

THE BASICS OF PRODUCTION...

* We set out some of the elements needed for an analysis of the firm.
+ Technical efficiency
Returns to scale
Convexity
Substitutability
Marginal products
\times This is in the context of a single-output firm...
\times...and assuming a competitive environment.
* First we need the building blocks of a model..

NOTATION

Quantities

z_{i}	-amount of input i
$\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$	-input vector
q	-amount of output

- Prices

$w_{i} \quad$-price of input i
$\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \quad$ Input-price vector
$p \quad$-price of output

MOTIVATION OF THE FIRM

\times Almost without exception we shall assume that the objective of the firm is to maximise profits: this assumes either that the firm is run by ownermanagers or that the firm correctly interprets shareholders' interests.
\times More formally, we define the expression for profits as

$$
\Pi=p q-\sum_{i=1}^{n} w_{i} z_{i}
$$

FEASIBLE PRODUCTION

as:	vector of inputs -Note that we use " \leq " and not " in the relation. Why? - Consider the meaning of ϕ

- ϕ gives the maximum amount of output that can be produced from a given list of inputs

TECHNICAL EFFICIENCY

- Case 1:
$q=\phi(\mathbf{z})$
- Case 2:
$q<\phi(\mathbf{z})$
- The case where production is technically efficient
-The case where production is (technically) inefficient

Intuition: if the combination (\mathbf{z}, q) is inefficient you can throw away some inputs and still produce the same output

THE FUNCTION ϕ

PROPERTIES OF THE PRODUCTION FUNCTION

\times Let us examine more closely the production function given in $q \leq \phi(\mathbf{z})$.
\times We will call a particular vector of inputs a technique.

* It is useful to introduce two concepts relating to the techniques available for a particular output level q:

THE INPUT REQUIREMENT SET

- Infeasible points.
${ }^{1}$ Feasible but inefficient
-Feasible and technically - Feasible
efficient

CASE 2: Z CONVEX (BUT NOT STRICTLY)

CASE 4: Z CONVEX BUT NOT SMOOTH

ISOQUANTS

- Pick a particular output level q
- Find the input requirement set $Z(q)$
- The isoquant is the boundary of Z :
$\{\mathbf{z}: \phi(\mathbf{z})=q\}$
- If the function ϕ is differentiable at \mathbf{z} then the marginal rate of technical substitution is the slope at $\mathbf{z}: \quad \phi_{j}(\mathbf{z})$
- Gives the rate at which you can trade off one output against another along the isoquant - to maintain a constant q.
- Think of the isoquant as an integral part of the set $Z(q) \ldots$ - Where appropriate, use
subscript to denote partial derivatives. So

HOMOTHETIC CONTOURS

* With homothetic contours, each isoquant appears like a photocopied enlargement; along any ray through the origin all the tangents have the same slope so that the MRTS depends only on the relative proportions of the inputs used in the production process.

CONTOURS OF A HOMOGENEOUS FUNCTION

\times If $\varphi($.$) satisfies the property in the above$ equation then it issaid to be homogeneous of degree r. Clearly the parameter r carries important information about the way output responds to a proportionate change in all inputs together:
x If $r>1$, for example then doubling more inputs will more than double output.

CONTOURS OF A HOMOGENEOUS FUNCTION

\times An important subcase of the family of homothetic functions is the homogeneous production functions, for which the map looks the same but where the labelling of the contours has to satisfy the following rule: for any scalar $\mathrm{t}>0$ and any input vector $\mathrm{z} \geq 0$:

$$
\phi(t z)=t^{r} \phi(z)
$$

where r is a positive scalar.

CONTOURS OF A HOMOGENEOUS FUNCTION

LET'S REBUILD FROM THE ISOQUANTS

* The isoquants form a contour map.
\times If we looked at the "parent" diagram, what would we see?
\times Consider returns to scale of the production function.
\times Examine effect of varying all inputs together: Focus on the expansion path. q plotted against proportionate increases in \mathbf{z}.
\times Take three standard cases: Increasing Returns to Scale Decreasing Returns to Scale Constant Returns to Scale
* Let's do this for 2 inputs, one output. .

KEY CONCEPTS

\times Technical efficiency

* Returns to scale
* Convexity
* MRTS
\times Marginal product

WHAT NEXT?

\times Introduce the market

* Optimisation problem of the firm
\times Method of solution
\times Solution concepts.

