

THE OPTIMISATION PROBLEM

- * We want to set up and solve a standard optimisation problem.
- * Let's make a quick list of its components.
- * ... and look ahead to the way we will do it for the firm.

THE OPTIMISATION PROBLEM * Objectives -Profit maximisation? * Constraints -Technology; other * Method -2-stage optimisation

• Use the information on prices... w_i • price of input i p • price of output • ...and on quantities... z_i • amount of input i q • amount of output • ...to build the objective function

OPTIMISATION: THE STANDARD APPROACH

• Choose q and z to maximise

$$\Pi := pq - \sum_{i=1}^{m} w_i z_i$$

...subject to the production constraint...

$$q \le \phi(\mathbf{z})$$

• ..and some obvious constraints:

$$q \ge 0$$
 $\mathbf{z} \ge \mathbf{0}$

• Could also write this as $\mathbf{z} \in Z(q)$

•You can't have negative output or negative inputs

A STANDARD OPTIMISATION METHOD • If ϕ is differentiable... • Set up a Lagrangean to take care of the constraints L(...) $\frac{\partial}{\partial z}L(\dots) = 0$ $\frac{\partial^2}{\partial z^2}L(\dots)$ • Write down the First Order Conditions (FOC) sufficiency • Check out second-order conditions

 $\mathbf{z}^* = \dots$

USES OF FOC

- * First order conditions are crucial
- * They are used over and over again in optimisation problems.
- For example:
 - Characterising efficiency.
 - Analysing "Black box" problems.
 - Describing the firm's reactions to its environment.
- More of that in the next presentation
- Right now a word of caution...

A WORD OF WARNING

* We've just argued that using FOC is useful.

• Use FOC to characterise solution

- + But sometimes it will yield ambiguous results.
- Sometimes it is undefined.
- Depends on the shape of the production function ϕ .
- You have to check whether it's appropriate to apply the Lagrangean method
- You may need to use other ways of finding an optimum.
- Examples coming up...

A WAY FORWARD

- * We could just go ahead and solve the maximisation problem
- * But it makes sense to break it down into two stages
 - The analysis is a bit easier
 - You see how to apply optimisation techniques
 - It gives some important concepts that we can re-use later
- The first stage is "minimise cost for a given output level"

 - If you have fixed the output level q......then profit max is equivalent to cost min.
- The second stage is "find the output level to maximise profits"
 - Follows the first stage naturally
 - Uses the results from the first stage.
- We deal with stage each in turn

* For a given set of input prices w... * ...the *isocost* is the set of points z in input space... * ...that yield a given level of factor cost. * These form a hyperplane (straight line)... * ...because of the simple expression for factor-cost structure.

PROPORTIES OF THE MINIMUM-COST SOLUTION

- * (a) The cost-minimising output under perfect competition is technically efficient.
- * (b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio w_j/w_i.
- * (c) If i is an input that is purchased, and j is an input that is not purchased then MRTS_{ij} will be less than or equal to the input price ratio w_i/w_i.

24

THE COST FUNCTION IS A USEFUL CONCEPT

- * Because it is a solution function...
- * ...it automatically has very nice properties.
- * These are true for *all* production functions.
- * And they carry over to applications other than the firm.
- ★ We'll investigate these graphically.

PROPERTIES OF THE MINIMUM-COST SOLUTION

- (a) The cost-minimising output under perfect competition is technically efficient.
- * (b) For any two inputs, i, j purchased in positive amounts MRTSij must equal the input price ratio w_j/w_i.
- ★ (c) If i is an input that is purchased, and j is an input that is not purchased then MRTS_{ij} will be less than or equal to the input price ratio w_j/w_i.

COST FUNCTION: 5 THINGS TO REMEMBER Non-decreasing in every input price. Increasing in at least one input price. Increasing in output. Concave in prices. Homogeneous of degree 1 in prices. Shephard's Lemma.

EXAMPLE (CONTINUED) Production function: $q \le z_1^{0.1} z_2^{0.4}$ Resulting cost function: $C(\mathbf{w}, q) = 1.649 w_1^{0.2} w_2^{0.8} q^2$ Profits: $pq - C(\mathbf{w}, q) = pq - A q^2$ where $A := 1.649 w_1^{0.2} w_2^{0.8}$ FOC: p - 2 Aq = 0Result: q = p / 2A. $= 0.3031 w_1^{-0.2} w_2^{-0.8} p$

X Key point: Profit maximisation can be viewed in two stages:
+ Stage 1: choose inputs to minimise cost
+ Stage 2: choose output to maximise profit
X What next? Use these to predict firm's reactions