MICROECONOMICS
Principles and Analysis

## CONSUMER: WELFARE

## USING CONSUMER THEORY

* Consumer analysis is not just a matter of consumers' reactions to prices.
* We pick up the effect of prices on incomes on attainable utility - consumer's welfare.
* This is useful in the design of economic policy, for example.
+ The tax structure?
* We can use a number of tools that have become standard in applied microeconomics
+ price indices?


## OVERVIEW..:



Interpreting the outcome of the optimisation in problem in welfare terms


## HOW TO MEASURE A PERSON'S "WELFARE"?

* We could use some concepts that we already have.
* Assume that people know what's best for them...
* ...So that the preference map can be used as a guide.
* We need to look more closely at the concept of "maximised utility"...
*...the indirect utility function again.


## THE TWO ASPECTS OF THE PROBLEM

- Primal: Max utility subject to the budget constraint
- Dual: Min cost subject to a utility constraint
- What effect on max-utility of an increase in budget?
- What effect on min-cost of an increase in target utility?


Interpretation of Lagrange multipliers

## INTERPRETING THE LAGRANGE MULTIPLIER (1)



- Differentiate with respect to $y$ : $V_{y}(\mathbf{p}, y)=\Sigma_{i} U_{i}\left(\mathbf{x}^{*}\right) D_{y}^{i}(\mathbf{p}, y) \quad$ functions $\left.x_{i}^{*}=D^{i}(\mathbf{p}, y)\right)$
$+\mu^{*}[1-\Sigma$ Vanishes because of FOC
- Rearrange:

$V_{y}(\mathbf{p}, y)=\sum_{i}\left[U_{i}\left(\mathbf{x}^{*}\right)-\mu^{*} p_{i}\right] D_{y}^{i}(\mathbf{p}, y)+\mu^{*}$
$V_{y}(\mathbf{p}, y)=\mu^{*}$
And (with little surprise) we will find that the same trick can be worked with the solution to the dual...


## INTERPRETING THE LAGRANGE MULTIPLIER (2)

The solution function for the dual: Once again, at the optimum,

$$
\begin{aligned}
C(\mathbf{p}, v)= & \sum_{i} p_{i} x_{i}^{*} \\
& =\sum_{i} p_{i} x_{i}^{*}-\lambda^{*}\left[U\left(\mathbf{x}^{*}\right)-v\right]
\end{aligned}
$$ either the constraint binds or the Lagrange multiplier is zero

Differentiate with respect to $v$ :
$C_{\nu}(\mathbf{p}, v)=\sum_{i} p_{i} H^{i}{ }_{v}(\mathbf{p}, v)$
(Make use of the conditional demand functions $\left.x_{i}^{*}=H^{i}(\mathbf{p}, v)\right)$

$$
-\lambda^{*}\left[\sum_{i} U_{i}\left(\mathbf{x}^{*}\right) \begin{array}{l}
\text { Vanishes because of } \\
\text { Foc } \lambda^{*} U_{i}\left(\mathbf{x}^{*}\right)=p_{i}
\end{array}\right.
$$

Rearrange:
$C_{v}(\mathbf{p}, v)=\Sigma_{i}\left[p_{i}-\lambda^{*} U_{i}\left(\mathbf{x}^{*}\right)\right] H_{u}^{i}(\mathbf{p}, v)+\lambda^{*}$
$C_{\nu}(\mathbf{p}, v)=\lambda^{*}$
Lagrange multiplier in the dual is the marginal cost of utility

Again we have an application of the general envelope theorem.

## A USEFUL CONNECTION



- Putting the two parts together...

$$
y=C(\mathbf{p}, V(\mathbf{p}, y))
$$

- Differentiat marginal cost in iterms
- Differentiate $\begin{aligned} & \text { marginal cost (in terms } \\ & \text { of utility) of a dollar of }\end{aligned}$ $1=C_{\nu}(\mathbf{p}$,


## Mapping utility into income

## Mapping income into utility

We can get fundamental results on the person's welfare...

$$
C_{v}(\mathbf{p}, v)=\frac{1}{V_{y}(\mathbf{p}, y)}
$$

$$
{ }_{c}(\mathbf{p}, v)=1
$$

## UTILITY AND INCOME: SUMMARY

* This gives us a framework for the evaluation of marginal changes of income...
* ...and an interpretation of the Lagrange multipliers
* The Lagrange multiplier on the income constraint (primal problem) is the marginal utility of income.

The Lagrange multiplier on the utility constraint (dual problem) is the marginal cost of utility.
$\times$ But does this give us all we need?

## UTILITY AND INCOME: LIMITATIONS

* This gives us some useful insights but is limited:

1. We have focused only on marginal effects

+ infinitesimal income changes.

2. We have dealt only with income

+ not the effect of changes in prices
$\times$ We need a general method of characterising the impact of budget changes:
+ valid for arbitrary price changes
+ easily interpretable
* For the essence of the problem re-examine the basic diagram.
OVERVIEW...
Exact money measures of welfare

| Consumer welfare |  |
| :--- | :--- |
|  | Utility and <br> income |


| CV and EV |
| :--- |
| Consumer's |
| surplus |

## THE PROBLEM...



## APPROACHES TO VALUING UTILITY CHANGE



A more productive idea:
Use income not utility as a measuring rod
To do the transformation we use the V function
We can do this in (at least) two ways...

## STORY NUMBER 1

* Suppose $p$ is the original price vector and $\mathrm{p}^{\prime}$ is vector after good 1 becomes cheaper.
* This causes utility to rise from $v$ to $v^{\prime}$.
$+v=V(p, y)$
$+v^{\prime}=V\left(p^{\prime}, y\right)$
* Express this rise in money terms?
+ What hypothetical change in income would bring the person back to the starting point?
+ (and is this the right question to ask...?)
$\times$ Gives us a standard definition....


## IN THIS VERSION OF THE STORY WE GET THE COMPENSATING VARIATION

$$
\begin{array}{lr}
v=V(\mathbf{p}, y) & \begin{array}{r}
\text { the original utility level at } \\
\text { prices } \mathbf{p} \text { and income } y
\end{array} \\
v=V\left(\mathbf{p}^{\prime}, y-\mathbf{C V}\right) \quad \begin{array}{l}
\text { the original utility level } \\
\text { restored at new prices } \mathbf{p}^{\prime}
\end{array}
\end{array}
$$

- The amount CV is just sufficient to "undo" the effect of going from $\mathbf{p}$ to $\boldsymbol{p}$ '.


## THE COMPENSATING VARIATION



## CV - ASSESSMENT

* The CV gives us a clear and interpretable measure of welfare change.
* It values the change in terms of money (or goods).
* But the approach is based on one specific reference point.
* The assumption that the "right" thing to do is to use the original utility level.
There are alternative assumptions we might reasonably make. For instance...


## HERE'S STORY NUMBER 2

* Again suppose:
+p is the original price vector
$+p^{\prime}$ is the price vector after good 1 becomes cheaper.
* This again causes utility to rise from $v$ to $v^{\prime}$.
$\times$ But now, ask ourselves a different question:
+ Suppose the price fall had never happened
+ What hypothetical change in income would have been needed ...
+ ...to bring the person to the new utility level?


## IN THIS VERSION OF THE STORY WE GET THE EQUIVALENT VARIATION

$$
)^{\prime}=V\left(0^{1}, y\right)
$$

the utility level at new prices $\mathbf{p}^{\prime}$ and income $y$
$v^{\prime}=V(\mathbf{p}, y+\mathrm{EV})$
the new utility level reached at original prices $\mathbf{p}$

- The amount EV is just sufficient to "mimic" the effect of going from $\boldsymbol{p}$ to $\boldsymbol{p}$ '.


## THE EQUIVALENT VARIATION



## CV AND EV...

* Both definitions have used the indirect utility function.
+ But this may not be the most intuitive approach
+ So look for another standard tool..
* As we have seen there is a close relationship between the functions $V$ and $C$.
* So we can reinterpret CV and EV using C.

The result will be a welfare measure

+ the change in cost of hitting a welfare level.
remember: cost decreases mean welfare increases.


## WELFARE CHANGE AS $-\Delta$ (COST)

- Compens $\underbrace{\begin{array}{l}\text { Prices } \\ \text { before }\end{array}}\}$ riation as $-\Delta\left(\left[\begin{array}{l}\begin{array}{l}\text { Reference } \\ \text { utility level }\end{array} \\ \hline\end{array}\right.\right.$
$\operatorname{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C(\mathbf{p}, v)-C\left(\mathbf{p}^{,}, v\right) \quad(-)$ change in cost of hitting utility welfare increase.
- Equivalent Variation as $-\Delta$ (cost):

$$
\mathrm{EV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C\left(\mathbf{p}, v^{\prime}\right)-C\left(\mathbf{p}^{\prime}, v^{\prime}\right)
$$

$(-)$ change in cost of hitting utility level $v^{\prime}$. If positive we have a welfare increase.

- Using the above definitions we also have

$$
\begin{aligned}
& \mathrm{CV}\left(\mathbf{p}^{\prime} \rightarrow \mathbf{p}\right)=C\left(\mathbf{p}^{\prime}, v^{\prime}\right)-C\left(\mathbf{p}, v^{\prime}\right) \\
& \quad=-\mathrm{EV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)
\end{aligned}
$$

Looking at welfare change in the reverse direction, starting at $\mathbf{p}^{\prime}$ and moving to $\mathbf{p}$.

## WELFARE MEASURES APPLIED.

* The concepts we have developed are regularly put to work in practice.
* Applied to issues such as:
+ Consumer welfare indices
+ Price indices
+ Cost-Benefit Analysis
* Often this is done using some (acceptable?) approximations...


## COST-OF-LIVING INDICES

- An index based on CV:

- An index based on EV:

$$
I_{\mathrm{EV}}=\frac{C\left(\mathbf{p}^{\prime}, v^{\prime}\right)}{C\left(\mathbf{p}, v^{\prime}\right)}
$$

- An approximation:

$$
\begin{aligned}
& I_{\mathrm{P}}=\frac{\Sigma_{i} p_{i}^{\prime} x_{i}^{\prime}}{\Sigma_{i} p_{i} x_{i}^{\prime}} \begin{array}{l}
\geq(\mathrm{p}, \text {, thatrat's the conange in cost of buying } \\
\text { This is the Paastion bundle } \mathrm{x}^{\prime} \text { ? }
\end{array} \\
& \leq I_{\mathrm{EV}} \text { 。 }
\end{aligned}
$$

What's the change in cost of hitting the new welfare level $v^{\prime}$ ?

$$
=C\left(\mathbf{p}^{\prime}, v^{\prime}\right)
$$

## OVERVIEW..:

Consumer welfare

Utility and income
A simple, practical approach?

CV and EV

Consumer's
surplus

## ANOTHER Prices before

- Use the cost-differy cee detinis after $\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=C(\mathbf{p}, v)-C\left(\mathbf{p}^{\prime}, v\right)$
- Assume that the price of good 1 changes from $p_{1}$ to $p_{1}{ }^{\prime}$ while other prices remain unchanged. Then we can rewrite the above as:

$$
\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=\int_{p_{1}}^{p_{1}} C_{1}(\mathbf{p}
$$

Hicksian (compensated) demand for good 1

- Further rewrite as:

$$
\mathrm{CV}\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=\int_{p_{1}^{\prime}}^{p_{1}} H^{1}(\mathbf{p}, v) \mathrm{d} p_{1}
$$

(-) change in cost of hitting utility level $v$. If positive we have a welfare increase.
(Just using the definition of a definite integral)

So CV can be seen as an area under the compensated demand curve

## COMPENSATED DEMAND AND THE

## VALUE OF A PRICE FALL



## COMPENSATED DEMAND AND THE VALUE OF A PRICE FALL (2)



## ORDINARY DEMAND AND THE VALUE OF A PRICE FALL



## THREE WAYS OF MEASURING THE BENEFITS OF A PRICE FALL



- Summary of the three approaches.
- Conditions for normal goods
-So, for normal goods: $\mathbf{C V} \leq \mathbf{C S} \leq \mathbf{E V}$
- For inferior goods: $\mathbf{C V}>\mathbf{C S}>\mathbf{E V}$


## SUMMARY: KEY CONCEPTS

* Interpretation of Lagrange multiplier
* Compensating variation
* Equivalent variation
+ CV and EV are measured in monetary units.
+ In all cases: $\mathrm{CV}\left(\mathrm{p} \rightarrow \mathrm{p}^{\prime}\right)=-\mathrm{EV}\left(\mathrm{p}^{\prime} \rightarrow \mathrm{p}\right)$.
* Consumer's surplus
+ The CS is a convenient approximation
+ For normal goods: CV $\leq \mathrm{CS} \leq \mathrm{EV}$.
+ For inferior goods: CV > CS > EV.

