LECTURE 3 MICROECONOMIC THEORY CONSUMER THEORY Classical Demand Theory

1

Introduction and definitions

- In this chapter we will assume that demand is based on the maximization of rational preferences.
- Remember:
 I. Rationality. A preference relation and transitive ordering of all consumption bundles within a consumption set X (see lecture 1).
- Background: without rationality of individuals, normative conclusions cannot be based on methodological individualism,
 i.e. explaining and understanding broad society-wide developments as the aggregation of decisions by individuals
- In addition to rationality, specific economic problems may suggest the appropriateness (desirability) of additional assumptions (see next slides).

2

 Introduction and definitions

 Image: Strictly Greater means > in all components

 > Greater means > in all components

 > Greater or Equal means > in all components

 but > in some

 > Greater or Equal means > in all components

 1 greater 0 greater 0

Monotonicity: Example 1

$$u(x_1, x_2) = \min\{x_1, x_2\}$$

- Monotone, since $\min\{x_1 + \delta, x_2 + \delta\} > \min\{x_1, x_2\}$ for all $\delta > 0$.
- Not strongly monotone, since $\min\{x_1 + \delta, x_2\} \neq \min\{x_1, x_2\}$ if $\min\{x_1, x_2\} = x_2$.

7

Introduction and definitions Introduction (you can always increase utility by making a small change in your consumption bundle). The preference relation \succeq is *nonsatiated* if for every x and every $\varepsilon > 0$, there is y such that $||y - x|| \le \varepsilon$ and $y \succ x$ measure of distance **Interpretent of the set of the se**

9

10

OTHER TYPES OF IC: NOT STRICTLY QUASICONCAVE Slope well-defined everywhere x. Indifference curves Indifference curve follows axis here with flat sections make sense But may be a little harder to work with.

20

Introduction and definitions

- justification of convexity assumption
 - diminishing marginal rates of substitution: starting at $x \in \mathbb{R}^2$, it takes increasingly larger amounts of one commodity to compensate for losses of the other
 - inclination for diversification, esp. for situations with uncertainty
- nevertheless, convexity is a debatable assumption
 - e.g. you may prefer milk or orange juice to a mixture of both
 - sometimes, convexity can be obtained by appropriate aggregation, e.g. milk and orange juice over a week

21

Preference and Utility

- The previous analysis about preferences is not extremely useful because you have to do it one bundle at a time.
- □ If we could somehow describe preferences using mathematical formulas, we could use math techniques to analyze consumer behaviour.
- **D** The tool we use is the utility function (already introduced in lecture 1).
- A utility function assigns a number to every consumption bundle x in X. According to its definition, the utility function assigns a number to x that is at least as large as the number it assigns to y if and only if x is at least as good as y.

X

Preference and Utility Preference and Utility continuity rules out lexicographic preferences. An additional property is needed. Continuity. The preference relation \geq on X = $\mathbb{R}^{L_{*}}$ is continuous if it is X₂ $\{y \in X \colon y \succeq x\}$ preserved under limits. That is, for any sequence of pairs x¹x²x³ $\{(x^n, y^n)\}_{n=1}^{\infty}$ with $x^n \searrow y^n$ for all n, Consider the sequence of bundles $x^n = (1/n, 0)$ and $y^n = (0, 1)$. For every n, we have $x^n > y^n$. But at the $\lim_{n \to \infty} y^n = (0, 1) > (0, 0) = \lim_{n \to \infty} x^n$. $\{y \in X \colon y \preccurlyeq x\}$ $x = \lim x^n$, and $y = \lim y^n$, we have $x \succ y$ · continuity rules out "jumps" in the preferences **X**₁ • e.g. that a consumer prefers each element in the sequence {xn} to the corresponding element in the sequence {yn}, but suddenly reverses her preferences to y > x 25 26

 Preference and Utility

 □ Proposition:

 If \succeq is rational and continuous then we can always have a continuous utility function to represent these preferences

 27

ANOTHER UTILITY FUNCTION

33

Preference and Utility

Assumptions about the preference relation translate into implications for the utility function.

- Monotonicity of the preferences imply that the utility function is increasing: u(x) > u(y) if x>>y.
- Convex preferences lead to quasiconcave utility, i.e.

• for convex preferences
$$\begin{split} u(\alpha x+(1-\alpha)y)\geq & Min\{u(x),\,u(y)\} \text{ for any } x,y \text{ and all } \alpha\in[0,1], \\ & \text{which is the definition of a quasiconcave function.} \end{split}$$

34

The utility maximization problem

We compute the maximal level of utility than can be obtained at given prices and wealth.

Difference with choice-based approach:

- In choice-based approach we never said anything about why consumers make the choices they do.
- Now we say that the consumer acts to maximise utility with certain properties.

The utility maximization problem

In order to ensure that the problem is "wellbehaved", we assume that:

- Preferences are rational, continuous, convex and nonsatiated.
- Therefore, the utility function u(x) is continuous and the consumer's choices will satisfy Walras' law.
- We further assume that u(x) is differentiable in each of its arguments, so that we can use calculus techniques (the indifference curves have no kinks).

The utility maximization problem

Consumer utility maximization problem (UMP)

 $\max_{x \ge 0} u(x) \ s.t. \ p \cdot x \le w$

 Proposition (MWG 3.D.1): If p>>0 and u(.) is continuous, then the utility maximization problem has a solution.

 If the optimal set x(p,w) is single valued, we call it the Walrasian (or ordinary or market) demand function

37

39

i. Homogeneity of degree zero in p and w: $x(p,w) = x(\alpha p, \alpha w)$, for any p,w and scalar $\alpha > 0$.

ii. Walras law: $p \cdot x = w$ for any x in the optimal set x(p,w). iii. Convexity/uniqueness: if \succeq is convex, so that u(.) is quasiconcave, then x(p,w) is a convex set. Moreover, if \succeq is strictly convex so that u(.) is concave, then x(p,w) consists of a single element.

The utility maximization problem

The utility maximization problem

continuous and represents a locally nonsatiated preference

i. Homogeneity of degree zero in p and w: $x(p,w) = x(\alpha p, w)$

ii. Walras law: $p \cdot x = w$ for any x in the optimal set x(p,w).

iii. Convexity/uniqueness: if \succeq is convex, so that u(.) is quasiconcave, then x(p,w) is a convex set. Moreover, if \succeq is strictly convex so that u(.) is concave, then x(p,w) consists

 α w), for any p,w and scalar α > 0.

of a single element.

Department of Walrasian demand (assuming that u(.) is

relation)

 Properties of Walrasian demand (assuming that u(.) is continuous and represents a locally nonsatiated preference relation)

i. Homogeneity of degree zero in p and w: $x(p,w) = x(\alpha p, \alpha w)$, for any p,w and scalar $\alpha > 0$. ii. Walras law: $p \cdot x = w$ for any x in the optimal set x(p,w). iii. Convexity/uniqueness: if \succeq is convex, so that u(.) is quasiconcave, then x(p,w) is a convex set. Moreover, if \succeq is strictly convex so that u(.) is concave, then x(p,w) consists of a single element.

40

 $\lambda = \frac{\partial U / \partial x_1}{p_1} = \frac{\partial U / \partial x_2}{p_2} = \dots = \frac{\partial U / \partial x_n}{p_n}$

 $\lambda = \frac{MU_{x_1}}{p_1} = \frac{MU_{x_2}}{p_2} = \dots = \frac{MU_{x_n}}{p_n}$

The dual problem (Expenditure Minimization Problem) Consumer seeks a utility level associated with a particular indifference curve, while spending as little as possible. Bundles strictly above x* cannot be a solution to the EMP: They reach the utility level u Bundles on the budget line strictly below x* cannot be the solution to the EMP problem: They are cheaper than x* But, they do not reach the utility level u

61

The expenditure minimization problemEMP: $\min p \cdot x \quad s.t. u(x) \ge u$ $x \ge 0$ $L_{EMP} = p \cdot x - \lambda (u(x) - u)$ FOC: $p_{l} - \lambda u_{l}(x) = 0$ for l = 1, ..., L $\lambda (u(x) - u) = 0$ Image: The Hicksian demand function (or "compensated demand function") is the solution h(p, u) of the above problem

Duality properties

 $\square \underline{x}(\underline{p},w) = \underline{h}(\underline{p}, v(\underline{p},w))$ i.e. the commodity bundle that maximizes your utility when prices are p and wealth is w, is the same bundle that minimizes the cost of achieving the maximum utility you can achieve when prices are p and wealth is w. solution to the EMP

(minimum expenditure)

 $\square \underline{h}(\underline{p}, u) = \underline{x}(\underline{p}, \underline{p}, \underline{h}(\underline{p}, u)) = \underline{x}(\underline{p}, e(\underline{p}, u)) \text{ i.e. the commodity}$ bundle that minimizes the cost of achieving utility *u* when prices are p, is the same bundle that maximizes utility when prices are p and wealth is equal to the minimum amount of wealth needed to achieve utility *u* at those prices.

67

Importance: we can derive the Hicksian demand function from the expenditure function.

Relationship between Expenditure function and Hicksian demand function □ Start from: $e\left(p,\bar{u}\right)\equiv p\cdot h\left(p,\bar{u}\right)$ **Differentiating w.r.t.** p_i : $\frac{\partial e}{\partial p_i} \equiv h_i(p, \bar{u}) + \sum_j p_j \frac{\partial h_j}{\partial p_i}$. **D** Substituting the FOC, $p_i = \lambda u_i$ $\frac{\partial e}{\partial p_i} \equiv h_i\left(p,\bar{u}\right) + \lambda \sum_j u_j \frac{\partial h_j}{\partial p_i}.$ (1)

70

The Hicksian demand function

Hicksian compensation

We have:

$$h(p, u) = x(p, \underbrace{e(p, u)}_{w})$$

When prices vary, h(p, u) indicates how the Marshallian demand would adjust if wealth was modified to ensure that the consumer still obtains utility u (i.e. adjusting the consumer's wealth so that the new wealth exactly enables him to buy a quantity that will yield the utility level u when spent efficiently).

The Slutsky substitution matrix The L x L matrix of partials $s_{ij} = \partial h_i / \partial p_j$ is called Slutsky substitution matrix: $S(p,w) = D_p h(p,u) = \begin{bmatrix} s_{11}(p,w) \dots s_{LL}(p,w) \\ \vdots & \vdots \\ s_{L1}(p,w) \dots s_{LL}(p,w) \end{bmatrix}$

76

Properties: It is symmetric, i.e. cross-price effects are the same, the effect of increasing p_j on h_i is the same as the effect of increasing p_j on h_j. (The order in which we take derivatives does not make a difference). (In choice approach not necessarily symmetric unless L =2) It is negative semidefinite, since it is the matrix of second derivatives (Hessian) of a concave function (exp.function). Therefore ∂h_i/∂p_i ≤ 0, diagonal elements are non-positive. (Also true in Choice approach)

Duality summarized in words

- □ Substituting x(p,w) into u(x) gives the indirect utility function $v(p,w) \equiv u(x(p,w))$.
- By differentiating *v*(*p*,*w*) w.r.t. *p_i* and *w*, we get Roy's identity,

 $x_i(p,w) \equiv -v_{p_i} / v_w$

81

Duality summarized in words

The expenditure function is defined as

 $e(p,u) \equiv p \cdot h(p,u)$

□ Differentiating the expenditure function w.r.t. *p_j* gets you back to the Hicksian demand

$$h_j(p,u) \equiv \frac{\partial e(p,u)}{\partial p_j}$$

Duality summarized in words

□ Solve the EMP

 $\min p \cdot x$
s.t. : $u(x) \ge u$.

■ The solution to this problem is *h*(*p*,*u*), the Hicksian demand functions.

82

Duality summarized in words

□ The connections between the two problems are provided by the duality results. Since the same bundle that solves the UMP when prices are *p* and wealth is *w* solves the EMP when prices are *p* and the target utility level is u(x(p,w)) (=v(p,w)), we have that

 $x\left(p,w\right) \;\; \equiv \;\; h\left(p,v\left(p,w\right)\right)$

$$h\left(p,u\right) \;\;\equiv\;\; x\left(p,e\left(p,u\right)\right)$$

Applying these to the expenditure and indirect utility functions

$$v\left(p,e\left(p,u\right)\right) \ \equiv \ u$$

$$e\left(p,v\left(p,w\right)\right) \ \equiv \ w$$

85

87

■ Finally, we can also prove the Slutsky equation: $\frac{\partial h_i(p,u)}{\partial p_k} = \frac{\partial x_i(p,w)}{\partial p_k} + \frac{\partial x_i(p,w)}{\partial w} x_k(p,w) \text{ for all } i,k.$

86

Start from the utility function	Minimise expenditures s.t. u
and derive the Marshallian demand for x_1	to find the Hicksian demand function
$x_1 = y/2p_1$	$x_1^h = u (p_2/p_1)^{1/2}$
Plug in the respective de	mand functions to get the
indirect utility function	expenditure function
$v = y/(4p_1p_2)^{1/2}$	$e = u(4p_1p_2)^{1/2}$
Substitute the expenditure function	Substituting the indirect utility function
into the Marshallian demand function	into the Hicksian demand function
to derive the Hicksian demand function	to derive the Marshallian demand function
$x_1 = (u(4p_1p_2)^{1/2})/2p_1 = u(p_2/p_1)^{1/2}$	$x_1^h = (p_2/p_1)^{1/2}y/(4p_1p_2)^{1/2} = y/2p_1$
Invert v and replace y by u	Invert e and replace u by v
to get the expenditure function	to get the indirect utility function
$v^{-1} = u(4p_1p_2)^{1/2}$	$e^{-1} = y(4p_1p_2)^{-1/2}$
Check Roy's identity	Check Shephard's lemma
$-\frac{\partial v/\partial p_1}{\partial v/\partial y} = \frac{2y(p_1p_2)^{1/2}}{4(p_1^3p_2)^{1/2}} = y/2p_1$	$\frac{\partial e}{\partial p_1} = \frac{u_{4p_2}}{2(4p_1p_2)^{1/2}} = u(p_2/p_1)^{1/2}$
Establish the S	Slutsky equation
$\frac{\partial x_1}{\partial x_2} = \frac{u}{\partial (u-v)}$	$\frac{1}{1/2} = \frac{y}{2m} \cdot \frac{1}{2m}$