksian demand function

$$
\frac{\partial e}{\partial p_{j}} \equiv h_{j}(p, \bar{u}),
$$

(1)

- How does the compensatea demand of commodity i change when the price of commodity j changes? Take first derivative of (1) w.r.t. p_{j} :

$$
\frac{\partial h_{i}}{\partial p_{j}}=\frac{\partial^{2} e}{\partial p_{i} \partial p_{j}}
$$

But this is exactly the ijth element of the Slutsky substitution matrix!

The Slutsky substitution matrix

- The $L \times L$ matrix of partials $s_{i j}=\partial h_{i} / \partial p_{j}$ is called Slutsky substitution matrix:
$S(p, w)=D_{p} h(p, u)=\left[\begin{array}{ccc}s_{11}(p, w) & \ldots & s_{1 L}(p, w) \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ s_{L 1}(p, w) & \ldots & s_{L L}(p, w)\end{array}\right]$

The Slutsky substitution matrix

- Properties:

- It is symmetric, i.e. cross-price effects are the same, the effect of increasing p_{j} on h_{i} is the same as the effect of increasing p_{i} on h_{j}. (The order in which we take derivatives does not make a difference). (In choice approach not necessarily symmetric unless $L=2$)
- It is negative semidefinite, since it is the matrix of second derivatives (Hessian) of a concave function (exp.function). Therefore $\mathrm{\partial} h_{i} / \partial p_{i} \leq 0$, diagonal elements are non-positive. (Also true in Choice approach)

Duality summarized in words

- Start with UMP:

$$
\begin{aligned}
& \max u(x) \\
\text { s.t }: & p \cdot x \leq w .
\end{aligned}
$$

- The solution to this problem is $x(p, w)$, the Walrasian demand functions.

Duality summarized in words

Duality summarized in words

\square Solve the EMP

$$
\begin{aligned}
& \min p \cdot x \\
\text { s.t. }: & u(x) \geq u .
\end{aligned}
$$

- The solution to this problem is $h(p, u)$, the Hicksian demand functions.

Duality summarized in words

Utility and expenditure

- Utility maximisation
- ...and expenditure-minimisation by the consumer

$$
e(p, u) \equiv p \cdot h(p, u)
$$

- ...are effectively two aspects of the same problem.
- So their solution and response functions are closely connected:
\square Differentiating the expenditure function w.r.t. p_{j} gets you back to the Hicksian demand

$$
h_{j}(p, u) \equiv \frac{\partial e(p, u)}{\partial p_{j}}
$$

Duality summarized in words

- The connections between the two problems are provided by the duality results. Since the same bundle that solves the UMP when prices are p and wealth is w solves the EMP when prices are p and the target utility level is $u(x(p, w))(=v(p, w))$, we have that

$$
\begin{aligned}
x(p, w) & \equiv h(p, v(p, w)) \\
h(p, u) & \equiv x(p, e(p, u))
\end{aligned}
$$

- Applying these to the expenditure and indirect utility functions

$$
\begin{aligned}
v(p, e(p, u)) & \equiv u \\
e(p, v(p, w)) & \equiv w
\end{aligned}
$$

Duality summarized in words

\square Finally, we can also prove the Slutsky equation:

$$
\frac{\partial \mathrm{h}_{\mathrm{i}}(p, u)}{\partial \mathrm{p}_{\mathrm{k}}}=\frac{\partial \mathrm{x}_{\mathrm{i}}(p, w)}{\partial \mathrm{p}_{\mathrm{k}}}+\frac{\partial \mathrm{x}_{\mathrm{i}}(p, w)}{\partial \mathrm{w}} \mathrm{x}_{\mathrm{k}}(p, w) \text { for all } i, k \text {. }
$$

