AGGREGATION* Consider an industry with two firms + Let q_i be net output for firm f of good i, f = 1, 2+ Let q_i be net output for whole industry of good i* How is total related to quantities for individual firms? + Just add up + $q_i = q_i^1 + q_i^2$ * Example 1: both firms produce i as output + $q_i^1 = 100$, $q_i^2 = 100$ + $q_i = 200$ * Example 2: both firms use i as input + $q_i^4 = -100$, $q_i^2 = -100$ + $q_i = -200$ * Example 3: firm 1 produces i that is used by firm 2 as input + $q_i^2 = 100$, $q_i^2 = -100$ + $q_i = 0$ ### **THE PRODUCTION FUNCTION** Φ ***** Recall equivalence for single output firm: $+q_n - \phi(-q_1, -q_2,, -q_{n-1}) \le 0$ $+\Phi(q_1, q_2,, q_{n-2}, q_n) \le 0$ ***** So, for this case: $+\Phi$ is increasing in $q_1, q_2,, q_n$ + if ϕ is homogeneous of degree 1, Φ is homogeneous of degree 0 + if ϕ is differentiable so is Φ + for any i, j = 1, 2, ..., n-1 MRTS $_{ij} = \Phi_j(\mathbf{q})/\Phi_j(\mathbf{q})$ ***** It makes sense to generalise these... # THE PRODUCTION FUNCTION Φ (MORE) * For a vector \mathbf{q} of net outputs + \mathbf{q} is feasible if $\Phi(\mathbf{q}) \leq 0$ + \mathbf{q} is technically efficient if $\Phi(\mathbf{q}) = 0$ + \mathbf{q} is infeasible if $\Phi(\mathbf{q}) > 0$ * For all feasible \mathbf{q} : + $\Phi(\mathbf{q})$ is increasing in $q_1, q_2, ..., q_n$ + if there is CRTS then Φ is homogeneous of degree 0+ if ϕ is differentiable so is Φ + for any two inputs i, j, MRTS $_{ij} = \Phi_j(\mathbf{q})/\Phi_j(\mathbf{q})$ + for any two outputs i, j, the marginal rate of transformation of i into j is MRT $_{ij} = \Phi_j(\mathbf{q})/\Phi_j(\mathbf{q})$ * Illustrate the last concept using the t-ransformation curve... # PROFITS * The basic concept is (of course) the same + Revenue – Costs * But we use the concept of net output + this simplifies the expression + exploits symmetry of inputs and outputs * Consider an "accounting" presentation... ### **MAXIMISED PROFITS** - Introduce the *profit function* - the solution function for the profit maximisation problem $$\Pi(\mathbf{p}) = \max_{\{\Phi(\mathbf{q}) \le 0\}} \sum_{i=1}^{n} p_i q_i = \sum_{i=1}^{n} p_i q_i^*$$ - Works like other solution functions:non-decreasing - homogeneous of degree 1 - continuous - convex - Take derivative with respect to p_i : - $\Pi_i(\mathbf{p}) = q_i^*$ write q_i^* as net supply function - $q_i^* = q_i(\mathbf{p})$ ### SUMMARY - * Three key concepts - Net output + simplifies analysis + key to modelling multi-output firm + easy to rewrite production function in terms of net outputs - Transformation curve - summarises tradeoffs between outputs - Profit function - counterpart of cost function