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Preface

PREFACE

This book is designed to help students learn how to analyze and interpret research data with
intermediate statistics. It is intended to be a supplemental text in an intermediate statistics course
in the behavioral sciences or education and it can be used in conjunction with any mainstream
text. We have found that the book makes SPSS for windows easy to use so that it is not necessary
to have a formal, instructional computer lab; you should be able to learn how to use SPSS on your
own with this book. Access to the SPSS program and some familiarity with Windows is all that is
required. Although SPSS for Windows is quite easy to use, there is such a wide variety of
options and statistics that knowing which ones to use and how to interpret the printouts can be
difficult, so this book is intended to help with these challenges.

SPSS 12 and Earlier Versions

We use SPSS 12 for Windows in this book, but, except for enhanced tables and graphics, there
are only minor differences from versions 10 and 11. In fact, as far as the procedures
demonstrated, in this book there are only a few major differences between versions 7 and 12. We
also expect future Windows versions to be similar. You should not have much difficulty if you
have access to SPSS versions 7 through 9. Our students have used this book, or earlier editions of
it, with all of these versions of SPSS; both the procedures and outputs are quite similar.

Goals of This Book

This book demonstrates how to produce a variety of statistics that are usually included in
intermediate statistics courses, plus some (e.g., reliability measures) that are useful for doing
research. Our goal is to describe the use and interpretation of these statistics as much as possible
in nontechnical, jargon-free language.

Helping you learn how to choose the appropriate statistics, interpret the outputs, and
develop skills in writing about the meaning of the results are the main goals of this book.
Thus, we have included material on:

1) How the appropriate choice of a statistic is based on the design of the research.

2) How to use SPSS to answer research questions.

3) How to interpret SPSS outputs.

4) How to write about the outputs in the Results section of a paper.

This information will help you develop skills that cover a range of steps in the research process:
design, data collection, data entry, data analysis, interpretation of outputs, and writing results. The
modified high school and beyond data set (HSB) used in this book is similar to one you might
have for a thesis, dissertation, or research project. Therefore, we think it can serve as a model for
your analysis. The compact disk (CD) packaged with the book contains the HSB data file and
several other data sets used for the extra problems at the end of each chapter. However, you will
need to have access to or purchase the SPSS program. Partially to make the text more
readable, we have chosen not to cite many references in the text; however, we have provided a
short bibliography of some of the books and articles that we have found useful. We assume that
most students will use this book in conjunction with a class that has a textbook; it will help you to
read more about each statistic before doing the assignments. Our “For Further Reading” list
should also help.

Our companion book, Morgan, Leech, Gloeckner, and Barrett (2004), SPSS for Introductory

Statistics: Use and Interpretation, also published by Lawrence Erlbaum Associates, is on the “For
Further Reading” list at the end of this book. We think that you will find it useful if you need to

vii
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review how to do introductory statistics including the ones such as ¢ tests, chi-square, and
correlation.

Special Features

Several user friendly features of this book include:

1. The key SPSS windows that you see when performing the statistical analyses. This has been
helpful to “visual learners.”

2. The complete outputs for the analyses that we have done so you can see what you will get,
after some editing in SPSS to make the outputs fit better on the pages.

3. Callout boxes on the outputs that point out parts of the output to focus on and indicate what
they mean.

4. For each output, a boxed interpretation section that will help you understand the output.

5. Specially developed flow charts and tables to help you select an appropriate inferential
statistic and tell you how to interpret statistical significance and effect sizes (in Chapter 3).
This chapter also provides an extended example of how to identify and write a research
problem, several research questions, and a results paragraph for a 7 test and correlation.

6. For the statistics in chapters 4-10, an example of how to write about the output and make a
table for a thesis, dissertation or research paper.

- 7. Interpretation questions that stimulate you to think about the information in the chapter and
outputs.

8. Several extra SPSS problems at the end of each chapter for you to run with SPSS and
discuss.

9. A Quick Reference Guide to SPSS (Appendix A) which provides information about many
SPSS commands not discussed in the chapters.

10. Information (in Appendix B) on how to get started with SPSS.

11. A step by step guide to (Appendix C) making APA tables with MsWord.

12. Answers to the odd numbered interpretation questions (Appendix D).

13. Several data sets on a CD. These realistic data sets are packaged with the book to provide
you with data to be used to solve the chapter problems and the extra problems at the end of
each chapter.

Overview of the Chapters

Our approach in this book is to present how to use and interpret SPSS in the context of
proceeding as if the HSB data were the actual data from your research project. However, before
starting the SPSS assignments, we have three introductory chapters. The first chapter is an
introduction and review of research design and how it would apply to analyzing the HSB data. In
addition chapter includes a review of measurement and descriptive statistics. Chapter 2 discusses
rules for coding data, exploratory data analysis (EDA), and assumptions. Much of what is done in
this chapter involves preliminary analyses to get ready to answer the research questions that you
might state in a report.

Chapter 3 provides a brief overview of research designs (between groups and within subjects).
This chapter provides flowcharts and tables useful for selecting an appropriate statistic. Also
included is an overview of how to interpret and write about the results of a basic inferential
statistic. This section includes not only testing for statistical significance but also a discussion of
effect size measures and guidelines for interpreting them.

Chapters 4-10 are designed to answer several research questions. Solving the problems in these

chapters should give you a good idea of some of the intermediate statistics that can be computed
with SPSS. Hopefully, seeing how the research questions and design lead naturally to the choice
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of statistics will become apparent after using this book. In addition, it is our hope that interpreting
what you get back from the computer will become more clear after doing these assignments,
studying the outputs, answering the interpretation questions, and doing the extra SPSS problems.

Our Approach to Research Questions, Measurement, and Selection of Statistics

In Chapters 1 and 3, our approach is somewhat nontraditional because we have found that
students have a great deal of difficulty with some aspects of research and statistics but not others.
Most can learn formulas and “crunch” the numbers quite easily and accurately with a calculator
or with a computer. However, many have trouble knowing what statistics to use and how to
interpret the results. They do not seem to have a “big picture” or see how research design and
measurement influence data analysis. Part of the problem is inconsistent terminology. For these
reasons, we have tried to present a semantically consistent and coherent picture of how research
design leads to three basic kinds of research questions (difference, associational, and descriptive)
which, in turn, lead to three kinds or groups of statistics with the same names. We realize that
these and other attempts to develop and utilize a consistent framework are both nontraditional and
somewhat of an oversimplification. However, we think the framework and consistency pay off in
terms of student understanding and ability to actually use statistics to answer their research
questions. Instructors who are not persuaded that this framework is useful can skip Chapters 1
and 3 and still have a book that helps their students use and interpret SPSS.

Major Changes and Additions to This Edition

The following changes and additions are based on our experiences using the book with students,

feedback from reviewers and other users, and the revisions in policy and best practice specified

by the APA Task Force on Statistical Inference (1999) and the 5™ Edition of the APA Publication

Manual (2001).

1. Effect size. We discuss effect size in addition to statistical significance in the interpretation
sections to be consistent with the requirements of the revistd APA manual. Because SPSS
does not provide effect sizes for all the demonstrated statistics, we often show how to
estimate or compute them by hand.

2. Writing about outputs. We include examples of how to write about and make APA type
tables from the information in SPSS outputs. We have found the step from interpretation to
writing quite difficult for students so we now put more emphasis on writing.

3. Assumptions. When each statistic is introduced, we have a brief section about its assumptions
and when it is appropriate to select that statistic for the problem or question at hand.

4. Testing assumptions. We have expanded emphasis on exploratory data analysis (EDA) and
how to test assumptions.

5. Quick Reference Guide for SPSS procedures. We have condensed several of the appendixes
of the first edition into the alphabetically organized Appendix A, which is somewhat like a
glossary. It includes how to do basic statistics that are not included in this text, and
procedures like print and save, which are tasks you will use several times and/or may already
know. It also includes brief directions of how to do things like import a file from Excel or
export to PowerPoint, do split files, and make 3-D figures.

6. Extra SPSS problems. We have developed additional extra problems, to give you more
practice in running and interpreting SPSS.

7. Reliability assessment. We include a chapter on ways of assessing reliability including
Cronbach’s alpha, Cohen’s kappa, and correlation. More emphasis on reliability and testing
assumptions is consistent with our strategy of presenting SPSS procedures that students
would use in an actual research project.

8. Principal Components Analysis and Exploratory Factor Analysis. We have added a section
on exploratory factor analysis to increase students’ choices when using these types of
analyses.
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9. Interpretation questions. We have added more interpretation questions to each chapter
because we have found them useful for student understanding. We include the answers to the
odd numbered questions in Appendix C for self-study.

Bullets, Arrows, Bold and Italics
To help you do the problems with SPSS, we have developed some conventions. We use bullets to
indicate actions in SPSS Windows that you will take. For example:

Highlight gender and math achievement.

Click on the arrow to move the variables into the right hand box.
Click on Options to get Fig 2.16.

Check Mean, Std Deviation, Minimum, and Maximum.

Click on Continue.

Note that the words in italics are variable names and words in bold are words that you will see in
the SPSS Windows and utilize to produce the desired output. In the text they are spelled and
capitalized as you see them in the Windows. Bold is also used to identify key terms when they are
introduced, defined, or important to understanding.

The words you will see in the pull down menus are given in bold with arrows between them. For
example:

e Select Analyze => Descriptive Statistics => Frequencies
(This means pull down the Analyze menu, then slide your cursor down to Descriptive Statistics
and over to Frequencies and click.)

Occasionally, we have used underlines to emphasize critical points or commands.
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CHAPTER 1
Introduction

This chapter will review important information about measurement and descriptive statistics and provide
an overview of the expanded high school and beyond (HSB) data set, which will be used in this chapter
and throughout the book to demonstrate the use and interpretation of the several statistics that are
presented. First, we provide a brief review of some key terms, as we will use them in this book.

Variables

Variables are key elements in research. A variable is defined as a characteristic of the participants or
situation for a given study that has different values in that study. A variable must be able to vary or have
different values or levels.! For example, gender is a variable because it has two levels, female or male.
Age is a variable that has a large number of values. Type of treatment/intervention (or type of curriculum)
is a variable if there is more than one treatment or a treatment and a control group. Number of days to
learn something or to recover from an ailment are common measures of the effect of a treatment and,
thus, are also variables. Similarly, amount of mathematics knowledge is a variable because it can vary
from none to a lot. If a concept has only one value in a particular study, it is not a variable; it is a
constant. Thus, ethnic group is not a variable if all participants are European American. Gender is not a
variable if all participants in a study are female.

In quantitative research, variables are defined operationally and are commonly divided into
independent variables (active or attribute), dependent variables, and extraneous variables. Each of
these topics will be dealt with briefly in the following sections.

Operational definitions of variables. An operational definition describes or defines a variable in terms of
the operations or techniques used to make it happen or measure it. When quantitative researchers

describe the variables in their study, they specify what they mean by demonstrating how they measured
the variable. Demographic variables like age, gender, or ethnic group are usually measured simply by
asking the participant to choose the appropriate category from a list. Types of treatment (or curriculum)
are usually operationally defined much more extensively by describing what was done during the
treatment or new curriculum. Likewise, abstract concepts like mathematics knowledge, self-concept, or
mathematics anxiety need to be defined operationally by spelling out in some detail how they were
measured in a particular study. To do this, the investigator may provide sample questions, append the
actual instrument, or provide a reference where more information can be found.

Independent Variables
In this book, we will refer to two types of independent variables: active and attribute. It is important to
distinguish between these types when we discuss the results of a study.

! To help you, we have identified the SPSS variable names, labels, and values using italics (e.g., gender and male).
Sometimes italics are also used to emphasize a word. We have put in bold the terms used in the SPSS windows and
outputs (e.g., SPSS Data Editor) and other key terms when they are introduced, defined, or are important to
understanding. Underlines are used to emphasize critical points. Bullets precede instructions about SPSS actions
(e.g., click, highlight).
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Active or manipulated independent variables. An active independent variable is a variable, such as a
workshop, new curriculum, or other intervention, one level of which is given to a group of participants,
within a specified period of time during the study. For example, a researcher might investigate a new
kind of therapy compared to the traditional treatment. A second example might be to study the effect of a
new teaching method, such as cooperative learning, on student performance. In these two examples, the
variable of interest was something that was given to the participants. Thus, active independent variables
are given to the participants in the study but are not necessarily given or manipulated by the
experimenter. They may be given by a clinic, school, or someone other than the investigator, but from the
participants’ point of view, the situation was manipulated. Using this definition, the treatment is usually
given affer the study was planned so that there could have been (or preferably was) a pretest. Other
writers have similar but, perhaps, slightly different definitions of active independent variables.
Randomized experimental and quasi-experimental studies have an active independent variable. An
active independent variable is a necessary but not sufficient condition to make cause and effect
conclusions; the clearest causal conclusions can be drawn when participants are assigned randomly to
conditions that are manipulated by the experimenter.

Attribute or measured independent variables. A variable that cannot be manipulated, yet is a major
focus of the study, can be called an attribute independent variable. In other words, the values of the
independent variable are preexisting attributes of the persons or their ongoing environment that are not
systematically changed during the study. For example, education, gender, age, ethnic group, IQ, and self-
esteem are attribute variables that could be used as attribute independent variables. Studies with only
attribute independent variables are called nonexperimental studies.

In keeping with SPSS, but unlike authors of some research methods books, we do not restrict the term
independent variable to those variables that are manipulated or active. We define an independent variable
more broadly to include any predictors, antecedents, or presumed causes or influences under
investigation in the study. Attributes of the participants, as well as active independent variables, fit
within this definition. For the social sciences and education, attribute independent variables are
especially important. Type of disability or level of disability may be the major focus of a study.
Disability certainly qualifies as a variable since it can take on different values even though they are not
given during the study. For example, cerebral palsy is different from Down syndrome, which is different
from spina bifida, yet all are disabilities. Also, there are different levels of the same disability. People
already have defining characteristics or attributes that place them into one of two or more categories. The
different disabilities are already present when we begin our study. Thus, we might also be interested in
studying a class of variables that are not given or manipulated during the study, even by other persons,
schools, or clinics.

Other labels for the independent variable. SPSS uses a variety of terms in addition to independent
variable; for example, factor (chapters 8, 9, and 10), and covariates (chapter 7). In other cases, (chapters
4 and 5) SPSS and statisticians do not make a distinction between the independent and dependent
variable; they just label them variables. For example, there is no independent variable for a correlation
or chi-square. However, even for chi-square and correlation, we think it is sometimes educationally
useful to think of one variable as the predictor (independent variable) and the other as the outcome
(dependent variable), as is the case in regression.

Values of the independent variable. SPSS uses the term values to describe the several options or values
of a variable. These values are not necessarily ordered, and several other terms, categories, levels,
groups, or samples are sometimes used interchangeably with the term values, especially in statistics
books. Suppose that an investigator is performing a study to investigate the effect of a treatment. One
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group of participants is assigned to the treatment group. A second group does not receive the treatment.
The study could be conceptualized as having one independent variable (treatment type), with two values
or levels (treatment and no treatment). The independent variable in this example would be classified as
an active independent variable. Now, suppose instead, that the investigator was interested primarily in
comparing two different treatments but decided to include a third no-treatment group as a control group
in the study. The study still would be conceptualized as having one active independent variable
(treatment type), but with three values or levels (the two treatment conditions and the control condition).
As an additional example, consider gender, which is an attribute independent variable with two values, as
male and female.

Note that in SPSS each variable is given a variable label; moreover, the values, which are often
categories, have value labels (e.g., male and female). Each value or level is assigned a number used by
SPSS to compute statistics. It is especially important to know the value labels when the variable is
nominal (i.e., when the values of the variable are just names and, thus, are not ordered).

Dependent Variables

The dependent variable is assumed to measure or assess the effect of the independent variable. It is
thought of as the presumed outcome or criterion. Dependent variables are often test scores, ratings on
questionnaires, readings from instruments (electrocardiogram, galvanic skin response, etc.), or measures
of physical performance. When we discuss measurement, we are usually referring to the dependent
variable. Dependent variables, like independent variables must have at least two values; most dependent

variables have many values. varying from low to high.

SPSS also uses a number of other terms in addition to dependent variable. Dependent list is used in
cases where you can do the same statistic several times, for a list of dependent variables (e.g., in chapter
8 with one-way ANOVA). Grouping variable is used in chapter 7 for discriminant analysis.

Extraneous Variables

These are variables (also called nuisance variables or, in some designs, covariates) that are not of primary
interest in a particular study but could influence the dependent variable. Environmental factors (e.g.,
temperature or distractions), time of day, and characteristics of the experimenter, teacher, or therapist are
some possible extraneous variables that need to be controlled. SPSS does not use the term extraneous
variable. However, sometimes such variables are controlled using statistics that are available in SPSS.

Research Hypotheses and Research Questions

Research hypotheses are predictive statements about the relationship between variables. Research
questions are similar to hypotheses, except that they do not entail specific predictions and are phrased in
question format. For example, one might have the following research question: “Is there a difference in
students” scores on a standardized test if they took two tests in one day versus taking only one test on
each of two days?” A hypothesis regarding the same issue might be: “Students who take only one test
per day will score better on standardized tests than will students who take two tests in one day.”

We divide research questions into three broad types: difference, associational, and descriptive as shown
in the middle of Fig 1.1. The figure also shows the general and specific purposes and the general types of
statistics for each of these three types of research question.

Difference research questions. For these questions, we compare scores (on the dependent variable) of
two or more different groups, each of which is composed of individuals with one of the values or levels
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on the independent variable. This type of question attempts to demonstrate that groups are not the same
on the dependent variable.

Associational research questions are those in which two or more variables are associated or related. This
approach usually involves an attempt to see how two or more variables covary (as one grows larger, the
other grows larger or smaller) or how one or more variables enables one to predict another variable.

Descriptive research questions are not answered with inferential statistics. They merely describe or
summarize data, without trying to generalize to a larger population of individuals.

Figure 1.1 shows that both difference and associational questions or hypotheses are similar in that they
explore the relationships between variables.” Note that difference and associational questions differ in
specific purpose and the kinds of statistics they use to answer the question.

General Purpose Exployimeablcs Description (Only)

Specific Purpose Compare Groups Find Strength of Summarize Data
Associations, Relate
l Variables
Type of Question/Hypothesis Difference Associational Descriptive
General Type of Statistic Difference Inferential Associational Descriptive Statistics
Statistics (e.g., f test, Inferential Statistics (e.g., mean,
ANOVA) (e.g., correlation, percentage, range)

multiple regression)

Fig. 1.1. Schematic diagram showing how the purpose and type of research question correspond to
the general type of statistic used in a study.

*This similarity is in agreement with the statement by statisticians that all common parametric inferential statistics are
relational. We use the term associational for the second type of research question rather than relational or
correlational to distinguish it from the general purpose of both difference and associational questions/hypotheses,
which is to study relationships. Also we wanted to distinguish between correlation, as a specific statistical technique,
and the broader type of associational question and that group of statistics.

4
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Difference versus associational inferential statistics. We think it is educationally useful to divide
inferential statistics into two types, corresponding to difference and associational hypotheses or
questions.’ Difference inferential statistics (e.g., 7 test or analysis of variance) are used for approaches
that test for differences between groups. Associational inferential statistics test for associations or
relationships between variables and use, for example, correlation or multiple regression analysis. We will
utilize this contrast between difference and associational inferential statistics in chapter 3 and later in this
book.

Remember that research questions are similar to hypotheses, but they are stated in question format. We
think it is advisable to use the question format when one does not have a clear directional prediction and
for the descriptive approach. As implied by Fig. 1.1, it is acceptable to phrase any research question that
involves two variables as whether or not there is a relationship between the variables (e.g., “Is there a
relationship between gender and math achievement?” or “Is there a relationship between anxiety and
GPA?”). However, we think that phrasing the question as a difference or association is desirable because
it helps one choose an appropriate statistic and interpret the result.

Complex Research Questions

Most research questions posed in this book involve more than two variables at a time. We call such
questions and the appropriate statistics complex. Some of these statistics are called multivariate in other
texts, but there is not a consistent definition of multivariate in the literature. We provide examples of how
to write complex research questions in the chapter pertaining to each complex statistic.

In a factorial ANOVA, there are two (or more) independent variables and one dependent variable. We
will see, in chapter 8, that although you do one factorial ANOVA, there are actually three (or more)
research questions. This set of three questions can be considered a complex difference question because
the study has two independent variables. Likewise, complex associational questions are used in studies
with more than one independent variable considered together.

Table 1.1 expands our overview of research questions to include both basic and complex questions of
each of the three types: descriptive, difference, and associational. The table also includes references to
other chapters in this book and examples of the types of statistics that we include under each of the six
types of questions.

A Sample Research Problem:
The Modified High School and Beyond (HSB) Study

The SPSS file name of the data set used with this book is hsbdataB.sav; it stands for high school and
beyond data. It is based on a national sample of data from more than 28,000 high school students. The
current data set is a sample of 75 students drawn randomly from the larger population. The data that we
have for this sample includes school outcomes such as grades and the number of mathematics courses of
different types that the students took in high school. Also, there are several kinds of standardized test
data and demographic data such as gender and mother’s and father’s education. To provide an example

? We realize that all parametric inferential statistics are relational, so this dichotomy of using one type of data
analysis procedure to test for differences (when there are a few values or levels of the independent variables) and
another type of data analysis procedure to test for associations (when there are continuous independent variables) is
somewhat artificial. Both continuous and categorical independent variables can be used in a general linear model
approach to data analysis. However, we think that the distinction is useful because most researchers utilize the above
dichotomy in selecting statistics for data analysis.
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of questionnaire data, we have included 14 questions about mathematics attitudes. These data were
developed for this book and, thus, are not really the math attitudes of the 75 students in this sample;
however, they are based on real data gathered by one of the authors to study motivation. Also, we made
up data for religion, ethnic group, and SAT-math, which are somewhat realistic overall. These inclusions
enable us to do some additional statistical analyses.

Table 1.1. Summary of Six Types of Research Questions and Appropriate Statistics

Type of Research Question - Number of Variables Statistics (Example)
1) Basic Descriptive Questions — One variable Table 1.5, ch. 1
(mean, standard deviation, frequency
distribution)
2) Complex Descriptive Questions — Two or more Ch.2,4,5
variables, but no use of inferential statistics (mean & SD for one variable after

forming groups based on another
variable, factor analysis, measures of
reliability)

3) Basic/Single Factor Difference Questions — One Table 3.1, QRG
independent and one dependent variable. Independent (1 test, one-way ANOVA)

variable usually has a few levels (ordered or not).

4) Complex/Multi Factor Difference Question — Three or

more variables. Usually two or a few independent Table 3.3,ch. 8,9, 10
variables and one (or more) dependent variables. (factorial ANOVA, MANOVA)
5) Basic Associational Questions — One independent Table 3.2, QRG

variable and one dependent variable. Usually at least five (correlation tested for significance)
ordered levels for both variables. Often they are
continuous.

6) Complex/Multivariate Associational Questions — Two  Table 3.4,ch. 6,7
or more independent variables and one dependent (multiple or logistic regression)
variable. Often five or more ordered levels for all
variables but some or all can be dichotomous variables.

Note: Many studies have more than one dependent variable, It is common to treat each one separately (i.e., to do several ¢ tests, ANOVAs,
correlations, or multiple regressions). However, there are complex statistics (e.g., MANOVA and canonical correlation) used to treat several
dependent variables together in one analysis. QRG = Quick Reference Guide, see Appendix A.

The Research Problem

Imagine that you are interested in the general problem of what factors seem to influence mathematics
achievement at the end of high school. You might have some hunches or hypotheses about such factors
based on your experience and your reading of the research and popular literature. Some factors that might
influence mathematics achievement are commonly called demographics: for example, gender, ethnic
group, and mother’s and father's education. A probable influence would be the mathematics courses that
the student has taken. We might speculate that grades in mathematics and in other subjects could have an
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impact on math achievement." However, other variables, such as students’ IQs or parents’
encouragement and assistance, could be the actual causes of both high grades and math achievement.
Such variables could influence what courses one took, the grades one received, and might be correlates of
the demographic variables. We might wonder how spatial performance scores, such as pattern or mosaic
pattern test scores and visualization scores might enable a more complete understanding of the problem,
and whether these skills seem to be influenced by the same factors as math achievement.

The HSB Variables

Before we state the research problem and questions in more formal ways, we need to step back and
discuss the types of variables and the approaches that might be used to study the above problem. We
need to identify the independent/antecedent (presumed causes) variables, the dependent/outcome
variable(s), and any extraneous variables.

The primary dependent variable. Given the above research problem which focuses on mathematics
achievement at the end of the senior year, the primary dependent variable is math achievement.

Independent and extraneous variables. The number of math courses taken up to that point is best
considered to be an antecedent or independent variable in this study. What about father's and mother's
education and gender? How would you classify gender and parents’ education in terms of the type of
variable? What about grades? Like the number of math courses, these variables would usually be
considered independent variables because they occurred before the math achievement test. However,
some of these variables, specifically parental education, might be viewed as extraneous variables that
need to be “controlled.” Visualization and mosaic pattern test scores probably could be either
independent or dependent variables depending upon the specific research question, because they were
measured at approximately the same time as math achievement, at the end of the senior year. Note that
student’s class is a constant and is not a variable in this study because all the participants are high school
seniors (i.e., it does not vary; it is the population of interest).

Types of independent variables. As we discussed previously, independent variables can be active (given
to the participant during the study or manipulated by the investigator) or attributes of the participants or
their environments. Are there any active independent variables in this study? No! There is no
intervention, new curriculum, or similar treatment. All the independent variables, then, are attribute
variables because they are attributes or characteristics of these high school students. Given that all the
independent variables are attributes, the research approach cannot be experimental. This means that we
will not be able to draw definite conclusions about cause and effect (i.e., we will find out what is related
to math achievement, but we will not know for sure what causes or influences math achievement).

Now we will examine the hsbdataB.sav that you will use to study this complex research problem. We
have provided a CD that contains the data for each of the 75 participants on 45 variables. The variables in
the hsbdataB.sav file have already been labeled (see Fig 1.2) and entered (see Fig 1.3) to enable you to
get started on analyses quickly. The CD in this book contains several SPSS data files for you to use, but
it does not include the actual SPSS program, which you will have to have access to in order to do the
assignments.

The SPSS Variable View
Figure 1.2 is a piece of what SPSS calls the variable view in the SPSS Data Editor for the hsbdataB.sav
file. Figure 1.2 shows information about each of the first 18 variables. When you open this file and click

* We have decided to use the short version of mathematics (i.e., math) throughout the book to save space and because
it is used in common language.
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on Variable View at the bottom left corner of the screen, this is what you will see. What is included in
the variable view screen is described in more detail in Appendix B, Getting Started. Here, focus on the
Name, Label, Values, and Missing columns. Name is a short name for each variable (e.g., faed or algl). 5
Label is a longer label for the variable (e.g., father s education or algebra 1 in h.s.). The Values column
contains the value labels, but you can see only the label for one value at a time (e.g., 0=male). That is,
you cannot see that 1=female unless you click on the row for that variable under the value column. The
Missing column indicates whether there are any special, user-identified missing values. None just means
that there are no special missing values, just the usual SPSS system missing value, which is a blank.

hsbdata - SPSS Data [dilor

Fe Edt View Dota Trersform Andyds Grephs (Rtles Addons Window Help

SRS B || mlb| & Ek @@ Yo

! Nams Typa Width | Decimals T Label I Values l Missing l Ca}lumT Align Maasure 1
1 jgender Numeric 1 0 ]&endar {0, male}... lNans 8 |Right Nominal
2|faed N d 2 0 father's educatif2, < h.s. grad}|None 8 |Right Ordinal
3| maed 2 0 mother's educ [{2, < hs.}.. |None ] Right __ |Ordinal
4]alg! Numeric 1 0 algebra 1 in h. |{0, not taken)..|None 8 |Right Nominal
5lalg2 N i 1 0 algebra 2 in h. ({0, not taken).. None 8 |Right Nominal
“Blgeo 1 0 9 try in h. [{0, not taken)..[None & Right Nominal
7|trg 1 0 trigonometry ini{0, not taken)..None I8 Right Nominal
Blcalc 1 0 |calculus in h.s {0, not taken)..None 8 Right {Nominal
9|mathgr  [Numeric 1 0 math grades  |{0, less A-B} .|None 8 [Right [N ]
10{grades Numaric 1 0 grades in h.s. |{1, less than D|None 8 |Right |Ordinal
11|mathach _ |Numeric 4 2 math achievery (8.3, low). . |None |8 Right__ |Scals
12| mosaic Numeric 3 1 mosaic, patter {-4, Low}.. None 8 Right |Scale
13]visual Numeric 4 2 visualization te|(-4.0, low}... [Nome Gl Right |Scale
14|visuall | Numeric 4 2 isualization re (.00, Lowest)...|None B —nghl """"" |Scale
15]satm |Numeric 3 0 scholastic apti (200, minmum |[None 18 Right |Scale
16| ethnic Numeri 2 0 ethnicity {1, Eurc-Amer|98,98 'l'é' T [Right |Nominal
17 religion Numeric 2 0 |religion {1, prot ‘EFEJ,QQ 8 |Right {Nominal
1Bjethnic2  |Numenic 2 0 ethnicity report][1, Euro-Amer)|98, 99 B [Right ~ [Nominal

Fig. 1.2. Part of the hsbdataB.sav variable view in the SPSS data editor.

Variables in the Modified HSB Data Set

The 45 variables shown in Table 1.2 (with the values/levels or range of their values in parentheses) are
found in the hsbdata.savB file on the CD in the back of the book. Note that variables 33-38 and 42-44
were computed from the math attitude variables (19-32).

The variables of ethnic and religion were added to the original HSB data set to provide true nominal
(unordered) variables with a few (4 and 3) levels or values. In addition, for ethnic and religion, we have
made two missing value codes to illustrate this possibility. All other variables use blanks, the SPSS
system missing value, for missing data. For ethnicity, 98 indicates multiethnic and other. For religion, all
the high school students who were not protestant or catholic or said they had no religion were coded 98
and considered to be missing because none of the other religions had enough members to make a
reasonable size group. Those who left the ethnicity or religion questions blank were coded as 99, also
missing.

*In SPSS 7-11, the variable name had to be 8 characters or less. In SPSS 12, it can be longer, but we recommend
that you keep it short. If a longer name is used with SPSS 7-11, the name will be truncated. SPSS names must start
with a letter and must not contain blank spaces or certain special characters (e.g., !, 2, *, or *).

‘2 *3 >
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Table 1.2. HSB Variable Descriptions

Name Label (and Values)
Demographic School and Test Variables
1.  gender gender (0 = male, 1 = female).

2.  faed father’s education (2 = less than h.s. to 10 = PhD/MD).

3.  maed mother’s eduction (2 = less than h.s. grad to 10 = PhD/MD).

4, algl algebra 1 in h.s. (1 = taken, 0 = not taken)

5. alg2 algebra 2 in h.s. (1 = taken, 0 = not taken)

6. geo geometry in h.s. (1 = taken, 0 = not taken)

7. trig trigonometry in h.s. (1 = taken, 0 = not taken)

8. calc calculus in h.s. (1 =taken, 0 = not taken)

9. mathgr math grades (0 = low, 1 = high)

10.  grades grades in h.s. (1 = less than a D average to 8 = mostly an A average)

11.  mathach  marh achievement score (-8.33 to 25) .° This is a test something like the ACT
math.

12. mosaic mosaic, pattern test score (-4 to 56). This is a test of pattern recognition ability
involving the detection of relationships in patterns of tiles.

13.  visual visualization score (-4 to 16). This is a 16-item test that assesses visualization in
three dimensions (i.e., how a three-dimensional object would look if its spatial
position were changed).

14,  visual2 visualization retest — the visualization test score students obtained when they
retook the test a month or so later.

15. satm scholastic aptitude test — math (200 = lowest, 800 = highest possible)

16.  ethnic ethnicity (1 = Euro-American, 2 = African-American, 3 = Latino-American, 4 =
Asian-American, 98 = other or multiethnic, chose 2 or more, 99 = missing, left
blank)

17.  religion  religion (1 = protestant, 2 = catholic, 3 = no religion, 98 = chose one of several
other religions, 99 = left blank

18.  ethnic2 ethnicity reported by student (same as values for ethnic)

Math Attitude Questions 1-14 (Rated from 1 = very atypical to 4 = very typical)

19. item01 motivation - “I practice math skills until I can do them well.”

20. item02 pleasure - “1 feel happy after solving a hard problem.”

21,  item03 competence - “I solve math problems quickly.”

22.  item04 (low) motiv - “I give up easily instead of persisting if a math problem is

difficult.”

23. itemO0S (fow)comp - “I am a little slow catching on to new topics in math.”

24. item06 (low)pleas - “I do not get much pleasure out of math problems.”

25. item07 motivation - “I prefer to figure out how to solve problems without asking for

help.”

26. item08 (low)motiv - “I do not keep at it very long when a math problem is

challenging.”

27. item09 competence - “I am very competent at math.”

28. iteml0 (low)pleas - “I smile only a little (or not at all) when I solve a math problem.”

29. itemll (low)comp - “1 have some difficulties doing math as well as other kids my age.”

6Negative test scores result from a penalty for guessing.
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30. iteml2 motivation - “1 try to complete my math problems even if it takes a long time to
finish.”

31.  iteml3 motivation - “I explore all possible solutions of a complex problem before
going on to another one.”

32. iteml4 pleasure — “I really enjoy doing math problems.”

Variables Computed From the Above Variables

33. item04r item04 reversed (4 now = high motivation)

34. item05r item035 reversed (4 now = high competence)

35. itemOS8r item08 reversed (4 now = high motivation)

36. itemllr item11 reversed (4 now = high competence)

37. competence competence scale. An average computed as follows: (item03 + item05r +
item09 + item11r)/4

38. motivation  motivation scale (item01 + item0O4r + item07 + itemO8r + item12 + item13)/6

39. mathcers math courses taken (0 = none, 5 = all five)

40. faedRevis Jfather’s educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)
41. maedRevis  mother’s educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)

42. itemOé6r item06 reversed (4 now = high pleasure)

43. item10r iteml10 reversed (4 now = high pleasure)

44. pleasure pleasure scale (item02 + item06r + item 10r + item14)/4

45. parEduc parents’ education (average of the unrevised mother’s and father’s educations)

The Raw HSB Data and Data Editor

Figure 1.3 is a piece of the hsbdata.savB file showing the first 11 student participants for variables 1
through 17 (gender through religion). Notice the short variable names (e.g. faed, algl, etc.) at the top of
the hsbdataB file. Be aware that the participants are listed down the left side of the page, and the
variables are always listed across the top. You will always enter data this way. If a variable is measured

more than once, such as visual and visual2 (see Fig 1.3), it will be entered as two variables with slightly
different names.

~ hshdatad - SPSS Dala bdilor

mnmnmnmwsmmwmm

MJLEMJF@M&L&!

1

[ T gender| faed I maﬂd] algh -I alg2 | geo | frig 1' calc | mathyr gradesl mathach I musaic [ visual | visual? | satm | ethnic religiﬂ
1 1 10 10 [} 0 o o 0 0f 4 gm| 31.0[ 875 7.00] 50| 2| 1
2 1 20 2] 0 0| o 0 0 0] 5 1033] 60| 475 400 480 3| 2
3 i 2 2 R 0 o 0 1 6 767 50| 475 300 420 2! 2
4 of 3 3i 1] [ ol 0 0 of 3 smf 20/ 10 100] 400 1 1
B 1 3@ o o o 0 of 3 e 15| 2% 200 &0 2 1
6 1 3 2 o o o 6 O 1 5 100] 25 100] 00f 260 3] 2
7 0 9 6 1] 1 i © 0 0 6 1200] 285 ggq___ 200| 480 1] 2
8 1 5 3] 11 0j 0| 0 1] 0 4 8.00 25 350 300 430 1] 3
9 13 3 1] ol [ o 1 7] 13000 0] 35| 2000 4,0] ] ®
2 R 51—l 0 L — R T U 3
il o 3 4 1 i ) 1 0" B 2100 20| 1100 95| 50, 4 B

Fig. 1.3. Part of the hsbdataB data view in the SPSS data editor.
Note that in Fig. 1.3, most of the values are single digits, but mathach, mosaic, and visual include some

decimals and even negative numbers. Notice also that some cells, like father’s education for participant
5, are blank because a datum is missing. Perhaps participant 5 did not know her father’s education. Blank

10
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is the system missing value that can be used for any missing data in an SPSS data file. We suggest that
you leave missing data blank; however, you may run across “user defined” missing data codes like -1, 9,
98, or 99 in other researchers’ data (see religion, subjects 9 and 11).

Research Questions for the Modified HSB Study’

In this book, we will generate a large number of research questions from the modified HSB data set. In
this section, we list some of the possible questions you might ask in order to give you an idea of the range
of types of questions that one might have in a typical research project like a thesis or dissertation. For
review, we start with basic descriptive questions and some questions about assumptions. Also for review,
we list some basic difference and associational questions that can be answered with basic (two-variable)
inferential statistics such as a ¢ test or correlation. These statistics are not discussed in this book but how
to compute them can be found in the Quick Reference Guide (Appendix A). Finally, we pose a number
of complex questions that can be answered with the statistics discussed in this book.

1) Often, we start with basic descriptive questions about the demographics of the sample. Thus, we
could answer, with the outputs in chapter 2, the following basic descriptive questions: “What is
the average educational level of the fathers of the students in this sample?” “What percentage of
the students is male and what percentage is female?”

2) In chapter 2, we also examine whether the continuous variables are distributed normally, an
assumption of many statistics. One question is “Are the frequency distributions of the math
achievement scores markedly skewed; that is, different from the normal curve distribution?”

3) How to make a table crosstabulating two categorical variables (ones with a few values or
categories) is described in the Quick Reference Guide. Crosstabulation and the chi-square
statistic can answer research questions such as “Is there a relationship between gender and math
grades (high or low)?

4) In the Quick Reference Guide, we will also describe how to answer basic associational research
questions (using Pearson product-moment correlation coefficients) such as, “Is there a positive
association/relationship between grades in high school and math achievement?” A correlation
matrix of all the correlations among several key variables including math achievement will
provide the basis for computing factor analysis in chapter 5 and multiple regression in chapter 6.
In chapter 4, correlation is also used to assess reliability.

5) Basic difference questions such as “Do males and females differ on math achievement?” and “Are
there differences among the three father ’s education groups in regard to average scores on math
achievement?” can be answered with a ¢ test or one-way ANOVA, as described in the Quick
Reference Guide.

6) Complex difference questions will be answered with factorial ANOVA in chapter 8. One set of
three questions is as follows: (1) “Is there a difference between students who have fathers with no

7 The High School and Beyond (HSB) study was conducted by the National Opinion Research Center (1980). The
example discussed here and throughout the book is based on 13 variables obtained from a random sample of 75 out
of 28,240 high school seniors. These variables include achievement scores, grades, and demographics. The raw data
for the 13 variables were slightly modified from data in an appendix in Hinkle, Wiersma, and Jurs (1994). That file
had no missing data, which is unusual in behavioral science research, so we made some.

11
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college, some college, or a BS or more with respect to the student’s math achievement?” (2) “Is
there a difference between students who had a B or better math grade average and those with less
than a B average on a math achievement test at the end of high school?” and (3) “Is there an
interaction between father’s education and math grades with respect to math achievement?”

7) How well can you predict math achievement from a combination of four variables: motivation
scale, grades in high school, parents’ education, and gender? This complex associational question
can be answered with multiple regression, as discussed in chapter 6. If the dependent variable,
math achievement, were dichotomous (high vs. low achievement), logistic regression or possibly
discriminant analysis, discussed in chapter 7, would be appropriate to answer this question.

8) Are there differences between the three father s education groups on a linear combination of
grades in high school, math achievement, and visualization test? This complex difference question
can be answered with a single-factor multivariate analysis of variance (MANOVA), as
discussed in chapter 10.

More complex questions can be found in chapters 4-10 under each of the several “problems” in those
chapters.

This introduction to the research problem and questions raised by the HSB data set should help make the
assignments meaningful, and it should provide a guide and examples for your own research.

Frequency Distributions

Frequency distributions are critical to understanding our use of measurement terms. We begin this

section with a discussion of frequency distributions and two examples. Frequency tables and distributions
can be used whether the variable involved has ordered or unordered levels (SPSS calls them values). In
this section, we will only consider variables with many ordered values, ranging from low to high.

A frequency distribution is a tally or count of the number of times each score on a single variable
occurs. For example, the frequency distribution of final grades in a class of 50 students might be 7 As, 20
Bs, 18 Cs, and 5 Ds. Note that in this frequency distribution most students have Bs or Cs (grades in the
middle) and similar smaller numbers have As and Ds (high and low grades). When there are small
numbers of scores for the low and high values and most scores are for the middle values, the distribution
is said to be approximately normally distributed. We will discuss the normal curve in more detail later
in this chapter.

When the variable is continuous or has many ordered levels (or values), the frequency distribution
usually is based on ranges of values for the variable. For example, the frequencies (number of students),
shown by the bars in Fig 1.4, are for a range of points (in this case, SPSS selected a range of 50, 250-299,
300-349, 350-399, etc.). Notice that the largest number of students (about 20) has scores in the middle
two bars of the range (450-550). Similar small numbers of students have very low and very high scores.
The bars in the histogram form a distribution (pattern or curve) that is quite similar to the normal, bell-
shaped curve shown by the line that is superimposed on the histogram. Thus, the frequency distribution
of the SAT math scores is said to be approximately normal.

12
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Std. Dev. = 94.55
300 400 500 600 700 Mean = 480.533
scholastic aptitude test - math N=75

Fig. 1.4. A grouped frequency distribution for SAT math scores.

Figure 1.5 shows the frequency distribution for the competence scale. Notice that the bars form a pattern
very different from the normal curve line. This distribution can be said to be not normally distributed.
As we will see later in the chapter, the distribution is negatively skewed. That is, the tail of the curve or
the extreme scores are on the low end or left side. Note how much this differs from the S4T math score
frequency distribution. As you will see in the Measurement section (below), we call the competence
scale variable ordinal.

You can create these figures yourself using the hsbdataB.sav file. Select:

¢ Graphs => Histogram.

* Then move scholastic aptitude test — math (or competence scale) into the Variable box.
e Then check Display normal curve.

¢ Click OK.

20

o - e L . Std. Dev. = 0.66:
1.00 1.50 200 250 300 3.50 4.00 Mean = 3.2945.
Competence scale N=73

Fig. 1.5. A grouped frequency distribution for the competence scale.
Levels of Measurement
Measurement is the assignment of numbers or symbols to the different characteristics (values) of

variables according to rules. In order to understand your variables, it is important to know their level of
measurement. Depending on the level of measurement of a variable, the data can mean different things.

13
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For example, the number 2 might indicate a score of two; it might indicate that the subject was a male; or
it might indicate that the subject was ranked second in the class. To help understand these differences,
types or levels of variables have been identified. It is common and traditional to discuss four levels or
scales of measurement: nominal, ordinal, interval, and ratio, which vary from the unordered (nominal)
to the highest level (ratio). These four traditional terms are not the same as those used in SPSS, and we
think that they are not always the most useful for determining what statistics to use.

SPSS uses three terms (nominal, ordinal, and scale) for the levels of types or measurement. How these
correspond to the traditional terms is shown in Table 1.3. When you name and label variables in SPSS,
you have the opportunity to select one of these three types of measurement (see Fig 1.2). Although what
you choose does not affect what SPSS does in most cases, an appropriate choice both indicates that you
understand your data and may help guide your selection of statistics.

We believe that the terms nominal, dichotomous, ordinal, and approximately normal (for normally
distributed) are usually more useful than the traditional or SPSS measurement terms for the selection and
interpretation of statistics. In part, this is because statisticians disagree about the usefulness of the
traditional levels of measurement in determining the appropriate selection of statistics. Furthermore, our
experience is that the traditional terms are frequently misunderstood and applied inappropriately by
students. Hopefully, our terms, as discussed below, are clear and useful.

Table 1.3 compares the three sets of terms and provides a summary description of our definitions of
them. Professors differ in the terminology they prefer and on how much importance to place on levels or
scales of measurement, so you will see all of these terms, and the others mentioned below, in textbooks
and articles.

Table 1.3. Similar Traditional, SPSS, and Our Measurement Terms

Traditional Traditional SPSS Our Term Our Definitions

Term Definition Term

Nominal Two or more Nominal Nominal Three or more unordered
unordered categories categories.

--—----=—--  Dichotomous Two categories, either ordered
or unordered.

Ordinal Ordered levels, in Ordinal Ordinal Three or more ordered levels,
which the difference but the frequency distribution
in magnitude of the scores is not normally
between levels is not distributed.
equal

Interval & Interval: ordered Scale Approximately Many (at least five) ordered

Ratio levels, in which the Normal levels or scores, with the
difference between frequency distribution of the
levels is equal, but scores being approximately
there is no true zero. normally distributed.

Ratio: ordered

levels; the difference
between levels is
equal, and there isa
true zero.

14
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Nominal Variables

This is the most basic or lowest level of measurement, in which the numerals assigned to each category
stand for the name of the category, but they have no implied order or value. For example, in the HSB
study, the values for the religion variable are 1= protestant, 2 =catholic, 3 = no religion. This does not
mean that that two protestants equal one catholic or any of the typical mathematical uses of the numerals.
The same reasoning applies to many other true nominal variables, such as ethnic group, type of disability,
or section number in a class schedule. In each of these cases, the categories are distinct and non-
overlapping, but not ordered. Each category or group in the modified HSB variable ethnicity is different
from each other but there is no necessary order to the categories. Thus, the categories could be numbered
1 for Asian-American, 2 for Latino-American, 3 for African-American, and 4 for European-American or
the reverse or any combination of assigning one number to each category.

What this implies is that you must not treat the numbers used for identifying nominal categories as if they
were numbers that could be used in a formula, added together, subtracted from one another, or used to
compute an average. Average ethnicity makes no sense. However, if you ask SPSS to compute the mean
ethnicity, it will do so and give you meaningless information. The important aspect of nominal
measurement is to have clearly defined, non-overlapping or mutually exclusive categories that can be
coded reliably by observers or by self-report.

Using nominal measurement does dramatically limit the statistics that can be used with your data, but it
does not altogether eliminate the possible use of statistics to summarize your data and make inferences.
Therefore, even when the data are unordered or nominal categories, your research may benefit from the
use of appropriate statistics. Later we will discuss the types of statistics, both descriptive and inferential,
that are appropriate for nominal data.

Other terms for nominal variables. Unfortunately, the literature is full of similar, but not identical terms
to describe the measurement aspects of variables. Categorical, qualitative, and discrete are terms
sometimes used interchangeably with nominal, but we think that nominal is better because it is possible
to have ordered, discrete categories (e.g., low, medium, and high IQ, which we and other researchers
would consider an ordinal variable). Qualitative is also used to discuss a different approach to doing
research, with important differences in philosophy, assumptions, and approach to conducting research.

Dichotomous Variables

Dichotomous variables always have only two levels or categories. In some cases, they may have an
implied order (e.g., math grades in high school are coded 0 for less than an A or B average and 1 for
mostly A or B). Other dichotomous variables do not have any order to the categories (e.g., male or
Jemale). For many purposes, it is best to use the same statistics for dichotomous and nominal variables.
However, a statistic such as the mean or average, which would be meaningless for a three or more
category nominal variable (e.g., ethnicity), does have meaning when there are only two categories. For
example, in the HSB data, the average gender is .55 (with males = 0 and females = 1). This means that
55% of the participants were females, the higher code. Furthermore, we will see with multiple regression
that dichotomous variables, called dummy variables, can be used as independent variables along with
other variables that are normally distributed.

Other terms for dichotomous variables. In the SPSS Variable View (e.g., see Fig 1.2), we label
dichotomous variables nominal, and this is common in textbooks. However, please remember that
dichotomous variables are really a special case and for some purposes they can be treated as if they were
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normally distributed. Note that dichotomous data have two discrete categories, so these variables are
sometimes called discrete variables or categorical variables.

Ordinal Variables

In ordinal measurement, there are not only mutually exclusive categories as in nominal scales, but the
categories are ordered from low to high, such that ranks could be assigned (e.g., 1st, 2nd, 3rd). Thus, in
an ordinal scale, one knows which participant is highest or most preferred on a dimension, but the
intervals between the various categories are not equal. Often, whether or not the intervals between
categories are equal is a matter of judgment. Our definition of ordinal focuses on whether the frequency
counts for each category or value are distributed like the bell-shaped, normal curve with more responses
in the middle categories and fewer in the lowest and highest categories. If not approximately normal, we
would call the variable ordinal. Ordered variables with only a few categories (say 2-4) would also be
called ordinal. As indicated in Table 1.3, however, the traditional definition of ordinal focuses on
whether the differences between pairs of levels are equal.

Other terms for ordinal variables. Some authors use the term ranks interchangeably with ordinal.
However, most analyses that are designed for use with ordinal data (nonparametric tests) rank the data as
a part of the procedure, assuming that the data you are entering are not already ranked. Moreover, the
process of ranking changes the distribution of data such that it can be used in many analyses ordinarily
requiring normally distributed data. Ordinal data can be categorical, and so that term is sometimes used
to include both nominal and ordinal data.

Approximately Normal (or Scale) Variables

Approximately normally distributed variables not only have levels or scores that are ordered from low to
high, but also, as stated in Table 1.3, the frequencies of the scores are approximately normally
distributed. That is, most scores are somewhere in the middle with similar smaller numbers of low and
high scores. Thus, a 5-point Likert scale, such as strongly agree to strongly disagree, would be considered
normal if the frequency distribution was approximately normal. We think normality, because it is an
assumption of many statistics, should be the focus of this highest level of measurement. Many normal
variables are continuous (i.c., they have an infinite number of possible values within some range). If not
continuous, we suggest that there be at least five ordered values or levels and that they have an implicit,
underlying continuous nature. For example, a 5-point Likert scale has only five response categories but,
in theory, a person’s rating could fall anywhere between 1 and S.

Other terms for approximately normal variables. Continuous, dimensional, and quantitative are some
terms that you will see in the literature for variables that vary from low to high and are assumed to be
normally distributed. SPSS uses scale, as previously noted.

Traditional measurement terminology uses the terms interval and ratio. SPSS does not use these terms,
but because they are common in the literature and overlap with the term scale, we will describe them
briefly. Interval variables have ordered categories that are equally spaced (i.e., have equal intervals
between them). Most physical measurements (length, weight, temperature, etc.) have equal intervals
between them. Many physical measurements (lengrh and weighf), in fact, not only have equal intervals
between the levels or scores, but also a true zero, which means in the above examples, zero length or
weight. Such variables are called ratio variables. Our Fahrenheit temperature scale and almost all
psychological scales do not have a true zero and, thus, even if they are very well constructed equal
interval scales, it is not possible to say that zero degrees Fahrenheit involves the absence of something or
that one has no intelligence or no extroversion or no attitude of a certain type. The differences between
interval scales and ratio scales are not important for us because we can do all of the types of statistics that
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we have available with interval data. SPSS terminology supports this non-distinction by using the term
scale for both interval and ratio data. In fact, the more important thing, because it is an assumption of
most parametric statistics, is that the variables be approximately normally distributed, not whether they

have equal intervals.

How to Distinguish Between the Types of Measurement

Distinguishing between nominal and ordered variables. When you label variables in SPSS, the
Measure column (see Fig. 1.2) provides only three choices: nominal, ordinal, or scale. How do you
decide? We suggest that if the variable has only two levels, you call it nominal even though it is often
hard to tell whether such a dichotomous variable (e.g., Yes or No, Pass or Fail) is unordered or ordered.
Although some such dichotomous variables are clearly nominal (e.g., gender) and others are clearly
ordered (e.g., math grades--high and low), all dichotomous variables form a special case, as discussed
above.

If there are three or more categories, it is usually fairly easy to tell whether the categories are ordered or
not, so students and researchers should be able to distinguish between nominal and ordinal data. That is
good because this distinction makes a lot of difference in choosing and interpreting appropriate statistics.

Distinguishing between ordinal and normal variables. 1s a 5-point Likert scale ordinal or approximately
normal? Using our definitions, there is a way to test variables to see whether it is more reasonable to treat
them as normal variables or ordinal variables. Unfortunately, you will not know for sure until after the
data have been collected and preliminary analyses are done.

Table 1.4 provides a summary of the characteristics and examples of our four types of measurement. It
should provide a good review of the concept of type or level of measurement of a variable.

Table 1.4. Characteristics and Examples of the Four Types of Measurement

Nominal Dichotomous Ordinal Normal
Characteristics 3+ levels 2 levels 3+ levels 5+ levels

Not ordered Ordered or not Ordered levels Ordered levels

True categories Unequal intervals  Approximately

Names, labels between levels normally

Not normally distributed
distributed Equal intervals
between levels

Examples Ethnicity Gender Competence SAT math

Religion Math grades scale Math achievement

Curriculum type (high vs. low) Mother’s Height

Hair color education

Remember that in SPSS, there are only three measurement types or levels, and the researcher is the one
who determines if the variable is called nominal, ordinal, or scale. We have called dichotomous variables
nominal in our hsbdata file.
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Descriptive Statistics

Measures of Central Tendency

In chapter 2, we will obtain descriptive statistics to summarize data and check assumptions; we will also
produce plots that visually display distributions of variables. Here we review the meaning of descriptive
statistics.

Three measures of the center of a distribution are commonly used: mean, median, and mede. Any of
them can be used with normally distributed data; however, with ordinal data, the mean of the raw scores
is usually not appropriate. Especially if one is computing certain statistics, the mean of the ranked scores
of ordinal data provides useful information. With nominal data, the mode is the only appropriate
measure.

Mean. The arithmetic average or mean takes into account all of the available information in computing
the central tendency of a frequency distribution. Thus, it is usually the statistic of choice, assuming that
the data are normally distributed data. The mean is computed by adding up all the raw scores and
dividing by the number of scores (M = ZX/N).

Median. The middle score or median is the appropriate measure of central tendency for ordinal level raw
data. The median is a better measure of central tendency than the mean when the frequency distribution
is skewed. For example, the median income of 100 mid-level workers and one millionaire reflects the
central tendency of the group better (and is substantially lower) than the mean income. The average or
mean would be inflated in this example by the income of the one millionaire. For normally distributed
data, the median is in the center of the box and whisker plot.

Mode. The most common category, or mode can be used with any kind of data but generally provides the
least precise information about central tendency. Moreover, if one’s data are continuous, there often are
multiple modes, none of which truly represents the “typical” score. In fact if there are multiple modes,
SPSS provides only the lowest one. One would use the mode as the measure of central tendency if the
variable is nominal or if you want a quick non-calculated measure. The mode is the tallest bar in a bar
graph or histogram,

You also can compute the Mean, Median, and Mode, plus other descriptive statistics with SPSS by
using the Frequencies command.

To get Fig 1.6, select:
e Analyze => Descriptive Statistics => Frequencies => scholastic aptitude test — math => Statistics
=> Mean, Median, and Mode => Continue => OK.

Note in Fig. 1.6 that the mean and median are very similar, which is in agreement with our conclusion

from Fig. 1.4 that S4TM is approximately normally distributed. Note that the mode is 500, as shown in
Fig. 1.4 by the tallest bars.
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Statistics
scholastic aptitude test - math
N Valid 75
Missing 0
Mean 490.53
Median 490.00
Mode 500

Fig. 1.6. Central tendency measures using the SPSS frequencies command.

Measures of Variability

Variability tells us about the spread or dispersion of the scores. At one extreme, if all of the scores ina
distribution are the same, there is no variability. If the scores are all different and widely spaced apart,
the variability will be high. The range (highest minus lowest score) is the crudest measure of variability
but does give an indication of the spread in scores if they are ordered.

Standard Deviation. This common measure of variability, is most appropriate when one has normally
distributed data, although the mean of ranked ordinal data may be useful in some cases. The standard
deviation is based on the deviation of each score (x) from the mean of all the scores (). Those deviation
scores are squared and then summed (Z(x-M)?). This sum is divided by N-1, and, finally, the square root
is taken (SD = VE(x-M)”/N-1).

Interquartile range. For ordinal data, the interquartile range, seen in the box plot as the distance
between the top and bottom of the box, is a very useful measure of variability. Note that the whiskers
indicate the expected range, and scores outside that range are shown as outliers.

With nominal data, none of the above variability measures (range, standard deviation, or interquartile
range) are appropriate. Instead, for nominal data, one would need to ask how many different categories
there are and what the percentages or frequency counts are in each category to get some idea of
variability. Minimum and maximum frequency may provide some indication of distribution as well.

Conclusions About Measurement and the Use of Statistics

Statistics based on means and standard deviations are valid for normally distributed or normal data.
Typically, these data are used in the most powerful tests called parametric statistics. However, if the
data are ordered but grossly non-normal (i.e., ordinal), means and standard deviations may not give
meaningful answers. Then the median and a nonparametric test would be preferred. Nonparametric tests
typically have somewhat less power than parametric tests (they are less able to demonstrate truly
significant effects), but the sacrifice in power for nonparametric tests based on ranks usually is relatively
minor. If the data are nomina), one would have to use the mode or counts. In this case, there would be a
major sacrifice in power.

Table 1.5 summarizes much of the above information about the appropriate use of various kinds of
descriptive statistics given nominal, dichotomous, ordinal, or normal data.
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Table 1.5, Selection of Appropriate Descriptive Statistics and Plots for Levels of Measurement

Plots Nominal Dichotomous  Ordinal Normal

Frequency Distribution Yes® Yes Yes oK’

Bar Chart Yes Yes Yes OK

Histogram No° No OK Yes

Frequency Polygon No No OK Yes

Box and Whiskers Plot No No Yes Yes

Central Tendency

Mean No OK Ofranks, OK Yes

Median No OK =Mode Yes OK

Mode Yes Yes OK OK

Variability

Range No Always 1 Yes Yes

Standard Deviation No No Ofranks, OK Yes

Interquartile range No No OK OK

How many categories Yes Always 2 OK Not if truly
continuous

Shape

Skewness No No Yes Yes

*Yes means a good choice with this level of measurement.
0K means OK to use, but not the best choice at this level of measurement.
°No means not appropriate at this level of measurement.

The Normal Curve

Figure 1.7 is an example of a normal curve. The frequency distributions of many of the variables used in
the behavioral sciences are distributed approximately as a normal curve. Examples of such variables that
approximately fit a normal curve are height, weight, intelligence, and many personality variables. Notice
that for each of these examples, most people would fall toward the middle of the curve, with fewer
people at the extremes. If the average height of men in the United States were 5'10", then this height
would be in the middle of the curve. The heights of men who are taller than 5'10" would be to the right of
the middle on the curve, and those of men who are shorter than 5'10" would be to the left of the middle
on the curve, with only a few men 7 feet or 5 feet tall.

The normal curve can be thought of as derived from a frequency distribution. It is theoretically formed
from counting an “infinite” number of occurrences of a variable. Usually when the normal curve is
depicted, only the X axis (horizontal) is shown. To determine how a frequency distribution is obtained,
you could take a fair coin, and flip it 10 times, and record the number of heads on this first set or trial.
Then flip it another 10 times and record the number of heads. If you had nothing better to do, you could
do 100 trials. After performing this task, you could plot the number of times that the coin turned up heads
out of each trial of 10. What would you expect? Of course, the largest number of trials probably would
show 5 heads out of 10. There would be very few, if any trials, where 0, 1, 9, or 10 heads occur. It could
happen, but the probability is quite low, which brings us to a probability distribution. If we performed
this experiment 100 times, or 1,000 times, or 1,000,000 times, the frequency distribution would “fill in”
and look more and more like a normal curve.
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Fig. 1.7. Frequency distribution and probability distribution for the normal curve.

Properties of the Normal Curve

The normal curve has five properties that are always present.

1. The normal curve is unimodal. It has one “hump,” and this hump is in the middle of the distribution.
The most frequent value is in the middle.

2. The mean, median, and mode are equal.

3. The curve is symmetric. If you fold the normal curve in half, the right side would fit perfectly with
the left side; that is, it is not skewed.

4. The range is infinite. This means that the extremes approach but never touch the X axis.

5. The curve is neither too peaked nor too flat and its tails are neither too short nor too long; it has no
kurtosis.

Non-Normally Shaped Distributions
Skewness. If one tail of a frequency distribution is longer than the other, and if the mean and median are
different, the curve is skewed. Because most common inferential statistics (e.g., ¢ test) assume that the

dependent variable is normally distributed, it is important that we know if our variables are highly
skewed.

Figure 1.5 showed a frequency distribution that is skewed to the left. This is called a negative skew. A
perfectly normal curve has a skewness of zero (0.0). The curve in Fig. 1.5, for the competence scale, has
a skewness statistic of -1.63, which indicates that the curve is quite different from a normal curve. We
will use a somewhat arbitrary guideline that if the skewness is more than +1.0 or less than — 1.0, the
distribution is markedly skewed and it would be prudent to use a nonparametric (ordinal type) statistic.
However, some parametric statistics, such as the two-tailed ¢ test and ANOVA, are quite robust so even a
skewness of more than +/-1 may not change the results much. We will provide more examples and
discuss this more in chapter 2.

Kurtosis. If a frequency distribution is more peaked than the normal curve, it is said to have positive

kurtosis and is called leptokurtic. Note in Fig. 1.4 that the SAT-math histogram is peaked (i.e., the bar for
500 extends above the normal curve line), and thus there is some positive kurtosis. If a frequency
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distribution is relatively flat with heavy tails, it has negative kurtosis and is called platykurtic. Although
SPSS can easily compute a kurtosis value for any variable using an option in the Frequencies command,
usually we will not do so because kurtosis does not seem to affect the results of most statistical analyses
very much.

Areas Under the Normal Curve

The normal curve is also a probability distribution. Visualize that the area under the normal curve is
equal to 1.0. Therefore, portions of this curve could be expressed as fractions of 1.0. For example, if we
assume that 5'10" is the average height of men in the United States, then the probability of a man being
5'10" or taller is .5. The probability of a man being over 6'3" or less than 5'5" is considerably smaller. It is
important to be able to conceptualize the normal curve as a probability distribution because statistical
convention sets acceptable probability levels for rejecting the null hypothesis at .05 or .01. As we shall
see, when events or outcomes happen very infrequently, that is, only 5 times in 100 or 1 time in 100 (way
out in the left or right tail of the curve), we wonder if they belong to that distribution or perhaps to a
different distribution. We will come back to this point later in the book.

All normal curves can be divided into areas or units in terms of the standard deviation. Approximately
34% of the area under the normal curve is between the mean and one standard deviation above or below
the mean (see Fig. 1.7 again). If we include both the area to the right and to the left of the mean, 68% of
the area under the normal curve is within one standard deviation from the mean. Another approximately
13.5% of the area under the normal curve is accounted for by adding a second standard deviation to the
first standard deviation. In other words, two standard deviations to the right of the mean account for an
area of approximately 47.5%, and two standard deviations to the left and right of the mean make up an
area of approximately 95% of the normal curve. If we were to subtract 95% from 100%, the remaining
5% relates to that ever present probability or p value of 0.05 needed for statistical significance. Values
not falling within two standard deviations of the mean are seen as relatively rare events.

The Standard Normal Curve

All normal curves can be converted into standard normal curves by setting the mean equal to zero and the
standard deviation equal to one. Since all normal curves have the same proportion of the curve within one
standard deviation, two standard deviations, and so on, of the mean, this conversion allows comparisons
among normal curves with different means and standard deviations. The normal distribution, has the
standard normal distribution units underneath. These units are referred to as z scores. If you examine the
normal curve table in any statistics book, you can find the areas under the curve for one standard
deviation (z = 1), two standard deviations (z = 2), and so on. As described in the Quick Reference Guide
(Appendix A), it is easy for SPSS to convert raw scores into standard scores. This is often done when
one wants to aggregate or add together several scores that have quite different means and standard
deviations.

Interpretation Questions
1.1 What is the difference between the independent variable and the dependent variable?

1.2 Compare the terms active independent variable and attribute independent variable. What are the
similarities and differences?
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What kind of independent variable is necessary to infer cause? Can one always infer cause from
this type of independent variable? If so, why? If not, when can one clearly infer cause and when
might causal inferences be more questionable?

Compare and contrast associational, difference, and descriptive types of research questions.

Write three research questions and a corresponding hypothesis regarding variables of interest to
you but not in the HSB data set (one associational, one difference, and one descriptive question).

Using one or more of the following HSB variables, religion, mosaic score, and visualization
score:

a) Write an associational question

b) Write a difference question

¢) Write a descriptive question

If you have categorical, ordered data (such as low income, middle income, high income) what
type of measurement would you have? Why?

a) What are the differences between nominal, dichotomous, ordinal, and normal variables? b) In
social science research, why isn’t it important to distinguish between interval and ratio variables?

What percent of the area under the standard normal curve is between the mean and one standard
deviation above the mean?

a) How do z scores relate to the normal curve? b) How would you interpret a z score of —3.0?
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CHAPTER 2
Data Coding and Exploratory Analysis (EDA)

Before computing any inferential statistics, it is necessary to code the data, enter the data into SPSS, and
then do exploratory data analysis (EDA) as outlined below. This chapter will help you understand your
data, help you to see if there are any errors, and help you to know if your data meet basic assumptions for
the inferential statistics that you will compute.

Rules for Data Coding

Coding is the process of assigning numbers to the values or levels of each variable. We want to present
some broad suggestions or rules to keep in mind as you proceed. These suggestions are adapted from
rules proposed in Newton and Rudestam’s (1999) useful book entitled Your Statistical Consultant. It is
important to note that the recommendations we make are those we find to be most useful in most
contexts, but some researchers might propose alternatives, especially for “rules” 1, 2, 4, 5, and 7 below.

1. All data should be numeric. Even though it is possible to use letters or words (string variables) as data,
it is not desirable to do so with SPSS. For example, we could code gender as M for male and F for female,
but in order to do most statistics with SPSS, you would have to convert the letters or words to numbers. It
is easier to do this conversion before entering the data into the computer. We decided to code females as 1
and males as 0. This is called dummy coding. In essence, the 0 means “not female.” We could, of course,
code males as | and females as 0. However, it is crucial that you be consistent in your coding and have a
way to remind yourself and others of how you did the coding. In the Quick Reference Guide (Appendix
A), we show how you can provide such a record, called a codebook.

2. Each variable for each case or participant must occupy the same column in the SPSS Data Editor.
With SPSS it is important that data from each participant occupies only one line (row), and each column
must contain data on the same variable for all the participants. The SPSS data editor, into which you will
enter data, facilitates this by putting the variable names that you choose at the top of each column, as you
saw in Fig. 1.3. If a variable is measured more than once for each participant (e.g., pretest and posttest), it
needs to be entered on the same row in separate columns with somewhat different names like marhpre
and mathpost.

3. All values (codes) for a variable must be mutually exclusive. That is, only one value or number can be
recorded for each variable. Some items may allow participants to check more than one response. In that
case, the item should be divided into a separate variable for each possible response choice, with one value
of each variable (usually “17) corresponding to yes (checked) and the other (usually “0”) to no (not
checked).

Usually, items should be phrased so that persons would logically choose only one of the provided options,
and all possible options are provided. A final category labeled “other” may be provided in cases where all
possible options cannot be listed, but these “other” responses are usually quite diverse and, thus, usually
not very useful for statistical purposes.

4. Each variable should be coded to obtain maximum information. Do not collapse categories or values
when you set up the codes for them. If needed, let the computer do it later. In general, it is desirable to
code and enter data in as detailed a form as available. Thus, enter item scores, ages, GPAs, etc. for each
participant if you know them. It is good to practice asking participants to provide information that is quite
specific. However, you should be careful not to ask questions that are so specific that the respondent may
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not know the answer or may not feel comfortable providing it. For example, you will obtain more specific
information by asking participants to state their GPA to two decimals than if you asked them to select
from a few broad categories (e.g., less than 2.0, 2.0-2.49, 2.50-2.99, etc.). However, if students don’t
know their exact GPA or don’t want to reveal it precisely, they may leave the question blank, guess, or
write in a difficult to interpret answer.

These issues might lead you to provide a few categories, each with a relatively narrow range of values, for
variables such as age, weight, and income. Never collapse such categories before you enter the data into
SPSS. For example, if you had age categories for university undergraduates 16-18, 18-20, 21-23, and so
on and you realize that there are only a few students in the below 18 group, keep the codes as they are for
now. Later you can make a new category of 20 or under by using an SPSS function, Transform =>
Recode. If you collapse categories before you enter the data, the information is lost.

5. For each participant, there must be a code or value for each variable. These codes should be
numbers, except for variables for which the data are missing. We recommend using blanks when data are
missing or unusable, because SPSS is designed to handle blanks as missing values. However, sometimes
you may have more than one type of missing data, such as items left blank and those that had an answer
that was not appropriate or usable. In this case, you may assign numeric codes such as 98 and 99 to them,
but you must tell SPSS that these codes are for missing values, or SPSS will treat them as actual data.

6. Apply any coding rules consistently for all participants. This means that if you decide to treat a certain
type of response as, say, missing for one person, you must do the same for all other participants.

7. Use high numbers (value or codes) for the “agree,” “good,” or “positive” end of a variable that is
ordered. However, if the variable has a negative label (e.g., aggressiveness), higher numbers should
refer to more of the trait. Sometimes you will see questionnaires that use 1 for “strongly agree,” and 5 for
“strongly disagree.” This is not wrong as long as it is clear and consistent. However, you are less likely to
get confused when interpreting your results if high values have positive meaning, indicate that something
was done (e.g., an algebra 1 course was taken), or indicate more of the characteristic.

Make a coding form and/or codebook. Now you need to make some decisions about how to code the
data, especially data that are not already in numerical form. When the responses provided by participants
are numbers, the variable is said to be “self-coding.” You can just enter the number that was circled or
checked on the questionnaire. On the other hand, variables such as gender or ethnicity have no intrinsic
values associated with them, so a number has to be assigned to each level or value.

Fix problems with the completed questionnaires. Now examine the questionnaires (or other new data)
for incomplete, unclear, or double answers. The researcher needs to use rules to handle these problems
and note the decision on the questionnaires or on a master “coding instructions” sheet or file so that the
same rules are used for all cases. For each type of incomplete, blank, unclear, or double answer, you need
to make a rule for what to do. As much as possible, you should make these rules before data collection,
but there may well be some unanticipated issues. It is important that you apply the rules consistently for
all similar problems so as not to bias your results.

Missing data create problems in later data analysis, especially for complex statistics. Thus, we want to use
as much of the data provided as is reasonable. The important thing here is that you must treat all similar
problems the same way. If a participant only answered some of the questions, there will be lots of
missing data for that person. We could have a rule such as if half the items were blank or invalid, we
would throw out that whole questionnaire as invalid. In your research report, you should state how many
questionnaires were thrown out and for what reason(s). If a participant circled two responses (e.g., 3 and
4 on a 5-point Likert scale), a reasonable decision would be to enter the average or midpoint, 3.50.
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Clean up completed questionnaires. Once you have made your rules and decided how to handle each
problem, you need to make these rules clear to the person entering the data. A common procedure would
be to write your decisions on the questionnaires, perhaps in a different color. You also need to have a
master file and hard copy of all the rules that you used.

In the process of understanding your data, different types of analyses and plots will be generated
depending on what level of measurement you have. Therefore, it is important to identify whether each of
your variables is nominal, dichotomous, ordinal, or normal (SPSS uses the term scale; see chapter 1).
Keep in mind that there are times when whether you call a variable ordinal or scale might change based
on your EDA. For example, a variable that you considered to be ordinal may be normally distributed,
and, thus, better labeled as scale. Remember that making the appropriate choice indicates that you
understand your data and should help guide your selection of a statistic.

Exploratory Data Analysis (EDA)

What Is EDA?

After the data are entered into SPSS, the first step to complete (before running any inferential statistics) is
EDA, which involves computing various descriptive statistics and graphs. Exploratory Data Analysis is
used to examine and get to know your data. Chapter 1 and especially this chapter focus on ways to do
exploratory data analysis with SPSS. EDA is important to do for several reasons:

1. To see if there are problems in the data such as outliers, non-normal distributions, problems with
coding, missing values, and/or errors inputting the data.

2. To examine the extent to which the assumptions of the statistics that you plan to use are met.

In addition to these two reasons which are discussed in this chapter, one could also do EDA for other
purposes such as:

3. To get basic information regarding the demographics of subjects to report in the Method section or
Results section.

4. To examine relationships between variables to determine how to conduct the hypothesis-testing
analyses. For example, correlations can be used to see if two or more variables are so highly related
that they should be combined (aggregated) for further analyses and/or if only one of them should be
included in the central analyses. We created parents’ education by combining father’s and mother’s
education, because they are quite highly correlated.

How to Do EDA

There are two general methods used for EDA: generating plots of the data and generating numbers from
your data. Both are important and can be very helpful methods of investigating the data. Descriptive
Statistics (including the minimum, maximum, mean, standard deviation, and skewness), frequency
distribution tables, boxplots, histograms, and stem and leaf plots are a few procedures used in EDA.

After collecting data and inputting it into SPSS, many students jump immediately to doing inferential

statistics (e.g., 7 tests and ANOVAs). Don’t do this! Many times there are errors or problems with the data
that need to be located and either fixed or at least noted before doing any inferential statistics.
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At this point, you are probably asking “Why?” or “I’ll do that boring descriptive stuff later while I am
writing the methods section.” Wait! Being patient can alleviate many problems down the road.

In the next two sections, we discuss checking for errors and checking assumptions. Some of this
discussion reviews basic material, but it is so important that it is worth going over again.

Check for Errors
There are many ways to check for errors; for example:

1. As mentioned above, look over the raw data (questionnaires, interviews, or observation forms) to see if
there are inconsistencies, double coding, obvious errors, etc. Do this before entering the data into the
computer.

2. Check some, or preferably all, of the raw data (e.g., questionnaires) against the data in your SPSS
Data Editor file to be sure that errors were not made in the data entry.

3. Compare the minimum and maximum values for each variable in your Descriptives output with the
allowable range of values in your codebook.

4, Examine the means and standard deviations to see if they look reasonable, given what you
know about the variables.

5. Examine the N column to see if any variables have a lot of missing data, which can be a problem when
you do statistics with two or more variables. Missing data could also indicate that there was a problem
in data entry.

6. Look for outliers in the data.

Check the Assumptions

As noted above, exploratory data analysis can be used to check the assumptions of a statistic. Several
assumptions are common to more than one statistic, so in this chapter we will provide an introduction to
how to test for them. First, we will define statistical assumptions and briefly discuss several of the most
common.

Statistical Assumptions

Every statistical test has assumptions. Statistical assumptions are much like the directions for appropriate
use of a product found in an owner’s manual. Assumptions explain when it is and isn’t reasonable to
perform a specific statistical test. When the ¢ test was developed, for example, the person who developed
it needed to make certain assumptions about the distribution of scores, etc., in order to be able to calculate
the statistic accurately. If these assumptions are not met, the value that SPSS calculates, which tells the
researcher whether or not the results are statistically significant, will not be completely accurate and may
even lead the researcher to draw the wrong conclusion about the results. In each chapter, the appropriate
inferential statistics and their assumptions are described.

Parametric tests. These include most of the familiar ones (e.g., ¢ test, analysis of variance, Pearson
correlation, and almost all of the statistics discussed in chapters 4-10). They usually have more
assumptions than nonparametric tests. Parametric tests were designed for data that have certain
characteristics, including approximately normal distributions.
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Some parametric statistics have been found to be “robust” to one or more of their assumptions. Robust
means that the assumption can be violated without damaging the validity of the statistic. For example,
one assumption of ANOVA is that the dependent variable is normally distributed for each group.
Statisticians who have studied these statistics have found that even when data are not completely
normally distributed (e.g., they are somewhat skewed), they still can be used.

Nonparametric tests. These tests (e.g., chi-square, Mann-Whitney U, Spearman rho) have fewer
assumptions and often can be used when the assumptions of a parametric test are violated. For example,
they do not require normal distributions of variables or homogeneity of variances. Unfortunately, there
are few nonparametric tests similar to the intermediate statistics discussed in the book so we will have
little to say about them here.

Common Assumptions

Homogeneity of variances. Both the ¢ test and ANOVA may be affected quite a lot if the variances
(standard deviation squared) of the groups to be compared are substantially different, especially if the
number of participants in each group differs markedly. Thus, this is often a critical assumption to meet or
correct for. Fortunately, SPSS provides the Levene test to check this assumption.

Normality. As mentioned above, many parametric statistics assume that certain variables are distributed
approximately normally. That is, the frequency distribution would look like a symmetrical bell-shaped or
normal curve, with most subjects having values in the mid range and with a smaller number of subjects
with high and low scores. A distribution that is asymmetrical, with more high than low scores (or vice
versa), is skewed. Thus, it is important to check skewness. Most statistics books do not provide advice
about how to decide whether a variable is at least approximately normal. SPSS recommends that you
divide the skewness by its standard error. If the result is less than 2.5 (which is approximately the p = .01
level), then skewness is not significantly different from normal. A problem with this method, aside from
having to use a calculator, is that the standard error depends on the sample size, so with large samples
most variables would be found to be nonnormal. A simpler guideline is that if the skewness is less than
plus or minus one (< +/- 1.0), the variable is at least approximately normal. There are also several other
ways to check for normality. In this chapter we will look at two graphical methods: boxplots and
frequency polygons. However, remember that ¢ (if two-tailed) and ANOVA are quite robust to violations
of normality.

Independence of observations. The assumption of independence of observations is that there is no
relationship between the scores for one person and those of another person. For example, if you know one
subject’s value on one variable (e.g., competence), then you should not be able to guess the value of that
variable for any other particular participant. Sometimes, this assumption is violated because one’s
procedures for sampling participants create systematic bias. For example, “snowball sampling,” in which
participants recommend other participants for the study, is likely to lead to nonindependence of
observations because participants are likely to recommend people who are similar to themselves.
Obviously, members of the same family, or the same person measured on more than one occasion, do not
comprise independent observations. There are particular methods (matched samples or “repeated
measures” methods) designed to deal with the nonindependence of family members or the same person
measured several times, or participants who are matched on some characteristic. However, these can not
easily be applied to snowball sampling because different participants recommend a different number of
other participants.

Linearity. Linearity is the assumption that two variables are related in a linear fashion. If variables are
linearly related, then when plotted in a scatterplot, the data will fall in straight line or in a cluster that is
relatively straight. Sometimes, if the data are not linearly related (i.e., the plot looks curved), the data can
be transformed to make the variables linearly related.
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Checking for Errors and Assumptions With Ordinal and Scale Variables

The level of measurement of a variable you are exploring (whether it is nominal, ordinal, dichotomous, or
normal/scale) influences the type of exploratory data analysis (EDA) you will want to do. Thus, we have
divided this chapter by the measurement levels of the variable because, for some types of variables,
certain descriptive statistics will not make sense (e.g., a mean for a nominal variable, or a boxplot for a
dichotomous variable). Remember that the researcher has labeled the type of measurement as either
nominal, ordinal, or scale when completing the SPSS Data Editor Variable View. Remember also that
we decided to label dichotomous variables nominal, and variables that we assumed were normally
distributed were labeled scale.

For all of the examples in this chapter, we will be using the hsbdataB file, which is on the CD in the back
of this book. Because this chapter is meant to be an overview and review of EDA, we have formatted the
chapter to be read rather than as a series of problems for you to solve, as is done in chapters 4-10.
However, we have provided the syntax and parts of the SPSS outputs if you decide that you want to
actually run these problems with SPSS.

See Appendix B for instructions if you need help with this or getting started with SPSS. Appendix B also
shows how to set your computer to print the SPSS syntax on the output.

Using all of the HSB variables that were labeled as ordinal or scale in the SPSS Variable View, it is
important to see if the means make sense (are they close to what you expected?), to examine the
minimum and maximum values of the data, and to check the shape of the distribution (i.e., skewness
value). One way to check these is with the SPSS Descriptive command. Examining your data to see if the
variables are approximately normally distributed, an assumption of most of the parametric inferential
statistics that we will use, is important. To understand if a variable is normally distributed, we compute
the skewness index, which helps determine how much a variable’s distribution deviates from the
distribution of the normal curve. Skewness refers to the lack of symmetry in a frequency distribution.
Distributions with a long “tail” to the right have a positive skew and those with a long tail on the left have
a negative skew. If a frequency distribution of a variable has a large (plus or minus) skewness value, that
variable is said to deviate from normality. Some of the statistics that we will use later in the book are
robust or quite insensitive to violations of normality. Thus, we will assume that it is okay to use them to
answer most of our research questions as long as the variables are not extremely skewed.

The Descriptives command will make a compact, space-efficient output. You could instead run the
Frequencies program because you can get the same statistics with that command. (We will use the
Frequencies command later in the chapter.) Now we will compute the mean, standard deviation,
skewness, minimum, and maximum for all participants or cases on all the variables that were called
ordinal or scale under measure in the SPSS Data Editor Variable View. We will not include the nominal
variables (ethnicity and religion) or gender, algebral, algebra2, geometry, trigonometry, calculus, and
math grades, which are dichotomous variables.

First, we compute descriptive statistics for all of the variables that were called ordinal. These include
Jather’s education, mother’s education, grades in h.s., and all the item variables (item 01 through item
14), math courses taken, mother’s education revised, father’s education revised, and parents’ education.

Next, we run Descriptives for the scale variables: math achievement, mosaic, visualization, visualization
retest, scholastic aptitude test-math, competence, motivation, and pleasure scale.
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Output 2.1a: Descriptives for the Ordinal Variables

DESCRIPTIVES

VARIABLES=faed maed grades item0l item02 item03 item04 item0S item06 item07 it

em08 item09 iteml0 itemll iteml2 iteml3
iteml4 mathcrs maedRevis faedRevis parEduc Syntax or log file shows
/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS . the variables and statistics
ted.
Descriptive Statistics that you reques
Skewness
N Minimum [ Maximum Mean Std. Deviation | Statistic | Std. Error
father's education 73 2 10 4.73 2.830 .684 .281
mother's education 75 2 10 4.11 2.240 1.124 277
grades in h.s. 75 2 8 5.68 1.570 -.332 277
item01 motivation 74 1 4 2.96 .928 -.763 279
item02 pleasure 75 1 4 3.52 906 | -1.910 277
item03 competence 74 1 4 2.82 .897 -.579 279
item04 low motiv 74 1 4 2.16 922 422 279
item05 low comp 75 1 4 1.61 971 1.581 277
item06 low pleas 75 1 4 243 975 -.058 .277
item0Q7 motivation 75 1 4 2.76 1.051 -.433 277
item08 low motiv 75 1 4 1.95 914 653 277
item09 competence 74 1 4 3.32 .760 -1.204 279
item10 low pleas 75 1 4 141 737 1.869 277
item11 low comp 75 1 4 1.36 .747 2.497 277
item12 motivation 75 1 4 3.00 822 -.600 277
item13 motivation 75 1 4 267 794 -.320 277
item14 pleasure 75 1 4 2.84 717 -.429 277
math courses taken 75 0 5 2.1 1.673 325 277
father's educ revised 73 1.00 3.00 1.7397 .85028 1.162 277
mother's educ revised 75 1.00 3.00| 1.4667 .68445 .533 .281
parents’ education 75 2.00 10.00 | 4.3933 2.31665 .923 277
Valid N (listwise) 69
Output 2.1b: Descriptives for Variables Labeled as Scale
DESCRIPTIVES
VARIABLES=mathach mosaic visual visual2 satm competence motivation pleasure
/STATISTICS=MEAN STDDEV MIN MAX .
Descriptive Statistics
Skewness
N Minimum | Maximum | Mean | Std. Deviation | Statistic | Std. Error
math achievement test 75 -1.67 23.67 | 12.5645 6.67031 .044 277
mosaic, pattern test 75 4.0 56.0 27.413 9.5738 529 277
visualization test 75 -25 14.75 | 5.2433 3.91203 .536 277
visualization retest 75 .00 9.50 4.5467 3.01816 235 277
scholastic aptitude test - math 75 250 730} 490.53 94,553 .128 277
competence scale 73 1.00 400 3.2945 .66450 -1.634 .281
motivation scale 73 1.17 4.00 2.8744 .63815 -.570 .281
pleasure scale 75 1.50 4.00 3.1300 .60454 -.682 277
Valid N (listwise) 71
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Interpretation of Outputs 2.1a and 2.1b

These outputs provide descriptive statistics for all of the variables labeled as ordinal (2.1a) and scale
(2.1b). Notice that the variables are listed down the left column of the outputs and the requested
descriptive statistics are listed across the top row. The descriptive statistics included in the output are the
number of subjects (N), the Minimum (lowest) and Maximum (highest) scores, the Mean (or average)
for each variable, the Std. (the standard deviation), and the Skewness statistic and the Std. Error of the
skewness. Note, from the bottom line of the outputs, that the Valid N (listwise) is 69 for Output 2.1a
and 71 for 2.1b rather than 75, which is the number of participants in the data file. This is because the
listwise N only includes the persons with #o missing data on any variable requested in the output.

Notice that several variables (e.g., father s education and item01 in 2.1a, and motivation and competence
in 2.1b) each have one or two participants with missing data.

Using your output to check your data for errors. For both the ordinal and scale variables, check to
make sure that all Means seem reasonable. That is, you should check your means to see if they are
within the ranges you expected (given the information in your codebook and your understanding of the
variable). Next, check the output to see that the Minimum and Maximum are within the appropriate
(codebook) range for each variable. If the minimum is smaller or the maximum is bigger than you
expected (e.g., 100 for a variable that only has 1-50 for possible values), then you should suspect that
there was an error somewhere and you need to check it out. Finally, you should check the NV column to
see if the Ns are what you were expecting. If it happens that you have more participants missing than
you expected, check the original data to see if some were entered incorrectly. Notice that competence
scale and motivation scale each have a few participants missing.

Using the output to check assumptions. The main assumption that we can check from this output is
normality. We won’t pay much attention to the skewness for item 01 to item 14 and mother’s and
father’s education revised. These ordinal variables have fewer than five levels, so they will not be
considered to be scale even though some of them are not very skewed. We will not use the “items” as
individual variables because we will be combining them to create summated variables (the motivation
and competence and pleasure scales) before using inferential statistics.

From Output 2.1a, we can see that, of the variables with five or more levels that we called ordinal, four
of them (father’s education, grades in h.s., math courses taken, and parent’s education) are
approximately normally distributed; that is, they have five or more levels and have skewness values
between ~1 and 1. Thus, we can assume that they are more like scale variables, and we can use
inferential statistics that have the assumption of normality. To better understand these variables, it may
be helpful to change the Measure column in the Variable View so that these four variables will be
labeled as scale. Note that mother 's education, with a skewness statistic of 1.12, is more skewed than is
desirable.

For the variables that were labeled as scale, indicating our belief that they were normally distributed, we
can now check this assumption. Look at the skewness value in Output 2.1b to see if it is between —1 and
1. From the output we see that most of these variables have skewness values between —1 and 1, but
competence at 1.63 is quite skewed.

There are several ways to check this assumption in addition to checking the skewness value. If the
mean, median, and mode, which can be obtained with the Frequencies command, are approximately
equal, then you can assume that the distribution is approximately normally distributed. For example, the
mean (490.53), median (490.00), and mode (500) for scholastic aptitude test- math are very similar
values, and the skewness value is .128 (see Output 2.1b). Thus, we can assume that S4T-math is

approximately normally distributed.
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In addition to numerical methods for understanding your data, there are several graphical methods. SPSS
can create histograms with the normal curve superimposed and also frequency polygons (line graphs) to
roughly assess normality. The trouble is that visual inspection of histograms can be deceiving because
some approximately normal distributions don’t look very much like a normal curve.

Boxplots of One or Several Variables

Boxplots and stem-and-leaf plots can be used to examine some HSB variables. Boxplots are a method of
graphically representing ordinal and scale data. They can be made with many different combinations of
variables and groups. Using boxplots for one, two, or more variables or groups in the same plot can be
useful in helping you understand your data.

Output 2.2a: Boxplot of Math Achievement Test

EXAMINE
VARIABLES=mathach
/PLOT BOXPLOT
/COMPARE GROUP
/STATISTICS NONE
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

Explore

&
B
i

4004

Next we will create a boxplot with more than one variable in the same plot.

Output 2.2b: Boxplots of Competence and Motivation Scales

EXAMINE
VARIABLES=motivation competence
/PLOT BOXPLOT
/COMPARE VARIABLES
/STATISTICS NONE
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
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Explore
T —

Notice that there are three
outliers for competence and one
for motivation in these boxplots.

Interpretation of Outputs 2.2a and 2.2b

Outputs 2.2a and 2.2b include boxplots generated from the Explore command. We did not include
the Case Processing Summary tables that show the Valid NV, Missing cases, and Total cases. In
Output 2.2a, for math achievement, the valid N is 75, and there are no missing cases. The plot in
Output 2.2a includes only one boxplot for our requested variable of math achievement. Each “box”
represents the middle 50% of the cases, and the “whiskers” at the top and bottom of the box indicate
the “expected” top and bottom 25%. If there were outliers there would be “O”s and if there were
really extreme scores they would be shown with asterisks, above or below the end of the whiskers.
Notice that there are not any Os or *s in the boxplot in Output 2.2a.

For Output 2.2b, notice that there are two separate boxplots, one for competence and one for
motivation. As indicated by the Os at or below the lower whiskers, the boxplot for competence
shows there are three outliers, and the boxplot for motivation indicates there is one outlier.

Using your output to check your data for errors. If there are Os or asterisks, then you need to check
the raw data or score sheet to be sure there was not an error. The numbers next to the Os indicate
which participants these scores belong to. This can be helpful when you want to check to see if these
are errors or if they are the actual scores of the subject.

Using the output to check your data for assumptions. Boxplots can be useful for identifying
variables with extreme scores, which can make the distribution skewed (i.e., nonnormal). Also if
there are few outliers, if the whiskers are approximately the same length, and if the line in the box is
approximately in the middle of the box, then you can assume that the variable is approximately
normally distributed. Thus, math achievement (Output 2.2a) is near normal, motivation (2.2b) is
approximately normal, but competence (2.2b) is quite skewed and not normal.

Boxplots Split by a Dichotomous Variable

If you use the syntax below, you will get an output file complete with separate statistics, stem-and-leaf
plots, and boxplots for males’ and females’ math achievement scores. This is useful if you want to see if
the distributions of scores are very different for the two groups, which would suggest heterogeneity of
variances.
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Output 2.3: Boxplots Split by Gender With Statistics and Stem-and-Leaf Plots

EXAMINE
VARIABLES=mathach BY gender
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE

/NOTOTAL.
Explore
Descriptives
gender Statistic Std. Eror |
math achievement test ( male> Mean C 147550 5 1.03440
95% Confidence Lower Bound ;
Interval for Mean
Upper Bound 16.8595
5% Trimmed Mean 14.8454
Median 14.3330
Variance 36.379 D
Std. Deviation
Note that we have circled, for Minimum 3.67
males and for females, three Maximum 237
key statistics: mean, variance, :“t‘e‘:’ o R o :0%:
nterqua ange .
and skewness. Skewness 403
__J Kurtosis =86 .788
C female 5 Mean 10.7479 1.04576
85% Confidence Lower Bound X
interval for Mean
Upper Bound 12.8615
5% Trimmed Mean 10.6454
Median
Variance 44,838
Std. Deviation
Minimum 17
Maximum 23.7
Range 25.3
Interquartile Range 10.5000
Skewness (::::) .369
Kurtosis -.698 724

math achievement test
Stem-and-Leaf Plots

math achievement test Stem-and-Leaf Plot for
GEND= male

Frequency &
1.00 3

11 persons (Frequency) had stems
of 1 (scores between 10 and 14).
One had 10, 2 had 11, etc.

o .
7.00 0 . 5557799
11.00 1 . 01123444444
7.00 1 . 5578899
8.00 2 . 11123333
Stem width: 10.0
Each leaf: 1 case(s)

math achievement test Stem-and-Leaf Plot for
GEND= female
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Frequency Stem & Leaf

1.00 -0, 1 1 person had a negative
7.00 0 . 1123344 score (stem — 0) of -1.
12.00 0 . 555666778999
11.00 1 . 00002334444
5.00 1. 77779
5.00 2 . 02233
Stem width: 10.0
Each leaf: 1 case(s)

25004
E 20.00 -
=
E el Median
E 10.00+
£
8 s00
§ oo |
00 . r Count
male femaie female = 41
gender male = 34
Interpretation of Output 2.3

The first table under Explore provides descriptive statistics about the number of males and females
with Valid and Missing data. Note that we have 34 males and 41 females with valid math
achievement test scores.

The Descriptives table contains many different statistics for males and females separately, some of
which (e.g., kurtosis) are not covered in this book. Note that the average math achievement test score
is 14.76 for the males and 10.75 for females. We will discuss the variances and skewness below
under assumptions.

The Stem-and-Leaf Plots, for each gender separately, are next. These plots are like a histogram or
frequency distribution turned on the side. They give a visual impression of the distribution, and they
usually show each person’s score on the dependent variable (math achievement). The stem is the first
digit of the score and the leaf is the second digit. Note that the legend indicates that Stem width
equals 10. This means that entries that have 0 for the stem are less than 10, with the leaf indicating
the actual number (1-9), those with 1 as the stem range from 10 to 19, etc. Note also that the legend
indicates that each leaf equals one case. Each number in the leaf column represents the last digit of
one person’s math achievement score. The numbers in the Frequency column indicate how many
participants had scores in the range represented by that stem. Thus, in the male plot, one student had a
stem of 0 and a leaf of 3; that is, a score of 3. The frequency of male students with leafs between 5
and 9 is 7, and there were three scores of 5, two of 7, and two of 9. Eleven participants had a stem of
1 and a leaf of 0 to 4; one had a leaf of 0 (a score of 10); two had scores of 11, one had a score of 13,
and six had a score of 14.

Boxplots are the last part of the output. There are two boxplots (one for males and one for females).
By inspecting the plots, we can see that the median score for males is quite a bit higher than that for
females, although there is some overlap of the boxes and substantial overlap of the full distributions.
We need to be careful in concluding that males score higher than females, especially based on a small
sample of students. In chapter 8, we will show how an inferential statistic (analysis of covariance) can
tell us whether this apparent gender difference is actually due to gender differences in another
variable (number of math courses taken).
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Using the output to check your data for errors. Checking the boxplots and stem-and-leaf plots can
help identify outliers that might be data entry errors. In this case, there aren’t any.

Using the output to check your data for assumptions. As noted in the interpretation of Outputs 2.2a
and 2.2b, you can tell if a variable is grossly nonnormal by looking at the boxplots. The stem-and-
leaf plots provide similar information. You can also examine the skewness values for each gender
separately in the table of Descriptives (see the circled skewness values). Note that for both males
and females, the skewness values are less than one, which indicates that math achievement is
approximately normal for both genders. This is an assumption of the ¢ test and ANOVA, and
multivariate versions of this assumption are required for many of the statistics performed in this book.

The Descriptives table also provides the variances for males and females. A key assumption of
ANOVA and the ¢ test is that the variances are approximately equal (i.e., the assumption of
homogeneity of variances). Note that the variance is 36.38 for males and 44.84 for females. These
do not seem grossly different, and if we did a Levene test on differences between males and females
in variances on this variable, we’d find that the difference is not significantly different (see chapter
10, Morgan, Leech, Gloekner, & Barrett, 2004). Thus, the assumption of homogeneous variances is
not violated. The boxplots and stem-and-leaf plots help you see this.

Using Tables and Figures for EDA with Discrete Variables

Descriptives for Dichotomous Variables

We will now use the Descriptives command for each of the dichotomous variables. Once again, we could

have done Frequencies, with or without frequency tables, but we chose Descriptives. This time we
selected fewer statistics because the standard deviation, variance, and skewness values are not very
meaningful with dichotomous variables.

Output 2.4: Descriptives for Dichotomous Variables
DESCRIPTIVES

VARIABLES=gender algl alg2 geo trig calc mathgr
/STATISTICS= MEAN MIN MAX .

Descriptives
Descriptive Statistics
N Minimum | Maximum Mean

gender 75 0 1 .55
algebra 1 in h.s. 75 0 1 C.m9D
algebra 2 in h.s. 75 0 1 47
geometry in h.s. 75 0 1 48
trigonometry in h.s. 75 0 1 .27
calculus in h.s. 75 0 1 A1
math grades 75 0 1 41
Valid N (listwise) 75

36



Chapter 2 — Data Coding and EDA

Interpretation of Output 2.4

Output 2.4 includes only one table of Descriptive Statistics. Across the top row are the requested
statistics of N, Minimum, Maximum, and Mean. We could have requested other statistics, but
they would not be very meaningful for dichotomous variables. Down the left column are the
variable labels. The N column indicates that all the variables have complete data. The Valid N
(listwise) is 75, which also indicates that all the participants had data for each of our requested
variables.

The most helpful column is the Mean column. You can use the mean to understand what percentage
of participants fall into each of the two groups. For example, the mean of gender is .55, which
indicates that 55% of the participants were coded as 1 (female); thus, 45% were coded 0 (male).
Because the mean is greater than .50, there are more females than males. If the mean is close to 1 or
0 (e.g., algebra 1 and calculus), then splitting the data on that dichotomous variable might not be
useful because there will be many participants in one group and very few participants in the other.

Using your output to check your data for errors. The Minimum column shows that all the
dichotomous variables had “0” for a minimum, and the Maximum column indicates that all the
variables have “1” for a maximum. This is good because it agrees with the codebook.

Frequency Tables

Displaying Frequency tables for variables can help you understand how many participants are in each
level of a variable and how much missing data of various types you have. For nominal variables, most
descriptive statistics are meaningless. Thus, having a frequency table is usually the best way to
understand your nominal variables. We created a frequency table for ethnicity (a nominal variable) and
for father s education (an ordered variable).

Output 2.5 Frequency Tables for a Nominal Variable and an Ordinal Variable

FREQUENCIES
VARIABLES=ethnic faed
/ORDER= ANALYSIS .
Frequencies
ethnicity
Percent | Valid Percent | ~ . 1otive
Frequency — Percent
Valid Euro-Amer 41 54.7 (56.2) 56.2
African-
Amer 15 20.0 205 76.7
Latino-
Amer 10 13.3 13.7 90.4
Asian-Amer 7 9.3 9.6 100.0
Total 73 97.3 100.0
Missing multiethnic 1 1.3
blank 1 1.3
Total 2 27
Total 75 100.0
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father's education
Cumulative
Frequency | Percent | Valid Percent Percent

Valid < h.s. grad 22 29.3 30.1 30.1
h.s. grad 16 21.3 21.9 52.1
< 2 yrs voc 3 4.0 4.1 56.2
2 yrs voc 8 10.7 11.0 67.1
< 2 yrs coll 4 5.3 5.5 726
> 2 yrs coll 1 1.3 14 — | 74% of fathers
coll grad 7 9.3 9.6 83.6 have 2 years or
master's 6 8.0 8.2 91.8 less of college.
MD/PhD 6 8.0 8.2 100.0
Total 73 97.3 100.0

Missing  System 2 27

Total 75 100.0

Interpretation of Output 2.5

There is one Frequency table for ethnicity and one for father’s education. The left-hand column shows
the Valid categories (or levels or values), Missing values, and Total number of participants. The
Frequency column gives the number of participants who had each value. The Percent column is the
percent who had each value, including missing values. For example, in the ethnicity table, 54.7% of all
participants were Euro-American, 20.0% were African-American, 13.3% were Latino-American, and
9.3% were Asian-American. There also were a total of 2.7% missing: 1.3% were multi ethnic, and 1.3
were left blank. The valid percent shows the percentage of those with nonmissing data at each value; for
example, 56.2% of the 73 students with a single valid ethnic group were Euro-Americans. Finally,
Cumulative Percent is the percentage of subjects in a category plus the categories listed above it.

This last column is not very useful with nominal data, but can be quite informative for frequency
distributions with several ordered categories. For example, in the distribution of father’s education, 74%
of the fathers had less than a bachelor’s degree (i.e., they had not graduated from college).

Using your output to check your data for errors. Errors can be found by checking to see if the number
missing is the number you expected. Also, if you have more than one type of missing data, and you
assigned different numbers to these (e.g., 98 and 99), you will see the types listed in the first column.

Using the output to check your data for assumptions. Frequency tables are helpful for checking the
levels of the variable to see if you have subjects in each one. If one of the levels does not have many
subjects in it, it can create problems with difference statistics (see chapter 3 for an explanation of types of
difference statistics).

Bar Charts

With nominal data, you should not use a graphic that connects adjacent categories because with nominal
data there is no necessary ordering of the categories or levels. Thus, it is better to make a bar graph or
chart of the frequency distribution of variables like religion, ethnic group, or other nominal variables; the
points that happen to be adjacent in your frequency distribution are not by necessity adjacent.
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Output 2.6 Frequency Distribution Bar Chart for the Nominal Variable of Religion
FREQUENCIES

VARIABLES=religion /FORMAT=NOTABLE

/BRRCHART FREQ

/ORDER= ANALYSIS

Frequencies

religion

30~
25 -4
T 20
H
15+
4
e 10+
5
0
protestant calhollc no religion
religion
Interpretation of Output 2.6

There are two parts to the output: a statistics table (not shown) and the bar chart. The Statistics table
indicates the valid N and the missing N. The bar chart presents a bar for each level of the nominal
variable. Keep in mind that the order of the bars is arbitrary. The order of the bars can be changed by
clicking on the plot, then clicking on the bars. The Chart Editor Properties box will appear and the level
can be changed within this window.

Using your output to check your data for errors. Errors can be seen if the levels are not what you were
expecting. For example, if you inadvertently entered the wrong number (a number that does not have a
category label), you will see a bar for that number, with the number used as a label for the bar. Also, if
there are no participants for a level, there will not be a bar for that level.

Using the output to check your data for assumptions. Bar charts are helpful if you are unsure how many
categories a variable has; you can count the number of bars. You can also see the number of participants
in each level. It is best if there are approximately the same number of subjects in each level if one wants
to use the variable in procedures like ANOVA and MANOVA.

Some Additional Figures for Scale Variables

Histograms

Histograms (shown in chapter 1) look much like bar charts except in histograms there is no space between
the boxes, indicating that there is a continuous variable theoretically underlying the scores (i.e., scores
could theoretically be any point on a continuum from the lowest to highest score). Histograms can be used
even if data, as measured, are not continuous, if the underlying variable is conceptualized as continuous.
For example, the competence scale items were rated on a 4-point scale, but one could, theoretically, have
any amount of competence.
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Frequency Polygons
Output 2.7 is a frequency polygon; it connects the points between the categories, and is best used with
approximately normal data, but it can be used with ordinal data.

Output 2.7. Frequency Polygon Showing Approximately Normal Data

GRAPH
/LINE (SIMPLE)=COUNT BY motivation .

Graph

Count
ki

T LA L ] Li 1 ¥ L} 1
mlmlm lz.alz.rlsnla;s'a]]w
12 47 20 25 28 32 .35 38
Motivation scale

Interpretation of Output 2.7

The frequency polygon presents frequency counts for one variable (listed along the bottom; motivation
scale in this example). Each level of the variable is listed along the bottom and the counts are listed along
the side. We can see from this frequency polygon that the largest number of participants had a motivation
level of 2.8 (12), and only one person had scores of 1.2 and 1.3.

Using your output to check your data for errors. Errors can be seen with the frequency polygon if there
are values you were not expecting or if there are larger or smaller counts than you were expecting.

Using the output to check your data for assumptions. We can see that the data are somewhat normally
distributed because the highest counts are in the middle, with smaller counts on either end. We would still
want to check skewness values as well.

Matrix Scatterplots

To check linearity and get a visual idea about whether there is likely to be a problem with
multicollinearity (see chapter 6), we can do matrix scatterplots. In this example, we used math
achievement, math courses taken, pleasure scale, and mosaic pattern test.

To develop a scatterplot of math achievement, math courses taken, pleasure scale, and mosaic pattern
test, follow these commands:

Graphs => Scatter.
Click on Matrix.
Click on Define.

Now, move math achievement, math courses taken, pleasure scale, and mosaic pattern test to the
Matrix Variables box.

¢ Click on OK. You will get Output 2.8, the matrix scatterplot with circles for the data points.
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e To change the circles to the Xs (as we have below) double click on a data point (one of the circles).
This will open the Chart Editor. Double click again on one of the circles in the Chart Editor. This
will open the Properties window.

In the Properties window, click on the arrow under Type. Select the X.
Click on Apply and then Close.
Close the window for the Chart Editor to get back to the Qutput window.

Output 2.8: Matrix Scatterplot
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Interpretation of Output 2.8

The matrix scatterplot command in Output 2.8 creates multiple bivariate scatterplots. It is most helpful to
create a matrix scatterplot when you need to understand the relationships among several variables. In a
scatterplot, each X (or O) represents a data point. There are six bivariate scatterplots in the Output 2.8.
Keep in mind that there are duplicate relationships shown (i.e., there are two bivariate scatterplots for
each pair of variables); you should look at one side or the other of the empty boxes.
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Using your output to check your data for errors. At times, there might be a data point that is extreme;
there might be one that is not at all close to the other data points. If this is the case, it might be an outlier
or it might be an error.

Using the output to check your data for assumptions. The clusters or clouds of Xs can be examined for
the assumption of linearity. If a straight line can be drawn so that most of the Xs lie relatively close to it,
we can assume that the two variables are related in a linear fashion (e.g., see math achievement and math
courses taken indicated with an A in Qutput 2.8). If the Xs are not in any order or if they appear to be
spread out in a cloud (e.g., see pleasure and math courses taken, indicated with an B in Output 2.8), we
can assume that there is no relationship between the variables. If a scatterplot shows little relationship
between two predictors, this means there is little chance of collinearity involving these variables. If it
relates a predictor and a dependent variable, it means that the predictor is unlikely to contribute much to
predicting the dependent variable.

However, when the clusters appear to be creating a curve, rather than a straight line, we can assume the
variables might be related in a curvilinear fashion. We would not want to use them in computing a
statistic that has the assumption of linearity without fixing this problem first by transforming one or both
of the variables, as shown below.

Transforming Variables

If the variables do not meet the assumptions, we might consider transformation. Transformations usually
increase the difficulty of interpretation of the data and may change the results of the study, so you need to
be sure you really need to transform the data and also that you will be able to interpret the transformed
variable in your writing.

Finding the best transformation for a variable may be guided by certain guidelines, but often trial and
error is needed to determine if the transformation was successful. The most common transformations,
what the transformation can fix, and the SPSS syntax commands are listed below. If you do not know
which transformation is best, start where the arrow is on the figure and go up one row. After you
transform a variable, you need to rerun the assumptions to see if the newly transformed variable meets the
assumptions. If not, go down one row and check assumption. If assumptions are not met, go up two
rows, etc.

When to use Transformation SPSS Syntax
Start To reduce negative skew X VAR=(X)**3
here. X2 VAR=(X)**2
- Non transformed variable X
log X VAR=LG10(X)
To reduce positive skew VX VAR=SQRT(X)
1/X VAR=1/(X)
1/X* VAR=1/(X)**2
To stretch both tails of the Arcsine X VAR=ARSIN(X)
distribution (proportion data)
Note: Nontransformed
variable=X

Fig. 2.1. Transformation ladder.
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You can do transformations either through the point and click method or with syntax. If you want to
compute X°, X2, or 1/X%, you have to either type in the expression as written or use syntax because these
functions are not available as specific choices in the Compute command.

To use the point and click method, follow these commands.

¢ Transform => Compute. The Compute Variable window will open. Type a name for the new
variable in the Target Variable box => Click on Type & Label => The Compute Variable: Type
and Label window will open => Scroll down the Functions box => Find the function you want to try
(see Fig. 2.1 for assistance in choosing) and click on it => Click on the arrow above the box to move
the function into the Numeric Expression box => Click on the variable you are interested in
transforming => Click on the arrow to move it to the Numeric Expression box => OK. If the
transformation is not listed under Functions, then you can just type it into the Numeric Expression
box, or you can type it into the syntax listing. The new variable you computed will appear in the far
right column in the Data View window. To see if the transformation was successful, retest the
assumptions.

To use syntax, follow the guidelines below.

Replace “SQRT” with the
chosen command from
Fig. 2.1.

Put the old variable name here.

yd

/

COMPUTE VAR = SQRT(oldvéblename) ;
VARIABLE LABELS VAR 'Label for New Var
EXECUTE .

This is where you
should add the new
label for your variable.

e' .

Output 2.9 Transformation of Competence

COMPUTE VAR = (competence)**2 ,
VARIABLE LABELS VAR 'SquaredComp' .
EXECUTE .
DESCRIPTIVES
VARIABLES=VAR
/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS .

Descriptive Statistics
N Minimum | Maximum Mean Std. Skewness
Statistic Statistic Statistic Statistic Statistic Statistic | Std. Error
SquaredComp 73 1.00 16.00 11.2894 3.73342 -.911 281
Valid N (listwise) 73

COMPUTE VAR = (competence)**3 .
VARIABLE LABELS VAR 'CubedComp' .

EXECUTE .
DESCRIPTIVES
VARIABLES=VAR

/STATISTICS=MEAN STDDEV MIN MAX SKEWNESS .
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Descriptive Statistics
N Minimum__ | Maximum Mean Std. Skewness
Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
CubedComp 73 100 | 64.00 39.6027 | 17.16401 -.445 .281
Valid N (listwise) 73
Interpretation of Output 2.9

As shown in Output 2.1b, competence is negatively skewed (skewness = -1.634). In order to use this
variable with statistics that require a normally distributed variable, we needed to transform it. Since
competence is negatively skewed, we chose to square it to see if it would be less skewed. Output 2.9
shows the syntax for transforming competence by squaring it. After squaring, the skewness =-.911. We
might have stopped there, but -.911 is very close to — 1.0, and we want it not to be skewed even this
much, so we transformed it by cubing (the original values). After transforming, the skewness value is -
445, which is still slightly skewed, but now falls well within the recommended guidelines of < |1| (greater
than -1 and less than +1).

Interpretation Questions

2.1 Using Outputs 2.1a and 2.1b: a) What is the mean visualization test score? b) What is the range
for grades in h.s.? ¢) What is the minimum score for mosaic pattern test? How does this
compare to the values for that variable as indicated in chapter 1? Why would this score be the
minimum?

22 Using Outputs 2.1b: a) For which of the variables that we called scale is the skewness statistic
more than +/- 1.00? b) Why is the answer important? c) How many participants have some
missing data? (Hint: Check chapter 1 if you don’t remember the sample size.) e) What percent of
students have a valid (non-missing) motivation or competence score? f) Can you tell from Output
2.1b how many are missing both motivation and competence scores?

23 Using Output 2.4: a) Can you interpret the means? Explain. b) How many participants are there
all together? c) How many have complete data (nothing missing)? d) What percent are male (if
male=0)? ¢) What percent took algebra I1?

2.4  Using Output 2.5: a) 9.6% of what set of participants are Asian-American? b) What percent of

students have fathers who had a high school education or less? c) What percent had fathers with a
master’s degree or higher?

25 In Output 2.8: a) Why are matrix scatterplots useful? What assumption(s) are tested by them?
Extra SPSS Problems

Using the College Student data file, do the following problems. Print your outputs and circle the key
parts of the output that you discuss.

2.1 For the variables with five or more ordered levels, compute the skewness. Describe the results.

Which variables in the data set are approximately normally distributed/scale? Which ones are
ordered but not normal?
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Do a stem-and-leaf plot for same-sex parent’s height split by gender. Discuss the plots.

Which variables are nominal? Run Frequencies for the nominal variables and other variables with
fewer than five levels. Comment on the results.

Do boxplots for student height and for hours of study. Compare the two plots.
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CHAPTER 3

Selecting and Interpreting Inferential Statistics

To understand the information in this chapter, it may be necessary to remember or to review the sections
in chapter 1 about variables and levels of measurement (nominal, dichotomous, ordinal, and
approximately normal/scale). It is also necessary to remember the distinction we made between
difference and associational research questions and between descriptive and inferential statistics. This
chapter focuses on inferential statistics, which as the name implies, refers to statistics that make
inferences about population values based on the sample data that you have collected and analyzed. What
we call difference inferential statistics lead to inferences about the differences (usually mean
differences) between groups in the populations from which the samples were drawn. Associational
inferential statistics lead to inferences about the association or relationship between variables in the
population. Thus, the purpose of inferential statistics is to enable the researcher to make generalizations
beyond the specific sample data. Before we describe how to select and interpret inferential statistics, we
will introduce design classifications.

General Design Classifications for Difference Questions

Many research questions focus on whether there is a significant difference between two or more groups
or conditions. When a group comparison or difference question is asked, the independent variable and
design can be classified as between groups or within subjects. Understanding this distinction is one
essential aspect of determining the proper statistical analysis for this type of question.

Labeling difference question designs. Brief descriptive labels identify the design for other researchers
and also guide us toward the proper statistics to use. We do not have design classifications for the
descriptive or associational research questions, so this section only applies to difference questions.
Designs are usually labeled in terms of (a) the overall type of design (between groups or within subjects),

(b) the number of independent variables, and (c) the number of levels within each independent variable.

Between-groups designs. These are designs where each participant in the research is in one and only one
condition or group. For example, there may be three groups (or levels or values) of the independent
variable, treatment type. If the investigator wished to have 20 participants in each group, then 60
participants would be needed to carry out the research.

Within subjects or repeated measures designs. These designs are conceptually the opposite of between
groups designs. In within subjects designs, each participant in the research receives or experiences all of
the conditions or levels of the independent variable. These designs also include examples where the
participants are matched by the experimenter or in some natural way (e.g., twins, husband and wife, or
mother and child). When each participant is assessed more than once, these designs are also referred to
as repeated measures designs. Repeated measures designs are common in longitudinal research and
intervention research. Comparing performance on the same dependent variable assessed before and after
intervention (pretest and posttest) is a common example of a repeated measures design. We might call the
independent variable in such a study “time of measurement.” The HSB study did not really have a
within-subjects aspect to the design. However, one of the variables is repeated (visualization with two
levels: visualization test and visualization retest) and one is within (education, each student has both a
mother’s education and father’s education). To demonstrate a within subjects design and the use of
repeated measured ANOVA, we will use another data set, called Product Data, that is found on the
CD in this book. This small data set has within subjects data ratings by each participant, one for each

46



Chapter 3 — Selecting and Interpreting Inferential Statistics

of four different products (e.g., DVDs, but they could be any four stimuli). The same types of analysis
could be done if, instead of each participant rating four different products in the same session, the ratings
were done for satisfaction with the same product at four times. In that case, the data would be repeated
measures data. In addition, to demonstrate a doubly multivariate design, in which there are repeated
assessments of several measures, we will use the data set called mixedMANOV Adata.

Single factor designs. If the design has only one independent variable (in either a between groups design
or a within subjects design), then it should be described as a basic or single factor or one-way design.
(“Factor” and “way” are other names for difference independent variables.) For example, a between
groups design with one independent variable that has four levels is a single factor or one-way between
groups design with four levels. If the design is a within subjects design with four levels, then it would be
described as a single factor, repeated measures design with four levels (e.g., the same test being given
four times).

Between groups factorial designs. When there is more than one group difference independent variable,
and each level of each factor (independent variable) is possible in combination with each level of each of
the other factors, the design is called factorial. For example, a factorial design could have two
independent variables (i.e., factors) gender and ethnicity, allowing for male and female members of each
ethnic group. In these cases, the number of levels of each factor (independent variable) becomes
important in the description of the design. If gender had two levels (i.e., males and females) and
ethnicity had three levels (i.e., Caucasian, Hispanic, and African-American), then this designisa2 x 3
between groups factorial design.

Mixed factorial designs. If the design has a between groups variable and a within subjects independent
variable, it is called a mixed design. For example, say the independent variables are gender (a between-
groups variable) and time of measurement (with pretest and posttest as within-subjects levels); this is a 2
X 2 mixed factorial design with repeated measures on the second factor. The mixed design is common in
experimental studies with a pretest and posttest.

Remember, when describing a design, that each independent variable is described using one number,
which is the number of levels for that variable. Thus a design description with two numbers (e.g., 3 x 4)
has two independent variables or factors, which have three and four levels, respectively. The dependent
variable is not part of the design description, so it was not considered in this section.

Selection of Inferential Statistics

It is time to think about how to decide which of the many possible inferential statistics to use. Because
many statistical tests are introduced, don’t be concerned if you don’t know about all of the tests
mentioned. You should come back to this chapter later, from time to time, when you have to make a
decision about which statistic to use, and by then, the tests will be more familiar.

In Fig 3.1, we present eight steps to guide you in the selection of a proper statistical test for data analysis.
Remember that difference questions compare groups and utilize the statistics, which we call difference
inferential statistics. These statistics (e.g., # test and analysis of variance) are shown in Tables 3.1 and
3.3.

Associational questions utilize what we call associational inferential statistics. The statistics in this
group examine the association or relationship between two or more variables and are shown in Tables 3.2
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and 3.4. This distinction is somewhat of a simplification. There is often more than one possible statistic

that can be used.

1. How many variables are there in your
research question or hypothesis?

Two.

v

Three or more.

A

2. Use Table 3.1 if the
IV is nominal or has two
to four levels. Then
determine:

a.) No. of levels of TV,
b.) Design — between or
within,

¢.) Measurement of DV.

3. Use Table 3.2
(or 3.1) bottom
rows if both

variables are
nominal.

4. Use Table 3.2 (top
rows) if both variables
have five or more
ordered levels.

How many dependent
variables are there?

One DV considered
at a time.

y

|

Is the DV

normal/scale?

Two or more
moderately related DVs
considered together.

Yes.

A 4

No.

A

Y

5. Use Table 3.3
top row if the IVs
are nominal or

have a few
ordered levels.

6. Use Table 3.4
top row if IVs
(predictors) are

normal/scale or

7. Use Table 3.4 (or
3.3) bottom row if
DV is nominal or
dichotomous.

8. Use the general
linear model to do
MANOVA. See
chapter 10.

dichotomous.

Fig. 3.1. A decision tree to help select an appropriate inferential statistic from Tables 3.1 to 3.4.

Using Tables 3.1 to 3.4 to Select Inferential Statistics
As with research questions and hypotheses discussed in chapter 1, we divide inferential statistics into
basic and complex. For basic (or bivariate) statistics, there is one independent and one dependent
variable and you will use Table 3.1 or 3.2. These basic statistics are discussed in more detail in our
companion book, Morgan, Leech, Gloeckner, and Barrett (2004). For complex statistics, there are three
or more variables. We decided to call them complex rather than multivariate, which is more common in
the literature, because there is not unanimity about the definition of multivariate, and several complex
statistics (e.g., factorial ANOVA) are not usually classified as multivariate. For complex statistics, you
will use Tables 3.3 or 3.4. The complex statistics shown in Tables 3.3 and 3.4 are discussed in the
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remaining chapters in this book, and assignments and outputs are given demonstrating how to compute
them using SPSS 12. There are other statistics, but these four tables include most of the inferential
statistics that you will encounter in reading research articles. Note that the boxes in the decision tree are
numbered to correspond to the numbers in the text below, which expands some on the decision tree or
flowchart.

1. Decide how many variables there are in your research question or hypothesis. If there are only two
variables, use Tables 3.1 or 3.2. If there is more than one independent and/or more than one dependent
variable (i.e., three or more variables) to be used in this analysis, use Tables 3.3 and 3.4.

Basic (Two variable) Statistics

2. If the independent variable is nominal (i.e., has unordered levels) or has a few (2-4) ordered levels,
use Table 3.1. Then, your question is a basic difference question to compare groups. You must then
determine: (a) whether there are two or more than two levels (also called categories or groups or
samples) of your independent variable, (b) whether the design is between groups or within subjects, and
(c) whether the measurement of the dependent variable is (i) normal/scale and parametric assumptions
are not markedly violated, or (ii) ordinal, or (iii) nominal or dichotomous. The answers to these
questions lead to a specific box in Table 3.1 and statistics such as independent or paired sample # tests,
one-way ANOVA, chi-square and several other nonparametric tests.

3. If both variables are nominal or dichotomous, you could ask either a difference question (use the
bottom row of Table 3.1, e.g., chi-square) or an associational question and use the bottom row of Table
3.2 (phi or Cramer’s V). Note, in the second to bottom row of Table 3.2, we have included eta; an
associational statistic used with one nominal and one normal or scale variable. We will later see it used
as an effect size measure with ANOVAs. There are many other nonparametric associational measures,
some of which are in Table 3.2.

4, If both variables have many (we suggest five or more) ordered levels, use Table 3.2 (top two rows).
Your research question would be a basic two variable (bivariate) associational question. Which row you
use depends on both variables. If both are normal/scale, then you would probably select the Pearson
product moment correlation or bivariate regression (top row). Regression should be used if one has a
clearly directional hypothesis, with an independent and dependent variable. Correlation is chosen if one
is simply interested in how the two variables are related. If one or both variables are ordinal (ranks or
grossly skewed), or if other assumptions are markedly violated, the second row (Kendall’s tau or
Spearman rho) is a better choice.

Complex (3 or more variable) Questions and Statistics

It is possible to break down a complex research problem or question into a series of basic (bivariate)
questions and analyses. However, there are advantages to combining them into one complex analysis;
additional information is provided and a more accurate overall picture of the relationships is obtained.

5. If you have one normally distributed (scale) dependent variable and two (or perhaps three or four)
independent variables, each of which is nominal or has a few (2-4) ordered levels, you will use the top
row of Table 3.3 and one of three types of factorial ANOVA. These analysis of variance (ANOVA)
statistics answer complex difference questions.

Note, in Table 3.3, that there are no complex difference statistics in SPSS designed to be used when the

dependent variable is ordinal. Loglinear analysis is a nonparametric statistic similar to the between
group factorial ANOVA when all the variables are nominal or dichotomous (see Table 3.3).
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Table 3.1. Selection of an Appropriate Inferential Statistic for Basic, Two Variable, Difference
Questions or Hypotheses

One Factor or Independent Variable One Independent Variable
with 2 Levels or 3 or more Levels
Categories/Groups/Samples or Groups
Scale Independent Repeated Independent Repeated
of Measurement Samples or Measures Samples or Measures
of Dependent COMPARE Groups or Related Groups or Related
Variable ¥ (Between) Samples (Between) Samples
(Within) (Within)
Dependent INDEPENDENT
Variable SAMPLES PAIRED ONE-WAY GLM
Approximates t TEST SAMPLES ANOVA REPEATED
Normal /Scale Data MEANS ch. 10 or t TEST QRG MEASURES
and Assumptions ONE-WAY QRG ANOVA
Not ANOVA ch.9
Markedly Violated QRG
Dependent
Variables
Clearly Ordinal MEAN MANN- WILCOXON KRUSKAL- FRIEDMAN
or Parametric RANKS WHITNEY QRG WALLIS ch.9
Assumptions QRG QRG
Markedly Violated
Dependent
Variable CHI-SQUARE MCNEMAR CHI-SQUARE COCHRAN
Nominal or COUNTS QRG QRG QRG Q TEST
Dichotomous QRG

QRG = Quick Reference Guide (Appendix A).
Ch. 9 refers to that chapter in this book.

Table 3.2. Selection of an Appropriate Inferential Statistic for Basic, Two Variable, Associational
Questions or Hypotheses *

Level (Scale) _ Two Variables or Scores
of Measurement RELATE for the Same or Related
of Both Variables Subjects
0 ¥
Variables Are Both

Normal /Seale and Assumptions SCORES PEARSON (r) or BIVARIATE

Not Markedly Violated

REGRESSION QRG

Both Variables at Least Ordinal

KENDALL TAU or
Data or Assumptions Markedly RANKS SPEARMAN (Rho)
Violated QRG
One Variable Is Normal /Scale ETA
and One Is Nominal QRG
Both Variables COUNTS PHI or
Are Nominal or Dichotomous CRAMER’'S V
QRG

a. It is acceptable to use statistics that are in the box(es) below the appropriate statistic, but there is

usually some loss of power. It is not acceptable to use statistics in boxes above the appropriate

statistic or ones in another column.

6. Use a MANOVA (second row of Table 3.3) if you have two or more normal (scale) dependent

variables treated simultaneously. MANOVA is a better choice than several ANOV As if the dependent

variables are related statistically and conceptually.
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7. The statistics in Table 3.4 are used to answer complex associational questions. If you have two or
more independent or predictor variables and one normal (scale) dependent variable, the top row of Table
3.4 and multiple regression are appropriate.

8. If the dependent variable is dichotomous or nominal, consult the bottom row of Table 3.4. In general,
logistic regression is used if some or all the independent variables are dichotomous. Discriminant
analysis can best be used if the independent variables are all ordered/scale.

Table 3.3. Selection of the Appropriate Complex (Two or More Independent Variables) Statistic to
Answer Difference Questions or Hypotheses

Two or More Independent Variables
Dependent All Between Mixed
Vnrialble(s) Groups All Within Subjects (Between & Within)
One Normal/ Scale GLM, Factorial GLM GLM With Repeated
Dependent Variable ANOVA or With Repeated Measures on Some Factors
ANCOVA Measures on ch.9*
ch. 8 All Factors
<h. 9*
More Than One GLM, Multivariate GLM Doubly multivariate GLM Doubly multivariate
Normal/Scale Dependent MANOVA or MANOVA With Repeated MANOVA With Repeated
Variable MANCOVA Measures on All Factors Measures on Some Factors
ch. 10 ch.10 ch. 10
Ordinal None None None
Dependent Variable Common Common Common
Dichotomous LOG LINEAR None None
Dependent Variable ORG Common Common

* In chapter 9, both a multivariate analysis (MANOVA) and a univariate analysis are performed.

®In chapter 10, the doubly multivariate example also has a between groups factor, so it is actually a mixed design.

Table 3.4. Selection of the Appropriate Complex Associational Statistic for Predicting a Single
Dependent/Outcome Variable From Several Independent Variables

Several Independent or Predictor Variables
One Dependent or Some Normal All
Outcome Normal or Scale Some Dichotomous Dichotomous
Variable (2 category)
MULTIPLE MULTIPLE MULTIPLE
Normal/Scale REGRESSION REGRESSION REGRESSION
(Continuous) ch. 6 ch. 6 ch. 6
DISCRIMINANT LOGISTIC LOGISTIC
Dichotomous ANALYSIS REGRESSION REGRESSION
ch. 7 ch. 7 ch. 7

Occasionally you will see a research article in which a dichotomous dependent variable was used with a ¢
test, ANOVA, or Pearson correlation. Because of the special nature of dichotomous variables, this is not
necessarily wrong, as would be the use of a nominal (three or more unordered levels) dependent variable
with these parametric statistics. However, we think that it is usually a better practice to use the same
statistics with dichotomous variables that you would use with nominal variables, except that it is
appropriate to use dichotomous independent variables in multiple regression (see Table 3.4).
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Other Multivariate (Complex) Statistics

Not shown, in part because they did not fit the format of the tables, are six complex associational
statistics for analyzing a number of variables at a time, which you may see in the literature. Cronbach’s
alpha, a technique used to assess the internal consistency reliability of multiple item scales, is discussed,
along with some other reliability measures, in chapter 4. In exploratory factor analysis, one postulates
that there is a smaller set of latent variables or constructs. Factor analysis and principal components
analysis, which is used to reduce a relatively large number of variables to a smaller number of groups of
variables, are discussed in chapter 5. Canonical correlation involves correlation of linear combinations
of one set of variables with linear combinations of another set of variables. Thus, it is useful when you
have two sets of variables and want to see the patterns of correlations between the two sets. How to
compute it with syntax is shown in chapter 10.

Because they cannot be computed using SPSS (without the extra program called AMOS), two other
forms of complex statistics are not discussed in this book. Structural equation models (SEM) are
models that describe relationships among latent (unobserved) variables and manifest (observed)
variables. Hierarchical Linear Models (HLM) enable one to model nested data (data in which certain
variables are only present in a subset of one’s data) over time. Both SEM and HLLM provide tests of the
accuracy of proposed models, and both are very useful for drawing better inferences from large sets of
data. However, it is important to realize that, despite the language sometimes used in discussing SEM
and HLM, even they do not enable one to determine causal relationships (e.g., see the APA Task Force
on Statistical Inference report, Wilkinson, et al., 1999, p. 600).

The General Linear Model

Whether or not there is a relationship between variables can be answered in two ways. For example, if
each of two variables provides approximately normally distributed data with five or more levels, then
Fig. 3.1 and Table 3.2 indicate that the statistic to use is either the Pearson correlation or bivariate
regression, and that would be our recommendation. However, some researchers choose to divide the
independent variable into a few categories such as low, medium, and high and then do a one-way
ANOVA. In another example, some researchers who start with an independent variable that has only a
few (say, two to four) ordered categories may choose to do a correlation instead of a one-way ANOVA.
Although these choices are not necessarily wrong, we do not think they are the best practice. In the first
example information is lost by dividing a continuous independent variable into a few categories. In the
second example, there would be a restricted range, which tends to decrease the size of the correlation
coefficient.

In the above examples, we recommended one of the choices, but the fact that there are two choices raises
a bigger and more complex issue. Statisticians point out, and can prove mathematically, that the
distinction between difference and associational statistics is an artificial one, in that ANOVA and
multiple regression using dummy variables are often mathematically the same. In fact, SPSS calculates
ANOVA and MANOVA using this regression approach. The bottom of Fig. 3.2 shows these parallels
and that, although we have made a distinction between difference and associational inferential statistics,
they both serve the purpose of exploring (top box) relationships and both are subsumed by the general
linear model (middle box). Statisticians state that all common parametric statistics are relational. Thus,
the full range of methods used to analyze one continuous dependent variable and one or more
independent variables, either continuous or categorical, are mathematically similar. The model on which
this is based is called the General Linear Model. The idea is that the relationship between the
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independent and dependent variables can be expressed by an equation with weights for each of the
independent/predictor variables plus an error term.

What this means is that if you have a continuous, normally distributed dependent/outcome variable and
five or so levels of an ordered, normally distributed independent variable, it would be appropriate to
analyze it with either bivariate regression or a one-way ANOVA. You will get a similar answer with
regard to the significance level. Note in Fig. 3.1 and Table 3.3 that SPSS uses the GLM to perform a
variety of statistics including factorial ANOVA and MANOVA. Although we recognize that our
distinction between difference and associational parametric statistics is a simplification, we still think it
is useful heuristically. We hope that this glimpse of an advanced topic is clear and helpful.

Explore Relationships

Compare Groups Find Stt'eng‘th of ASSOCiationS

Difference Questions Associational Questions
1 !
Difference Inferential Statistics (t Associational Inferential Statistics
test and ANOVA) (correlation and regression)
\T General Linear Model (GLM)&]

One-way ANOVA with 2~ | Bivariate regression

ordered IV

Independent t-test or one-way I

ANOVA with dichotomous or ~ eta

nominal TV

Factorial ANOVA ~/ Multiple regression

Fig. 3.2. A general linear model diagram of the selection of inferential statistics.

Interpreting the Results of a Statistical Test

In the following chapters, we present information about how to check assumptions, do SPSS analysis,
and interpret complex statistics, and write about them. For each statistic, the SPSS computations produce
a calculated value based on the specific data in your study. SPSS labels them ¢ F, etc. or just value.

Statistical Significance

The calculated value is compared to a critical value (found in a statistics table or stored in the
computer’s memory) that takes into account the degrees of freedom, which are usually based on the
number of participants. Figure 3.3 shows how to interpret any inferential test once you know the
probability level (p or sig.) from the computer or statistics table. In general, if the calculated value of the
statistic (¢, F, etc.) is relatively large, the probability or p is small (e.g., .05, .01, .001). If the probability
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is less than the preset alpha level (usually .05), we can say that the results are statistically significant or
that they are significant at the .05 level or that p <.05. We can also reject the null hypothesis of no
difference or no relationship. Note that, using SPSS computer printouts, it is quite easy to determine
statistical significance because the actual significance or probability level (p) is printed so you do not
have to look up a critical value in a table. SPSS labels this p value Sig. so all of the common inferential
statistics have a common metric. This level is also the probability of a Type I error or the probability of
rejecting the null hypothesis when it is actually true. Thus, regardless of what specific statistic you use,
if the Sig. or p is small (usually less than .05) the finding is statistically significant, and you can reject the
null hypothesis of no difference and assume there is a difference (or no association).

Practical Significance Versus Statistical Significance

Students, and sometimes researchers, misinterpret statistically significant results as being practically or
clinically important. But statistical significance is not the same as practical significance or importance.
With large samples, you can find statistical significance even when the differences or associations are
very small/weak. Thus, in addition to statistical significance, we will examine effect size. It is quite
possible, with a large sample, to have a statistically significant result that is weak (i.e., has a small effect
size). Remember that the null hypothesis is that there is no difference or no association. A significant
result with a small effect size means that we can be very confident that there is some difference or
association, but it is probably small and may not be practically important.

1

Sig. Meaning Null Hypothesis Interpretation
1.00 p=1.00 Don’t Reject Not Statistically Significant

(could be due to chance)

50 p=50 l 1

.06 p=.06

.05 p<.05 Reject Statistically Significant’
{not likely due to chance)

o1 p=01 l l

000  p<.001

1. SPSS uses Sig. to indicate the significance or probability level (p) of all inferential statistics. This is just a sample of Sig. values, which would
be any value from O to 1.

2. p <.05 is the typical alpha level that researchers use to assess whether the null hypothesis should be rejected or not. However, sometimes
researchers use more liberal levels (e.g., .10 in exploratory studies) or more conservative levels (e.g., .01).

3. Statistically significant does not mean that the results have practical significance or importance.

Fig. 3.3. Interpreting inferential statistics using the SPSS Sig.

Confidence Intervals

One alternative to null hypothesis significance testing (NHST) is to create confidence intervals. These
intervals provide more information than NHST and may provide more practical information. Suppose
one knew that an increase in reading scores of 5 points would lead to a functional increase in reading
performance. Two methods of instruction were compared. The result showed that students who used the
new method scored statistically significantly higher than those who used the other method. According to
NHST, we would reject the null hypothesis of no difference between methods and conclude that our new
method is better. If we apply confidence intervals to this same study, we can determine an interval that
contains the population mean difference 95% of the time. If the lower bound of that interval is greater
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than 5 points, we conclude that using this method of instruction would lead to a practical or functional
increase in reading levels. If however, the confidence interval ranged from say 1 to 11, the result would
be statistically significant, but the mean difference in the population could be as little as 1 point, or as big
as 11 points. Given these results, we could not be confident that there would be a practical increase in
reading using the new method.

Effect Size

A statistically significant outcome does not give information about the strength or size of the outcome.
Therefore, it is important to know, in addition to information on statistical significance, the size of the
effect. Effect size is defined as the strength of the relationship between the independent variable and the
dependent variable, and/or the magnitude of the difference between levels of the independent variable
with respect to the dependent variable. Statisticians have proposed many effect size measures that fall
mainly into two types or families: the » family and the d family.

The r family of effect size measures. One method of expressing effect sizes is in terms of strength of
association. The most well-known variant of this approach is the Pearson correlation coefficient, 7.
Using Pearson 7, effect sizes are always less than |1.0], varying between —1.0 and +1.0 with 0
representing no effect and +1 or -1 the maximum effect. This family of effect sizes includes many other
associational statistics as well, such as rho (rs), phi (¢), eta (77 ), and the multiple correlation (R).

The d family of effect size measures. The d family focuses on magnitude of difference rather than
strength of association. If one compares two groups, the effect size (d) can be computed by subtracting
the mean of the second group from the mean of the first group and dividing by the pooled standard
deviation of both groups. The general formula is on the left. If the two groups have equal #s, the pooled
SD is the average of the SDs for the two groups. When »s are unequal, the formula on the right is the
appropriate one.

M _M, M- Mz
d=—0— d=
SD posiea \/(nA-J)SDﬁ+(nB-1)SD§
natng-2

There are many other formulas for 4 family effect sizes, but they all express effect size in standard
deviation units. Thus, a d of .5 means that the groups differ by one half of a pooled standard deviation.
Using d, effect sizes usually vary from 0 to + or - 1 but d can be more than 1.

Issues about effect size measures. Unfortunately, as just indicated, there are many different effect size
measures and little agreement about which to use. Although d is the most commonly discussed effect
size measure for differences, it is not available on SPSS outputs. However, d can be calculated by hand
based on information in the SPSS printout. The correlation coefficient, r, and other measures of the
strength of association such as phi (¢), eta® (%), and B are available in SPSS 12.

There is disagreement among researchers about whether it is best to express effect size as the unsquared
or squared r family statistic (e.g., 7 or 7). It has been common to use the squared versions because they
indicate the percentage of variance in the dependent variable that can be predicted from the independent
variable(s). However, some statisticians argue that these usually small percentages give you an
underestimated impression of the strength or importance of the effect. Thus, we (like Cohen, 1988)
decided to use the unsquared statistics (r, ¢, n, and R) as our r family indexes.
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Although the 4 edition of the Publication Manual of the American Psychological Association (APA,
1994) recommended that researchers report effect sizes, relatively few researchers did so before 1999
when the APA Task Force on Statistical Inference stated that effect sizes should always be reported for
your primary results (Wilkinson & The APA Task Force, 1999). The 5% edition (APA, 2001) adopted
this recommendation of the Task Force, so more and more journal articles discuss the size of the effect as
well as whether or not the result was statistically significant.

Interpreting Effect Sizes A

Assuming that you have computed an effect size measure, how should it be interpreted? Table 3.5
provides guidelines for interpreting the size of the “effect” for five common effect size measures based
on Cohen (1988).

Note that these guidelines are based on the effect sizes usually found in studies in the behavioral
sciences. Thus, they do not have absolute meaning and are only relative to typical findings in these
areas. For that reason, we might suggest using larger than typical instead of large, typical instead of
medium, and smaller than typical instead of small. The guidelines will not apply to all subfields in the
behavioral sciences, and they definitely will not apply to fields where the usually expected effects are
either larger or smaller. It is advisable to examine the research literature to see if there is information
about typical effect sizes on the topic.

Table 3.5. Interpretation of the Strength of a Relationship (Effect Sizes)

General Interpretation of The d Family® The » Family’
the Strength d rand ¢ R 7 (eta)®
of a Relationship
Very Large > 1.00° >.70 70+ A5+
Large .80 .50 Sl 37
Medium .50 30 36 24
Small 20 .10 14 10

* d values can vary from 0.0 to much greater than + or -1.0, but the latter is relatively uncommon.

b # family values can vary from 0.0 to + or — 1.0, but except for reliability (i.c., same concept measured twice), 7 is rarely above .70. In fact,
some of these statistics (e.g., phi) have a restricted range in certain cases; that is, the maximum phi may be less than 1.0.

©Partial etas from SPSS multivariate tests are equivalent to R. Use R column.

4 The numbers in this table should be interpreted as a range of values. For example a d greater than .90 (or less than -.90) would be described as
very large, a d between say .70 and .90 would be called large, and d between say .60 and .70 would be medium to large.

Cohen (1988) provided research examples of what we labeled small, medium, and large effects to support
the suggested d and » family values. Many researchers would not consider a correlation (r) of .5 to be
very strong because only 25% of the variance in the dependent variable is predicted. However, Cohen
argued that a d of .8 (and an r of .5, which he shows are mathematically similar) are “grossly perceptible
and therefore large differences, as (for example is) the mean difference in height between 13- and 18-
year-old girls” (p. 27). Cohen stated that a small effect may be difficult to detect, perhaps because it is in
a less well-controlled area of research. Cohen's medium size effect is "...visible to the naked eye. That
is, in the course of normal experiences, one would become aware of an average difference in IQ between
clerical and semi-skilled workers..." (p. 26).
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Even effect size is not the same as practical significance. Although effect size measures indicate the
strength of the relationship and, thus, are more relevant for practical significance or importance than
statistical significance, they are not direct measures of the importance of a finding. As implied above,
what constitutes a large or important effect depends on the specific area studied, the context, and the
methods used. Furthermore, practical importance always involves a judgment by the researcher and the
consumers (e.g., clinicians, clients, teachers, school boards) of research that takes into account such
factors as cost and political considerations. A common example is that the effect size of taking daily
aspirin and its effect on heart attacks is quite small, but the practical importance is high because
preventing heart attacks is a life or death matter, the cost of aspirin is low, and side effects are
uncommon. On the other hand, a curriculum change could have a large effect size but be judged to not
be practical because of high costs and/or extensive opposition to its implementation.

Steps in Interpreting Inferential Statistics

First, decide whether to reject the null hypothesis. However, that is not enough for a full interpretation.
If you find that the outcome is statistically significant, you need to answer at least two more questions.
Figure 3.4 summarizes the steps described below about how to more fully interpret the results of an
inferential statistic.

Nontechnical Question Statistical Answer
1. Can we be confident that the result is not | »| Ifp is <.05, then reject the null
due to chance? hypothesis.
| |
Yes No | Stop, but’
3

Difference Question® .
Note which group has the higher mean

Associational Question

Note whether 7 is + or -

\4

2. What is the direction of the “effect”?

Difference Question®

H . , | Use d family
3. How large is the effect? ”| (see Table 3.5)
Associational Question®
*If you have a small sample (N), it is possible to have a non- Use r fam11y
significant result (it may be due to chance) and yet a large effect (see Table 3.5)
size. If so, an attempt to replicate the study with a larger sample
may be justified.

P If there arc three or more means or a significant interaction, a post hoc test (c.g., Tukey) will be necessary for complete interpretation.

© Interpretation of effect size is based on Cohen (1988) and Table 3.5. A “large” effect is one that Cohen states is “grossly perceptible.” It is
larger than typically found but does not necessarily explain a large amount of variance. You might use confidence intervals in addition or
instead of effect sizes.

Fig. 3.4. Steps in the interpretation of an inferential statistic.
Second, what is the direction of the effect? Difference inferential statistics compare groups so it is

necessary to state which group performed better. We discuss how to do this in chapters 8, 9 and 10. For
associational inferential statistics (e.g., correlation), the sign is very important, so you must indicate
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whether the association or relationship is positive or negative. We discuss how to interpret correlations
in chapters 4, 5, and 6, as part of the chapters on reliability, factor analysis, and multiple regression.

Third, what is the size of the effect? You should include effect size, confidence intervals, or both in the
description of your results. Unfortunately, SPSS does not always provide effect sizes and confidence
intervals, so for some statistics we will have to compute or estimate the effect size by hand.

Fourth, but not shown in Fig. 3.4, the researcher or the consumer of the research should make a judgment
about whether the result has practical or clinical significance or importance. To do so, they need to take
into account the effect size, the costs of implementing change, and the probability and severity of any
side effect or unintended consequences.

An Example of How to Select and Interpret Inferential Statistics

As a review, we now provide an extended example based on the HSB data. We will walk you through
the process of identifying the variables, research questions, and approach, and then show how we
selected appropriate statistics and interpreted the results.

Research problem. Suppose your research problem was to investigate gender and math courses taken
and their relationship to math achievement.

Identification of the variables and their measurement. The research problem specifies three variables:
gender, math courses taken, and math achievement. The latter appears to be the outcome or dependent
variable. Gender and math courses taken are the independent or predictor variables. Because they
occurred before the math exam, they are presumed to have an effect on math achievement scores. What
is the level of measurement for these three variables? Gender is clearly dichotomous (male or female).
Math courses taken has six ordered values, from 0 to 5 courses. These are scale data because there
should be an approximately normal distribution of scores: Most students took some but not all of the
math courses. Likewise, the math achievement test has many levels, with more scores somewhere in the
middle than high or low. It is necessary to confirm that math courses taken and math achievement are at
least approximately normally distributed by requesting that SPSS compute the skewness of each.

Research questions. There are a number of possible research questions that could be asked and statistics
that could be used with these three variables. However, we will focus on three research questions and
three inferential statistics because they answer this research problem and fit our earlier recommendations
for good choices. First, we will discuss two basic research questions, given the above specification of the
variables and their measurement. Then, we will discuss a complex research question that could be asked
instead of research questions 1 and 2.

1. Is there a difference between male and female genders in their average math achievement
scores?

Type of research question. Using the text, Fig. 3.1, and Table 3.1, you should see that the first question
is phrased as a basic difference question because there are only two variables and the focus is a group
difference (the difference between the male group and the female group).

Selection of an appropriate statistic. If you examine Table 3.1, you will see that the first question

should be answered with an independent samples t test because (a) the independent variable has only two
values (male and female), (b) the design is between groups (males and females form two independent
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groups), and (c) the dependent variable (math achievement) is normal or scale data. We also would
check other assumptions of the ¢ test to be sure that they are not markedly violated.

Interpretation of the results for research question 1. Let’s assume that about 50 students participated in
the study and that £ = 2.05. SPSS will give you the exact Sig., but is p < .05 and, thus, t is statistically
significant. (However, if you had 25 participants, this # would not have been significant because the ¢
value necessary for statistical significance is influenced strongly by sample size. Small samples require a
larger ¢ to be significant.) Deciding whether the statistic is significant only means the result is unlikely to
be due to chance. You still have to state the direction of the result and the effect size and/or the
confidence interval. To determine the direction, we need to know the mean (average) math
achievement scores for males and females. Let’s assume, as is true for the HSB data, that males have the
higher mean. If so, you can be quite confident that males in the population are at least a little better at
math achievement, on average, than females, and you should state that males scored higher than females.
If the difference was not statistically significant, it is best not to make any comment about which mean
was higher because the difference could be due to chance. Likewise, if the difference was not
significant, we recommend that you do not discuss or interpret the effect size. However, you should
provide the means and standard deviations so that effect sizes could be computed if a researcher wanted
to use this study in a meta-analysis.

Because the ¢ was statistically significant, we would calculate d and discuss the effect size as shown
earlier. First, figure the pooled (weighted average) standard deviation for male and female math
achievement scores. Let’s say that the difference between the means was 2.0 and the pooled standard
deviation was 6.0; then d would be .33, a somewhat less than typical size effect. This means that the
difference is less than typical of the statistically significant findings in the behavioral sciences. A d of
.33 may or may not be a large enough difference to use for recommending programmatic changes (i.e., be
practically significant).

Confidence intervals might help you decide if the difference in math achievement scores was large
enough to have practical significance. For example, say you found (from the lower bound of the
confidence interval) that you could only be confident that there was a .5 difference between males and
females. Then you decide whether that is a big enough difference to justify, for example, a programmatic
change.

2. Is there an association between math courses taken and math achievement?

Type of research question. This second question is phrased as a basic associational question because
there are only two variables and both have many ordered levels. Thus, use Table 3.2 for this question.

Selection of an appropriate statistic. As you can see from Table 3.2, research question 2 should be
answered with a Pearson correlation because both math courses taken and math achievement are
normally distributed data.

Interpretation of the results for research question 2. The interpretation of r is based on similar
decisions. If r = .30 (with 50 subjects), it would be statistically significant at the p < .05 level. If the r is
statistically significant, you still need to discuss the direction of the correlation and effect size. Because
the correlation is positive, we would say that students with a relative high number of math courses taken
tend to perform at the high end on math achievement and those with few math courses taken tend to
perform poorly on math achievement. The effect size of r = .30; that is, medium or typical. Note that if
N were 25, r = .30 would not be significant. On the other hand, if N were 500 and » = .30, p would be
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<.0001. With N=500, even r =.10 would be statistically significant, indicating that you could be quite
sure the association was not zero, but the effect size would be small or less than typical.

Complex research question and statistics. As stated above, there are advantages to considering the two
independent variables (gender and math courses taken) together rather than separately as in research
questions 1 and 2. There are at least two statistics that you will compute that can be used to consider
gender and math courses taken together. The first is multiple regression, which is discussed in chapter
6. If you examine Table 3.4, you will see that with two (or more) independent variables that are scale
and/or dichotomous and one dependent variable that is approximately normal (scale) data, an appropriate
associational statistic would be multiple regression. A research question, which subsumes both questions
1 and 2 above, could be:

3. Isthere a combination of gender and math courses that predicts math achievement?

Selection of an appropriate statistic. As just stated, multiple regression could be used to answer this
question. As you can see in Table 3.4, multiple regression is appropriate because we are trying to predict
a normally distributed variable (math achievement) from two independent variables. The independent or
predictor variables are math courses taken (normal or scale) and gender (a dichotomous variable).

Based on our discussion of the general linear model (GLM), a two-way factorial ANOVA would be
another statistic that could be used to consider both gender and math courses simultaneously. However,
to use ANOVA, the many levels of math courses taken would have to be recoded into two or three levels
(perhaps high, medium, and low). Because information is lost when you do such a recode, we would not
recommend factorial ANOVA for this example. Another possible statistic to use for this example is
analysis of covariance (ANCOVA) using gender as the independent variable and math courses taken as
the covariate. We will demonstrate in chapter 8§ how we can control for gender differences in the number
of math courses taken by using math courses as a covariate.

Interpretation of the results for research question 3. We will discuss the interpretation of multiple
regression results in chapter 6 and factorial ANOVA and ANCOVA in chapter 8. We will see that we
will obtain more information about the relationships among these three variables by doing these complex
statistics than by doing only the ¢ test and correlation.

Review of Writing About Your Outputs

One of the goals of this book is to help you write a research report or thesis/dissertation using the SPSS
outputs. In each of the following chapters, we will provide an Interpretation of each output, as well as
an example of how you might write about and make a table from the results provided by the output. As a
review of how to write about a ¢ test and correlation, we have provided this section, which could be from
a thesis based on the expanded HSB data used in the assignments in this book.

Before demonstrating how you might write about the results of research questions 1 and 2 above, we
want to make several important points. Several books that will help you write a research paper and make
appropriate tables are listed in For Further Reading at the back of this book. Note especially the APA
manual (2001), Nicol and Pexman (1999), and Morgan, Reichart, and Harrison (2002). The examples
below and in the following chapters are only one way to write about SPSS outputs. There are other good
ways.
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Based on your SPSS outputs, you should update the Methods chapter that you wrote as a proposal to
include descriptive statistics about the demographics (e.g., gender, age, ethnicity) of the participants.
You should add to your proposal evidence related to the reliability and validity or your
measures/instruments with your sample. You also should include in your report whether statistical
assumptions of the inferential statistics were met or how adjustments were made.

The Results chapter or section includes a description (but not a discussion) of the findings in words and
tables. Your Results section should include the following numbers about each statistically significant
finding (in a table or the text):

The value of the statistic (e.g., #=2.05 or r =.30)

The degrees of freedom (often in parentheses) and for chi-square the N (e.g., df = 2, N = 49).
The p or Sig. Value (e.g., p = .048).

The direction of the finding (e.g., by stating which mean is larger or the sign of

the correlation, if the statistic is significant).

5. An index of effect size from either the d family or the » family.

B

When not shown in a table, the above information should be provided in the text as shown below. In
addition to the numerical information, describe your significant results in words, including the variables
related, the direction of the finding, and an interpretive statement about the size/strength of the effect,
perhaps based on Cohen (1988) or Table 3.5. Realize that these terms are only rough estimates of the
magnitude of the “effect” based on what is typical in the behavioral sciences, but not necessarily your
topic.

If your paper includes a table, it is usually not necessary or advisable to include all the details about the
value of the statistic, degrees of freedom, and p in the text, because they are in the table. If you have a
table, you must refer to it by number (e.g., Table 1) in the text and describe the main points, but do not
repeat all of it or the table is not necessary. You should not describe, in the text, the direction of the
finding or the effect size of nonsignificant findings, because the results could well be due to chance. The
Discussion chapter or section puts the findings in context in regard to the research literature, theory, and
the purposes of the study. You may also attempt to explain why the results turned out the way they did.

An Example of How to Write About the Results of a t Test and a Correlation

Results
For research question 1, there was a statistically significant difference between male and female students
on math achievement, #(48) = 2.05, p =.04, d = .33. Males (M= 14.70, SD = 5.50) scored higher that
females (M=12.70, SD=6.50), and the effect size was smaller than typical for this topic. The confidence
interval for the difference between the means was .50 to 3.50 indicating that the difference could be as
little as half a point, which is probably not a practically important difference, but it could also be as large
as three and a half points.

For research question 2, there was a statistically significant positive correlation between math courses
taken and math achievement » (48) =.30, p = .03. The positive correlation means that, in general,
students who took more math courses tended to score higher on the math achievement test and students
who did not take many math courses scored lower on math achievement. The effect size of r=.30 is
considered medium or typical for this area of research.

We will present examples of how to write about the results of the complex statistics discussed in this
book in the appropriate chapters. Note that measures of reliability (e.g., Cronbach alpha, discussed in
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chapter 4) and principal components analysis (chapter 5) are usually discussed in the Methods section.
Chapters 6-10 present complex statistics that might be used to answer your complex research questions.

Conclusion

After the above review, you should be ready to study each of the complex statistics in Tables 3.3 and 3.4
and learn more about their computation and interpretation. Hopefully this review has brought you up to
speed. It would be wise for you to review this chapter, especially the tables and figures from time to time.
If you do, you will have a good grasp of how the various statistics fit together, when to use them, and
how to interpret the results. You will need this information to understand the chapters that follow.

Interpretation Questions
3.1 a) Is there only one appropriate statistic to use for each research design? Explain your answer.
32 When p < .05, what does this signify?

33 Interpret the following related to effect size:
a)d=.25 ¢)R=.53 e)yd=1.15
b)r=.35 d)r=.13 f) » =.38

34 The confidence interval of the difference between means was -.30 to 4.0. Explain what this
indicates.

35 What statistic would you use if you had two independent variables, income group (< $10,000,
$10,000-$30,000, > $30,000) and ethnic group (Hispanic, Caucasian, African-American), and
one normally distributed dependent variable (self-efficacy at work). Explain.

3.6 What statistic would you use if you had one independent variable, geographic location (North,

South, East, West), and one dependent variable (satisfaction with living environment, Yes or
No?) Explain.

3.7 What statistic would you use if you had three normally distributed (scale) independent
variables and one dichotomous independent variable (weight of participants, age of participants,
height of participants and gender) and one dependent variable (positive self-image), which is
normally distributed. Explain.

3.8 What statistic would you use if you had one between groups independent variable, one repeated
measures independent variable, each with two levels, and one normally distributed dependent

variable?

3.9 What statistic would you use if you had one, repeated measures, independent variable with two
levels and one nominal dependent variable?

3.10  What statistic would you use if you had one, between groups, independent variable with four
levels and three normally distributed dependent variables?

3.11  What statistic would you use if you had three normally distributed independent variables, one
dichotomous independent variable, and one dichotomous dependent variable?
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Several Measures of Reliability

This assignment illustrates several of the methods for computing instrument reliability.

Internal consistency reliability, for multiple item scales. In this assignment, we will compute the most
commonly used type of internal consistency reliability, Cronbach’s coefficient alpha. This measure
indicates the consistency of a multiple item scale. Alpha is typically used when you have several Likert-
type items that are summed to make a composite score or summated scale. Alpha is based on the mean
or average correlation of each item in the scale with every other item. In the social science literature,
alpha is widely used, because it provides a measure of reliability that can be obtained from one testing
session or one administration of a questionnaire. In problems 4.1, 4.2, and 4.3, you compute alphas for
the three math attitude scales (motivation, competence, and pleasure) that items 1 to 14 were designed to
assess.

Reliability for one score/measure. In problem 4.4, you compute a correlation coefficient to check the
reliability of visualization scores. Several types of reliability can be illustrated by this correlation. If the
visualization retest was each participant’s score from retaking the test a month or so after they initially
took it, then the correlation would be a measure of test-retest reliability. On the other hand, imagine that
visualization retest was a score on an alternative/parallel or equivalent version of the visualization test;
then this would be a measure of equivalent forms reliability. If two different raters scored the
visualization test and refest, the correlation could be used as an index of interrater reliability. This latter
type of reliability is needed when behaviors or answers to questions involve some degree of judgment
(e.g., when there are open-ended questions or ratings based on observations).

Reliability for nominal variables. There are several other methods of computing interrater or
interobserver reliability. Above, we mentioned using a correlation coefficient. In problem 4.5, Cohen’s
kappa is used to assess interobserver agreement when the data are nominal.

Assumptions for Measures of Reliability

When two or more measures, items, or assessments are viewed as measuring the same variable, reliability can
be assessed. Reliability is used to indicate the extent to which the different items, measures, or assessments
are consistent with one another (hopefully, in measuring that variable) and the extent to which each measure
is free from measurement error. It is assumed that each item or score is composed of a true score measuring
the underlying construct, plus error because there is error in the measurement of anything. Therefore, one
assumption is that the measures or items will be related systematically to one another in a linear manner
because they are believed to be measures of the same construct. In addition, because true error should not be
correlated systematically with anything, a second assumption is that the errors (residual) for the different
measures or assessments are uncorrelated. If errors are correlated, this means that the residual is not simply
error; rather, the different measures not only have the proposed underlying variable in common, but they also
have something else systematic in common and reliability estimates may be inflated. An example of a
situation in which the assumption of uncorrelated errors might be violated would be when items all are parts
of a cognitive test that is timed. The performance features that are affected by timing the test, in addition to
the cognitive skills involved, might systematically affect responses to the items. The best way to determine
whether part of the reliability score is due to these extraneous variables is by doing multiple types of
reliability assessments (e.g., alternate forms and test-retest).
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Conditions for Measures of Reliability

A condition that is necessary for measures of reliability is that all parts being used need to be comparable. If
you use split-half, then both halves of the test need to be equivalent. If you use alpha (which we demonstrate
in this chapter), then it is assumed that every item is measuring the same underlying construct. It is assumed
that respondents should answer similarly on the parts being compared, with any differences being due to
measurement error.

e Retrieve your data file: hsbdataB.

Problem 4.1: Cronbach’s Alpha for the Motivation Scale

The motivation score is composed of six items that were rated on 4-point Likert scales, from very
atypical (1) to very typical (4). Do these items go together (interrelate) well enough to add them together
for future use as a composite variable labeled motivation?

4.1. What is the internal consistency reliability of the math attitude scale that we labeled motivation?

Note that you do not actually use the computed motivation scale score. The Reliability program uses the
individual items to create the scale temporarily.

o Let’s do reliability analysis for the motivation scale. Click on Analyze => Scale => Reliability
Analysis. You should get a dialog box like Fig. 4.1.
¢ Now move the variables item01, item04 reversed, item07, item08 reversed, itemi2, and itemli3 (the

motivation questions) to the Items box. Be sure to use item04 reversed and item08 reversed (not
item04 and item08).

e Click on the List item labels box. Be sure the Model is Alpha (refer to Fig. 4.1).
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Fig. 4.1. Reliability analysis.

e Click on Statistics in the Reliability Analysis dialog box and you will see something similar to Fig.
4.2

o Check the following items: Item, Scale, Scale if item deleted (under Descriptives), Correlations
(under Inter-Item), Means, and Correlations (under Summaries).

¢ Click on Continue then OK. Compare your syntax and output to Output 4.1.
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zl;iﬁﬁ;; =

Fig. 4.2. Reliability analysis: Statistics.

Output 4.1: Cronbach’s Alpha for the Math Attitude Motivation Scale

RELIABILITY

/VARIABLES=item0l item0O4r item07 item08r iteml2 iteml3
/FORMAT=LABELS

/SCALE (ALPHA) =ALL/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL MEANS CORR .

Reliability

Warnings

-

The covariance matrix is calculated and used in the analysis.

Case Processing Summary

N %
Cases Valid 73 97.3
Excluded(a) 2 27
Total 75 100.0

a Listwise deletion based on all variables in the procedure.

Inter-item Correlation Matrix

itemO1 item04 itemQ7 item08 item12 item13
motivation reversed motivation reversed motivation motivation
item01 motivation 1.000 250 484 296 A79 167
item04 reversed 250 1.000 551 576 .382 316
item07 motivation 464 551 1.000 587 344 .360
item08 reversed 296 576 587 1.000 .389 311
item12 motivation 179 382 344 .389 1.000 603
item13 motivation 167 316 .360 31 603 1.000

The covariance matrix is calculated and used in the analysis.
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Cronbach's Cronbach This is the Cronbach
Alpha ronbach's is is the Cronbach’s
Alpha Based / alpha coefficient.
on
Standardized
_—— tem N of Items
(791 [ ) — 790 6
item Statistics
Mean Std. Deviation N Descriptive statistics
item01 motivation 296 034 73 for each item.
item04 reversed 2.82 918 73
item0Q7 motivation 2.75 1.064 73
item08 reversed 3.05 911 73
item12 motivation 2.99 .825 73
item13 motivation 267 .800 73
Summary Item Statistics
Maximum /

Mean Minimum | Maximum Range Minimum Variance | N of ltems
Item Means 2.874 2.671 3.055 .384 1.144 022 73
Inter-ltem Covariances 385 167 .603 A36 3.604 .020 73

The covariance matrix is calculated and used in the analysis.

If correlation is moderately high to high (e.g., .40+), then
the item will make a good component of a summated
rating scale. You may want to modify or delete items with
low correlations. Item 1 is a bit low if one wants to
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A key table. consider all items to measure the same thing. Note that
the alpha increases a little if Item 1 is deleted.
Item-Total Statistics /
Scale Corrected Squared Cronbach's
Scale Mean if Variance if ltem-Total Multiple Alpha if ltem
Iltem Deleted Item Deleted Correlajidﬂ*( Correlation Delet
item01 motivation 14.29 11.402 .378 .226 .798
item04 reversed 14.42 10.303 596 536 746
item07 motivation 14.49 9.170 676 519 723
item08 reversed 14.19 10.185 627 588 738
item12 motivation 14.26 11.140 516 .866 .765
item13 motivation 14.58 11.442 AT6 853 774
N/ N
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Scale Statistics The average for the 6-item
J/ summated scale score for
Me d Variance | Std. Deviation | N of ltems the 73 participants.
17.25 | 14.661 3.829 6
Interpretation of Output 4.1

The first section lists the items (item0/, etc.) that you requested to be included in this scale and their labels.
Selecting List item labels in Fig. 4.1 produced it. Next is a table of descriptive statistics for each item,
produced by checking Item in Fig. 4.2. The third table is a matrix showing the inter-item correlations of
every item in the scale with every other item. The next table shows the number of participants with no
missing data on these variables (73), and three one-line tables providing summary descriptive statistics for
a) the Scale (sum of the six motivation items), b) the Item Means, produced under summaries, and c)
correlations, under summaries. The latter two tell you, for example, the average, minimum, and maximum
of the item means and of the inter-item correlations.

The final table, which we think is the most important, is produced if you check the Scale if item deleted
under Descriptives for in the dialog box displayed in Fig. 4.2. This table, labeled Item-total Statistics,
provides five pieces of information for each item in the scale. The two we find most useful are the
Corrected Item-Total Correlation and the Alpha if Item Deleted. The former is the correlation of each
specific item with the sum/total of the other items in the scale. If this correlation is moderately high or high,
say .40 or above, the item is probably at least moderately correlated with most of the other items and will
make a good component of this summated rating scale. Items with lower item-total correlations do not fit
into this scale as well, psychometrically. If the item-total correlation is negative or too low (less than .30), it
is wise to examine the item for wording problems and conceptual fit. You may want to modify or delete
such items. You can tell from the last column what the alpha would be if you deleted an item. Compare this
to the alpha for the scale with all six items included, which is given at the bottom of the output. Deleting a
poor item will usually make the alpha go up, but it will usually make only a small difference in the alpha,
unless the scale has only a few items (e.g., fewer than five) because alpha is based on the number of items
as well as their average intercorrelations.

In general, you will use the unstandardized alpha, unless the items in the scale have quite different means
and standard deviations. For example, if we were to make a summated scale from math achievement,
grades, and visualization, we would use the standardized alpha. As with other reliability coefficients, alpha
should be above .70; however, it is common to see journal articles where one or more scales have somewhat
lower alphas (e.g., in the .60-.69 range), especially if there are only a handful of items in the scale. A very
high alpha (e.g., greater than .90) probably means that the items are repetitious or that you have more items
in the scale than are really necessary for a reliable measure of the concept.

Example of How to Write About Problems 4.1

Method
To assess whether the six items that were summed to create the motivation score formed a reliable scale,
Cronbach’s alpha was computed. The alpha for the six items was .79, which indicates that the items form a
scale that has reasonable internal consistency reliability. Similarly, the alpha for the competence scale (.80)
indicated good internal consistency, but the .69 alpha for the pleasure scale indicated minimally adequate
reliability.
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Problems 4.2 & 4.3: Cronbach’s Alpha for the Competence and Pleasure Scales

Again, is it reasonable to add these items together to form summated measures of the concepts of
competence and pleasure?

4.2. What is the internal consistency reliability of the competence scale?
4.3. What is the internal consistency reliability of the pleasure scale?

Let’s repeat the same steps as before except check the reliability of the following scales and then
compare your output to 4.2 and 4.3.

o For the competence scale, use item03, item05 reversed, item09, iteml1 reversed
o For the pleasure scale, use item02, item06 reversed, iteml0 reversed, iteml4

Output 4.2: Cronbach’s Alpha for the Math Attitude Competence Scale

RELIABILITY
/VARIABLES=item03 item05r item09 itemllr
/FORMAT=LABELS
/SCALE (ALPHA) =ALL/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL MEANS CORR .

Reliability
Warnings
I The covariance matrix is calculated and used in the analysis.

Case Processing Summary

N %
Cases Valid 73 97.3
Excluded
2.
@) 2 7
Total 75 100.0

a Listwise deletion based on all variables in the procedure.

Inter-ltem Correlation Matrix

item03 item05 itemQ9 item11
competence reversed competence reversed
item03 competence 1.000 742 .325 513
item05 reversed 742 1.000 .340 609
item09 competence 325 340 1.000 .399
item11 reversed 513 609 .399 1.000

The covariance matrix is calculated and used in the analysis.
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Reliability Statistics
Cronbach's
Alpha Cronbach's
Alpha Based
on
Standardized
- Items N of ltems
796 ]) 792 4
Item Statistics
Mean Std. Deviation N
item03 competence 2.82 .903 73
itemO05 reversed 3.41 .940 73
item09 competence 3.32 762 73
item11 reversed 3.63 .7565 73
‘Summary Item Statistics
Maximum /
Mean Minimum | Maximum Range Minimum Variance | N of ltems
ltem Means 3.295 2.822 3.630 .808 1.286 17 73
Inter-ltem Covariances 488 .325 742 417 2.281 .025 73
The covariance matrix is calculated and used in the analysis.
Item-Total Statistics
Scale Corrected Squared Cronbach's
Scale Mean if Variance if Item-Total Multiple Alpha if item
Item Deleted Item Deleted Correlation Correlation Deleted
item03 competence 10.36 3.844 680 .769 .706
item05 reversed 9.77 3.570 735 872 875
item08 competence 9.86 5.092 405 548 .832
item11 reversed 9.55 4473 633 842 .736
Scale Statistics
Mean Variance | Std. Deviation | N of ltems
13.18 7.065 2.658 4
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Output 4.3: Cronbach’s Alpha for the Math Attitude Pleasure Scale

RELIABILITY

/VARIABLES=item02 item06r itemlOr iteml4
/FORMAT=LABELS

/SCALE (ALPHA) =ALL/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE CORR
/SUMMARY=TOTAL MEANS CORR .

Reliability

Warnings

[ The covariance matrix is calculated and used in the analysis.

Case Processing Summary

N %
Cases Valid 75 100.0
Excluded
@ 0 .0
Total 75 100.0

a listwise deletion based on all variables in the procedure.

Inter-Item Correlation Matrix

item02 item06 item10 item14
pleasure reversed reversed | pleasure
itemQ2 pleasure 1.000 .285 347 504
item06 reversed .285 1.000 203 461
item10 reversed .347 203 1.000 436
item14 pleasure 504 461 436 1.000
The covariance matrix is calculated and used in the analysis.
Reliability Statistics
Cronbach's
Alpha Cronbach's
Alpha Based
on
Standardized
ltems N of Items
( 688 ) 704 4
item Statistics

Mean Std. Deviation N
item02 pleasure 3.5200 90584 75
itemOB reversed 2.5733 97500 75
item10 reversed 3.5867 .73693 75
item14 pleasure 2.8400 71735 75
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Summary ltem Statistics

Maximum /
Mean Minimum Maximum Range Minimum Variance N of ltems
ltem Means 3.130 2.573 3.587 1.013 1.394 252 75
Inter-item Covariances 373 203 .504 .301 2.488 012 75
The covariance matrix is calculated and used in the analysis.
Item-Total Statistics
Scale Corrected Squared Cronbach'’s
Scale Mean if Variance if Item-Total Multiple Alpha if ltem
ltem Deleted ltem Deleted Correlation Correlation Deleted
item02 pleasure 9.0000 3.405 485 .880 615
item086 reversed 9.9467 3.457 .397 881 685
item10 reversed 8.9333 4.090 407 929 662
item14 pleasure 9.6800 3.572 649 979 528
Scale Statistics
Mean Variance | Std. Deviation | N of ltems
12.5200 5.848 2.41817 4

Problem 4.4: Test-Retest Reliability Using Correlation

4.4. Is there support for the test-retest reliability of the visualization test scores?

Let’s do a Pearson r for visualization test and visualization retest scores.

e Click on Analyze => Correlate = Bivariate.
¢ Move variables visualization and visualization retest into the variable box.
e Do not select flag significant correlations because reliability coefficients should be positive and

greater than .70; statistical significance is not enough.
e Click on Options.
e Click on Means and Standard deviations.

Click on Continue and OK. Do your syntax and output look like Output 4.4?

Output 4.4: Pearson r for the Visualization Score

CORRELATIONS

/VARIABLES=visual visual2
/PRINT=TWOTAIL SIG
/STATISTICS DESCRIPTIVES
/MISSING=PAIRWISE .
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Correlations
Descriptive Statistics
Mean Std. Deviation N
visualization test 5.2433 3.91203 75
visualization retest 4,5487 3.01816 75
Correlations
visualization visualization Correlation between
test retest the first and second

visualization test Pearson Correlation 1 ( 885 D—1 visualizatiog test. It.

Sig. (2-tailed) . 000 s!lou.ld be high, not just

significant.

N 75 75
visualization retest Pearson Correlation 885 9

Sig. (2-tailed) 000 75 participants have both

N 75 ( 75 D— visualization scores.

Interpretation of Output 4.4

The first table provides the descriptive statistics for the two variables, visualization test and visualization
retest. The second table indicates that the correlation of the two visualization scores is very high (r = .89)
so there is strong support for the test-retest reliability of the visualization score. This correlation is
significant, p < .001, but we are not as concerned about the significance as we are having the correlation be

Example of How to Write About Problem 4.4

Method
A Pearson’s correlation was computed to assess test-retest reliability of the visualization test scores, r
(75) = .89. This indicates that there is good test-retest reliability.

Problem 4.5: Cohen’s Kappa With Nominal Data

When we have two categorical variables with the same values (usually two raters” observations or scores
using the same codes), we can compute Cohen’s kappa to check the reliability or agreement between the
measures. Cohen’s kappa is preferable over simple percentage agreement because it corrects for the
probability that raters will agree due to chance alone. In the hsbdataB, the variable ethnicity is the
ethnicity of the student as reported in the schoo! records. The variable ethnicity reported by student is the
ethnicity of the student reported by the student. Thus, we can compute Cohen’s kappa to check the
agreement between these two ratings. The question is, How reliable are the school’s records?

4.5. What is the reliability coefficient for the ethnicity codes (based on school records) and ethnicity
reported by the student?

72



To compute the kappa:

Chapter 4 — Several Measures of Reliability

Click on Analyze => Descriptive Statistics => Crosstabs.
Move ethnicity to the Rows box and ethnic reported by student to the Columns box.
Click on Kappa in the Statistics dialog box.
Click on Continue to go back to the Crosstabs dialog window.
Then click on Cells and request the Observed cell counts and Total under Percentages.
Click on Continue and then OK. Compare your syntax and output to Output 4.5.

Output 4.5: Cohen’s Kappa With Nominal Data

CROSSTABS
/TABLES=ethnic
/FORMAT= AVALUE TABLES
/STATISTIC=KAPPA
/CELLS= COUNT TOTAL .

BY ethnic2

Crosstabs
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
ethnicity * ethnicity
reported by student 71 94.7% 4 5.3% 75 100.0%
ethnicity * ethnicity reported by student Crosstabulation
ethnicity reported by student
Euro-Am African-Amer | Latino-Amer | Asian-Amer Total
ethnicity Euro-Amer Count @’ 1 0 0 41
% of Total ' 56.3%_ 1.4 0% 0% 57.7%
African- Count L2] ) 1 0 14
Amer % of Total 2.8% | 15.5% )\4% 0% |  19.7%
Latino- Count Lol E‘ (€3 0 9
Amer % of Total 0% 1.4% 13| 0% | 12.7%
Asian- Count Lol « 7
Amer % of Total 0% 1.4% 0% 8.5% 9.9%
Total Count 42 14 9 6 71
% of Total 59.2% / 19.7% 12.7% 8.5% || 100.0%
/
One of six disagreements. They Agreements between school
are in squares off the diagonal. records and students’
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As a measure of reliability,
kappa should be high
(usually > .70) not just
statistically significant.

\ Symmetric Measures

Asymp.
e__ | Std. Errof | Approx. 1 | Approx. Sig. |
Measure of Agreemenw 858 | > .054 11.163 .000

N of Valid Cases 71
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Interpretation of Output 4.5

The Case Processing Summary table shows that 71 students have data on both variables, and 4 students
have missing data. The Crosstabulation table of ethnicity and ethnicity reported by student is next. The
cases where the school records and the student agree are on the diagonal and circled. There are 65 (40 + 11
+ 8 + 6) students with such agreement or consistency. The Symmetric Measures table shows that kappa =
.86, which is very good. Because kappa is a measure of reliability, it usually should be .70 or greater. It is
not enough to be significantly greater than zero. However, because it corrects for chance, it tends to be
somewhat lower than some other measures of interobserver reliability, such as percentage agreement.

Example of How to Write About Problem 4.5

Method
Cohen’s kappa was computed to check the reliability of reports of student ethnicity by the student and
by school records. The resulting kappa of .86 indicates that both school records and students’ reports
provide similar information about students’ ethnicity.

Interpretation Questions

4.1.  Using Outputs 4.1, 4.2, and 4.3, make a table indicating the mean interitem correlation and the
alpha coefficient for each of the scales. Discuss the relationship between mean interitem
correlation and alpha, and how this is affected by the number of items.

4.2.  For the competence scale, what item has the Jowest corrected item-total correlation? What would
be the alpha if that item were deleted from the scale?

43 For the pleasure scale (Output 4.3), what item has the highest item-total correlation? Comment
on how alpha would change if that item were deleted.

44,  Using Output 4.4: a) What is the reliability of the visualization score? b) Is it acceptable? c) As
indicated above, this assessment of reliability could have been used to indicate test-retest
reliability, alternate forms reliability, or interrater reliability, depending on exactly how the
visualization and visualization retest scores were obtained. Select two of these types of
reliability, and indicate what information about the measure(s) of visualization each would
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provide. d) If this were a measure of interrater reliability, what would be the procedure for
measuring visualization and visualization retest score?

4.5 Using Output 4.5: What is the interrater reliability of the ethnicity codes? What does this mean?

Extra SPSS Problems

The extra SPSS problems at the end of this, and each of the following chapters, use data sets provided by
SPSS. The name of the SPSS data set is provided in each problem.

4.1 Using the satisf.sav data, determine the internal consistency reliability (Cronbach’s coefficient
alpha) of a proposed six-item satisfaction scale. Use the price, variety, organization, service,
item quality, and overall satisfaction items, which are 5-point Likert-type ratings. In other words,
do the six satisfaction items interrelate well enough to be used to create a composite score for
satisfaction? Explain.

42 A judge from each of seven different countries (Russia, U.S., etc.) rated 300 participants in an
international competition on a 10-point scale. In addition, an “armchair enthusiast” rated the
participants. What is the interrater reliability of the armchair enthusiast (judge 8) with each of the
other seven judges? Use the judges.sav data. Comment.

4.3 Two consultants rated 20 sites for a future research project. What is the level of agreement or
interrater reliability (using Cohen’s Kappa) between the raters? Use the site.sav data. Comment.
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CHAPTER S

Exploratory Factor Analysis and Principal Components Analysis

Exploratory factor analysis (EFA) and principal components analysis (PCA) both are methods that are
used to help investigators represent a large number of relationships among interval-level variables in a
simpler (more parsimonious) way. Both of these approaches allow the computer to determine which, of a
fairly large set of items, “hang together” as a group, or are answered most similarly by the participants. A
related approach, confirmatory factor analysis, in which one tests very specific models of how
variables are related to underlying constructs (conceptual variables), is beyond the scope of this book and
will not be discussed.

The primary difference, conceptually, between exploratory factor analysis and principal components
analysis is that in EFA, one postulates that there is a smaller set of unobserved (latent) variables or
constructs that underlie the variables that actually were observed or measured; whereas, in PCA, one is
simply trying to mathematically derive a relatively small number of variables to use to convey as much of
the information in the observed/measured variables as possible. In other words, EFA is directed at
understanding the relations among variables by understanding the constructs that underlie them, whereas
PCA is simply directed toward enabling one to use fewer variables to provide the same information that
one would obtain from a larger set of variables. There are actually a number of different ways of
computing factors for factor analysis; in this chapter, we will only use one of these methods, principal
axis factor analysis (PA). We selected this approach because it is highly similar mathematically to PCA.
The primary difference, computationally, between PCA and PA is that in the former, the analysis
typically is performed on an ordinary correlation matrix, complete with the correlations of each item or
variable with itself, whereas in PA factor analysis, the correlation matrix is modified such that the
correlations of each item with itself are replaced with a “communality”—a measure of that item’s
relation to all other items (usually a squared multiple correlation). Thus, PCA is trying to reproduce all
information (variance and covariance) associated with the set of variables, whereas PA factor analysis is
directed at understanding only the covariation among variables.

Conditions for Exploratory Factor Analysis and Principal Components Analysis

There are two main conditions necessary for factor analysis and principal components analysis. The first
is that there need to be relationships between the variables. Further, the larger the sample size, especially
in relation to the number of variables, the more reliable the resulting factors usually are. Sample size is
less crucial for factor analysis to the extent that the communalities of items with the other items are high,
or at least relatively high and variable. Ordinary principal axis factor analysis should never be done if the
number of items/variables is greater than the number of participants.

Assumptions for Exploratory Factor Analysis and Principal Components Analysis

The methods of extracting factors and components that are used in this book do not make strong
distributional assumptions; normality is important only to the extent that skewness or outliers affect the
observed correlations or if significance tests are performed (which is rare for EFA and PCA). The
normality of the distributions can be checked by computing the skewness statistic. Maximum likelihood
estimation, which we will not cover, does require multivariate normality—the variables need to be
normally distributed and the joint distribution of all the variables should be normal. Because both
principal axis factor analysis and principal components analysis are based on correlations, independent
sampling is required and the variables should be related to each other (in pairs) in a linear fashion. The
assumption of linearity can be assessed with matrix scatterplots, as shown in chapter 2. Finally, at least
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many of the variables should be correlated at a moderate level. Factor analysis and principal components
analysis are seeking to explain or reproduce the correlation matrix, which would not be a sensible thing
to do if the correlations all hover around zero. Bartlett’s test of sphericity addresses this assumption.
Moreover, if correlations are too high, this may cause problems with obtaining a mathematical solution to
the factor analysis problem.

e Retrieve your data file: hshdataB.sav

Problem 5.1: Factor Analysis on Math Attitude Variables

In Problem 5.1, we perform a principal axis factor analysis on the math attitude variables. Factor
analysis is more appropriate than PCA when one has the belief that there are latent variables underlying
the variables or items one measured. In this example, we have beliefs about the constructs underlying the
math attitude questions; we believe that there are three constructs: motivation, competence, and
pleasure. Now, we want to see if the items that were written to index each of these constructs actually do
“hang together.” That is, we wish to determine empirically whether participants’ responses to the
motivation questions are more similar to each other than to their responses to the competence items, and
so on. This is considered exploratory factor analysis even though we have some ideas about the structure
of the data because our hypotheses regarding the model are not very specific; we do not have specific
predictions about the size of the relation of each observed variable to each latent variable, etc.

5.1 Run a factor analysis using the principal axis factoring method and specify the number of factors to
be three (because our conceptualization is that there are three math attitude scales or factors:
motivation, competence, and pleasure).

Analyze => Data Reduction => Factor to get Fig. 5.1.
Next, select the variables item01 through iteml4. Do not include item04r or any of the other
reversed items because we are including the unreversed versions of those same items.

EAcor Anglysis

-@vmnizmu{\ﬂ
@ visualization retest”
@ scholastic aptitude
@eunc&ylsaml

@ refgion l1sigion] _J -

Fig. 5.1. Factor analysis.

-@lmﬂtleverwd[l

@ item05 reversed [i
@temDBlevuwd[t
@ item11 reversed [
@ Competence scals -

@Mmmw[r_] M‘ vae |

¢ Now click on Descriptives to produce Fig. 5.2.
¢ Then click on the following: Initial solution (under Statistics), Coefficients, Determinant, KMO
and Bartlett’s test of sphericity (under Correlation Matrix).
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o Click on Continue.

Fig. 5.2. Factor analysis: Descriptives.

e Next, click on Extraction at the bottom of Fig. 5.1. This will give you Fig. 5.3.
Select Principal axis factoring from the Methods pull-down.
Unclick Unrotated factor solution (under Display). Some researchers also would check the Scree
plot box, but we decided to do that only in Problem 5.2.

e Check Number of factors under Extract and type 3 in the box. This setting instructs the computer
to extract three math attitude factors.

¢ (Click on Continue.

Faclor Analysis: Extraclion

S

g e enselenie B L.;: Fig. 5.3. Extraction method to
& Conelation mshix | P Urvolated factor sohution | produce principal axis factoring.

f‘E‘mmF—__

;}ﬁ' Numbet of lactors: ]3 i

Masinum flsirs o Comvonence. [~

Now click on Rotation in Fig. 5.1, which will give you Fig. 5.4.
Click on Varimax, then make sure Rotated solution is also checked.
¢ Click on Continue.

tor Analyzis: Holation

Fig. 5.4. Factor analysis: Rotation.
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Next, click on Options, which will give you Fig. 5.5.
Click on Sorted by size.
Click on Suppress absolute values less than and type .3 (point 3) in the box (see Fig. 5.5).
Suppressing small factor loadings makes the output easier to read.
e Click on Continue then OK. Compare Output 5.1 to your output and syntax.

Factor Analysis: Oplions

Fig. 5.5. Factor analysis: Options.

Output 5.1: Factor Analysis for Math Attitude Questions

FACTOR

/VARIABLES item0l1 item02 item03 item04 item05 item06 item07 item08 item09 itemlO itemll iteml2
iteml3 iteml4 /MISSING

LISTWISE /ANALYSIS item0l1 item02 item03 item04 item05 item06 item07 item08 item09 iteml0 itemll
iteml2 iteml3 itemi4

/PRINT INITIAL CORRELATION DET KMO ROTATION

/FORMAT SORT BLANK(.3)

/CRITERIA FACTORS (3} ITERATE(25)

/EXTRACTION PAF

/CRITERIA ITERATE (25)

/ROTATION VARIMAX

/METHOD=CORRELATION.

High correlations mean these items

probably will be in the same factor. Indicates how each question
is associated with each other.

Correlation Matrix *
L'&Inm Nom02 om03 [~ [ ™Y em0? Rem08 [~ #em10 Samtt kam12 "m Remtd
plessre | compstence | fow molly Jow comp. Jow pleas motivalion Jowmoty | compatence | low pless low comp otivation
o T 7.000 ) ] - 306 8 -0 a0 340 2% on 7T R K3 )
Rorn2 plessure ac4 1.000 E -108 -547 -32 a1 -17¢ a9 30 -401 A6 £~ &TS
Sori03 competence s 0 1.000 By -7 -2% n 248 E- o -513 a8 A% oe8
a4 kow oty 305 108 -348 1.000 ] an -508 51 120 102 208 201 M -083
om0 tow comp R ] 547 183 E 1.000 2% -5% 2 -361 430 805 -187 168 -108
amS iow pless 185 312 -200 E--) 260 1.000 -268 92 -13 207 418 044 001 -469
tam07 motivetion 481 P A3 -.598 -538 -268 1.000 -508 228 -160 -3 347 e 180
Ram0B kow mottv 30 178 -248 &8 a1 g -808 1.000 243 087 an 02 -8 a7
Semd® competence 209 219 328 120 351 ~131 8 -2 1.000 -108 407 406 206 020
Kom10 low pless o7t 389 ozt 1% 217 -168 087 100 1.000 250 -059 -082 - 447
Rorn11 low comp A4 1 513 20 o5 - -331 an -407 25 1,000 -148 -008 28
Ham12 motivation 188 a8 " -t -187 -044 k7] 392 408 -058 14 1.000 87 068
o1 3 motivation 187 028 470 > -3M - 169 o 38 -308 .208 -.082 -.008 807 1.000 -000
| e llomi 4§ plnnsire o0 475 088 -083 -188 480 180 117 -020 447 -2 088 -0 1.000
& Dolarrsinant = 001 \
Low correlations will not
Should be greater than .0001. If close be in the same factor.

to zero, collinearity is too high. If
zero, no solution is possible.
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Tests of assumptions.

o—"/——
KMO and Bartlett's Test

Should be greater than .70 indicating
sufficient items for each factor.

[ Kaiser-Meyer-Olkin Measure of Sampling

Adequacy.

) . Should be significant (less than .05),
Bartlett's Test of Approx. Chi-Square 433.486 indicating that the correlation matrix is

Sphericity df. 91 significantly different from an identity
Sig. .000 matrix, in which correlations between

variables are all zero.

Communalities

item01 motivation Inmzleo \ These communalities represent the relation
item02 pleasure 542 between the variable and all other variables
item03 competence 508 (i.e., the squgred multiple corre:lation
item04 low motiv 562 between the item and all other items).
item05 low comp q72

item06 low pleas .382

item07 motivation 607

item08 low motiv 533

item09 competence 412

item10 low pleas 372

item11 low comp .591

item12 motivation 499

item13 motivation 452

item14 pleasure 479

Extraction Method: Principal Axis Factoring.
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accounted for.

Eigenvalues refer to the variance explained or

Total Variance Explained—

Percent of variance for each
component before and after rotation.

I Initial Eigenvalues < Rotation Sums of Squared Loadings
Factor % of Varance Cumuietive % Total % of Variance | Cumulative %
1 34.916' 34.916 3.017 21.549 1.
2 ) 14.284 r 48.200 2.327 16.621 38.171 |’
3 11.519 60.719 1.784 12.746 50.917
4 . 097 68.816
S -804 6.459 75.275
6 716 5.113 80.388
7 577 4.125 84.513
8 481 3.283 87.808
9 400 2.857 90.664
10 379 2.710 93.374
1 298 2.126 95.500
12 258 1.848 97.346
13 217 1.551 98.897
14 154 1.103 100.000

Extraction Method: Principal Axis Factoring.

Factor Matri)@

a. 3 factors extracted. 12 iterations required.

Rotated Factor Matri®
Factor
1~ 2

item05 low comp
item03 competence
item01 motivation
item11 low comp
item12 motivation
item13 motivation
item08 low motiv
itemO4 low motiv
item07 motivation
item09 competence
item14 pleasure
item10 low pleas
item02 pleasure
item06 low pleas

-.897
.780

-.572

412

487

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

2. Rotation converged in 5 iterations.
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Factor Transformation Matri——————

SPSS for Intermediate Statistics

We will ignore this; it was used

Factor 1 2 3 to convert the initial factor matrix
1 747 652 =370 into the rotated factor matrix.

2 -.162 692 .704

3 645 -.466 .606

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.

Interpretation of Output 5.1

The factor analysis program generates a number of tables depending on which options you have chosen.
The first table in Output 5.1 is a correlation matrix showing how each of the 14 items is associated with
each of the other 13. Note that some of the correlations are high (e.g., + or - .60 or greater) and some are
low (i.e., near zero). The high correlations indicate that two items are associated and will probably be
grouped together by the factor analysis.

Next, several assumptions are tested. The determinant (located under the correlation matrix) should be
more than .00001. Here, it is .001 so this assumption is met. If the determinant is zero, then a factor
analytic solution can not be obtained, because this would require dividing by zero. This would mean that
at least one of the items can be understood as a linear combination of some set of the other items. The
Kaiser-Meyer-Olkin (KMO) measure should be greater than .70, and is inadequate if less than .50. The
KMO test tells one whether or not enough items are predicted by each factor. The Bartlett test should be
significant (i.e., a significance value of less than .05); this means that the variables are correlated highly
enough to provide a reasonable basis for factor analysis.

The Total Variance Explained table shows how the variance is divided among the 14 possible factors.
Note that four factors have eigenvalues (a measure of explained variance) greater than 1.0, which is a
common criterion for a factor to be useful. When the eigenvalue is less than 1.0, this means that the
factor explains less information than a single item would have explained. Most researchers would not
consider the information gained from such a factor to be sufficient to justify keeping that factor. Thus, if
you had not specified otherwise, the computer would have looked for the best four-factor solution by
“rotating” four factors. Because we specified that we wanted only three factors rotated, only three will
be rotated.

For this and all analyses in this chapter, we will use an orthogonal rotation (varimax). This means that
the final factors will be as uncorrelated as possible with each other. As a result, we can assume that the
information explained by one factor is independent of the information in the other factors. We rotate the
factors so that they are easier to interpret. Rotation makes it so that, as much as possible, different items
are explained or predicted by different underlying factors, and each factor explains more than one item.
This is a condition called simple structure. Although this is the goal of rotation, in reality, this is not
always achieved. One thing to look for in the Rotated Matrix of factor loadings is the extent to which
simple structure is achieved.

The Rotated Factor Matrix table, which contains these loadings, is key for understanding the results of
the analysis. Note that the computer has sorted the 14 math attitude questions (item 01 to item 14) into
three overlapping groups of items, each which has a loading of |.30| or higher (].30| means the absolute
value, or value without considering the sign, is greater than .30). Actually, every item has some loading
from every factor, but there are blanks in the matrix where weights were less than |.30{. Within each
factor (to the extent possible), the items are sorted from the one with the highest factor weight or loading
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for that factor (i.e., item 05 for factor 1, with a loading of -.897) to the one with the lowest loading on
that first factor (item 07). Loadings resulting from an orthogonal rotation are correlation coefficients of
each item with the factor, so they range from -1.0 through 0 to + 1.0. A negative loading just means that
the question needs to be interpreted in the opposite direction from the way it is written for that factor
(e.g., item 05 “I am a little slow catching on to new topics in math” has a negative loading from the
competence factor, which indicates that the people scoring higher on this item are lower in competence).
Usually, factor loadings lower than |.30] are considered low, which is why we suppressed loadings less
than {.30]. On the other hand, loadings of |.40| or greater are typically considered high. This is justa
guideline, however, and one could set the criterion for “high” loadings as low as .30 or as high as .50.
Setting the criterion lower than .30 or higher than .50 would be very unusual.

The investigator should examine the content of the items that have high loadings from each factor to see
if they fit together conceptually and can be named. Items 5, 3, and 11 were intended to reflect a
perception of competence at math, so the fact that they all have strong loadings from the same factor
provides some support for their being conceptualized as pertaining to the same construct. On the other
hand, item 01 was intended to measure motivation for doing math, but it is highly related to this same
competence factor. In retrospect, one can see why this item could also be interpreted as competence. The
item reads, “I practice math skills until I can do them well.” Unless one felt one could do math problems
well, this would not be true. Likewise, item 02, “ I feel happy after solving a hard problem,” although
intended to measure pleasure at doing math (and having its strongest loading there), might also reflect
competence at doing math, in that again one could not endorse this item unless one had solved hard
problems, which one could only do if one were good at math. On the other hand, item09, which was
originally conceptualized as a competence item, had no really strong loadings. Irem 11, as mentioned
earlier, had a high loading for the first factor, as expected. However, it also had a moderate loading for
Factor 3, which seems to be a (low) pleasure factor. This item reads, “I have some difficulties doing math
as well as other kids my age.” Can you think of why this might be related to low pleasure?

Every item has a weight or loading from every factor, but in a “clean” factor analysis almost all of the
loadings that are not in the circles that we have drawn on the Rotated Factor Matrix will be low (blank
or less than |.40]). The fact that both Factors 1 and 3 load highly on item 02 and fairly highly on item 11,
and the fact that Factors 1 and 2 both load highly on item 07 is common but undesirable, in that one
wants only one factor to predict each item.

Example of How to Write About Problem 5.1
Results

Principal axis factor analysis with varimax rotation was conducted to assess the underlying structure
for the fourteen items of the Math Motivation Questionnaire. Three factors were requested, based on the
fact that the items were designed to index three constructs: motivation, competence, and pleasure. After
rotation, the first factor accounted for 21.5% of the variance, the second factor accounted for 16.6%, and
the third factor accounted for 12.7%. Table 5.1 displays the items and factor loadings for the rotated
factors, with loadings less than .40 omitted to improve clarity.
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Table 5.1
Factor Loadings for the Rotated Factors

Item Factor Loading

1 2 3 Communality

Slow catching on to new topics -90 77
Solve math problems quickly .78 .60
Practice math until do well .78 .66
Have difficulties doing math -57 .59
Try to complete math even if takes long 72 .50
Explore all possible solutions .67 A5
Do not keep at it long if problem challenging -.62 .53
Give up easily instead of persisting -.60 .56
Prefer to figure out problems without help 41 .59 61
Really enjoy working math problems ' -.80 A48
Smile only a little when solving math problem S8 37
Feel happy after solving hard problem 49 -54 54
Do not get much pleasure out of math 52 38
Eigenvalues 3.02 232 1.78
% of variance 21.55 16.62 12.74

Note. Loadings < .40 are omitted.

The first factor, which seems to index competence, loads most strongly on the first four items, with
loadings in the first column. Two of the items indexed low competence and had negative loadings. The
second factor, which seemed to index motivation, was composed of the five items with loadings in
column 2 of the table. “I prefer to figure out the problem without help” had its highest loading on the
second factor, but had a cross-loading over .4 on the competence factor. The third factor, which seemed
to index (low) pleasure from math, comprised the four items with loadings in the third column. “I feel
happy after solving a hard problem” had its highest loading from the pleasure factor, but also had a
strong loading from the competence factor.

Problem 5.2: Principal Components Analysis on Achievement Variables

Principal components analysis is most useful if one simply wants to reduce a relatively large number of
variables into a smaller set of variables that still captures the same information.

5.2 Run a principal components analysis to see how the five “achievement” variables cluster. These
variables are grades in h.s., math achievement, mosaic, visualization, and scholastic aptitude test —
math.

Click on Analyze => Data Reduction => Factor.
First press Reset.
Next select the variables grades in h.s., math achievement, mosaic, visualization, and scholastic
aptitude test — math as we did in Fig. 5.1.

e In the Descriptives window (Fig. 5.2), check Univariate descriptives, Initial solution,
Coefficients, Determinant, and KMO and Bartlett’s test of sphericity.

e Inthe Extraction window (Fig. 5.3), use the default Method of Principal components, and leave
the other settings as they are (unrotated factor solution and Eigenvalues over 1 checked), except
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request a scree plot to see if a different number of components would be preferable to the default of

eigenvalues over 1 (see Fig. 5.3).

¢ In the Rotation window (Fig. 5.4), check Varimax, display Rotated solution, and display Loading

plots.
e Click on Continue and then OK.

We have requested a principal components analysis for the extraction and some different options for the

output for contrast with the earlier one. Compare Output 5.2 to your syntax and output.

Output 5.2: Principal Components Analysis for Achievement Scores

FACTOR

/VARIABLES grades mathach mosaic visual satm /MISSING LISTWISE /ANALYSIS grad

es mathach mosaic visual satm

/PRINT UNIVARIATE INITIAL CORRELATION DET KMO EXTRACTION ROTATION

/PLOT EIGEN ROTATION

/CRITERIA MINEIGEN (1) ITERATE{25)
/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX
/METHOD=CORRELATION,

Descriptive Statistics
Mean Std. Deviation | Analysis N
grades in h.s. 5.68 1.570 75
math achievement test 12.5645 6.67031 75
mosaic, pattern test 27.413 9.5738 75
visualization retest 4.5467 3.01816 75
scholastic aptitude
test - math 490.53 94.553 75
Correlation MatrixX?
math scholastic
achievement mosaic, visualization aptitude
grades in h.s. test pattem test retest test - math
Correlation grades in h.s. 1.000 .504 -012 162 .37
math achievement test 504 1.000 213 465 .788
mosaic, pattem test =012 213 1.000 045 110
visualization retest 162 465 045 1.000 436
scholastic aptitude
test - math 37 .788 110 436 1.000
8. Determinant = .199
KMO and Bartlett's Test
Kaiser-Meyer-OIkin Measure of Sampling
Adequacy. 615
Bartlett's Test of Approx. Chi-Square 111.440
Sphericity df 10
Sig. .000
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Communalities

Initial Extraction
grades in h.s. 1.000 493
math achievement test 1.000 .869
mosaic, pattern test 1.000 .949
visualization test 1.000 330
scholastic aptitude
test - math 1.000 748

Extraction Method: Principal Component Analysis.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component Total % of Variance | Cumulative % Total % of Variance | Cumulative % Total % of Variance | Cumulative %
1 2.379 47579 47.579 2.379 47.579 47.579 2.340 46,805 46.805
2 1.010 20.198 67.777 1.010 20.198 67.777 1.049 20.972 67.777
3 872 17.437 85.214
4 560 11.197 96.411
5 179 3.589 100.000
Extraction Method: Principal Component Analysis.
Scree Plot
25~
20 The scree plot
shows that after
5 15 the first two
g components,
] increases in the
1.0 eigenvalues
w .
decline, and
05= they are less
than 1.0.
0.0
T T T 1 Y
1 2 3 4 5
Component Number
Component Matrix ?
Component This unrotated matrix should not be
T 1 = 2 —> interpreted; it provides information
rgnath achie\'le.ment test '231 4 431-I:-'. 02 about how the loadings change when
mosalc. batiern tsst ‘220 . ;49 the solution is rotated. In addition, the
\osaic. p ’ . first unrotated component provides
visualization fest 571 -5.62E-02 . .
- the simplest summary of the variables.
scholastic aptitude 865 1.95E-02
test - math : el

Extraction Method: Principal Component Analysis.
a. 2 components extracted.
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Rotated Component Matrix  *

Component

1 2
grades in h.s. .669 -213
,mn::ia:h:nem ;ts:eSt 57 o 290 932 Refer to the Interpretation of
visualization test T gﬁu‘[‘ Output 5.2 and to the Component
scholastic aptitude ) Plot.
test - math 856 428

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component 1 2
1 .986 .168
2 -.168 .986

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Component Plot in Rotated Space

1.0 ' llmfF;mﬂTTES,l

o
wn
1

s3SI AU A i

0.0 —r— ,
grades in h.s.
L
-0.5=
-1.0-
] T T T
10 05 040 05 1.0
Component 1
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Interpretation of Output 5.2

Compare Output 5.2 to your output and syntax in Output 5.1. Note that in addition to the tables in Output
5.1 you have: (a) a table of Descriptive Statistics for each variable, which also provides the listwise
Analysis NV, in this case 75; (b) a Scree Plot; (c) an unrotated Component Matrix, which should not be
interpreted (however, if you want to compute only one variable that provides the most information about
the set of variables, a linear combination of the variables with high loadings from the first unrotated
component matrix would be used); (d) a Rotated Component Matrix, which contains the loadings for
each component, in a manner comparable to those for the rotated factor matrix in 5.1; and (e) the
Component Plot of the component loadings.

Both the Scree Plot and the eigenvalues support the conclusion that these five variables can be reduced
to two components. However, the second component is a weak one. Note that the scree plot flattens out
after the second component.

Note that the default setting we used does not sort the variables in the Rotated Component Matrix by
magnitude of loadings and does not suppress low loadings. Thus, you have to organize the table yourself;
that is, math achievement, scholastic aptitude test, grades in h.s., and visualization in that order have
high Component 1 loadings, and mosaic is the only variable with a high loading for Component 2.

Researchers usually give names to a component in a fashion similar to that used in EFA; however, there
is no assumption that this indicates a variable that underlies the measured items. Often, a researcher will
aggregate (add or average) the items that define (have high loadings for) each component, and use this
composite variable in further research. Actually, the same thing is often done with EFA factor loadings;
however, the implication of the latter is that this composite variable is an index of the underlying
construct.

The plot of the component loadings gives one a visual representation of the loadings, plotted in space.
This shows how closely related the items are to each other and to the components.

Interpretation Questions

5.1 Using Output 5.1: a) Are the factors in Output 5.1 close to the conceptual composites
(motivation, pleasure, competence) indicated in chapter 1 ? b) How might you name the three
factors in Output 5.1? c) Why did we use factor analysis, rather than principal components
analysis for this exercise?

52 Using Output 5.2: a) Were any of the assumptions that were tested violated? Explain. b)
Describe the main aspects of the correlation matrix, the rotated component matrix, and the plot in
Output 5.2.

5.3 What does the plot in Output 5.2 tell us about the relation of mosaic to the other variables and to
component 1? How does this plot relate to the rotated component matrix?

Extra SPSS Problems

5.1 Using the judges.sav data, do exploratory factor analysis to see if the seven variables (the judges’
countries) can be grouped into two categories: former communistic block countries (Russia,
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China, and Romania) and non communist countries (U.S., South Korea, Italy, and France).
What, if any, assumptions were violated?

Using the satisf.sav data, see if the six satisfaction scales can be reduced to a smaller number of
variables.
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CHAPTER 6
Multiple Regression

Multiple regression is one type of complex associational statistical method. Already, we have done
assignments using another complex associational method, Cronbach’s alpha, which, like multiple
regression, is based on a correlation matrix of all the variables to be considered in a problem. In addition
to multiple regression, two other complex associational analyses, logistic regression and discriminant
analysis will be computed in the next chapter. Like multiple regression, logistic regression and
discriminant analysis have the general purpose of predicting a dependent or criterion variable from
several independent or predictor variables. As you can tell from examining Table 3.4 (p. 50), these three
techniques for predicting one outcome measure from several independent variables vary in the level of
measurement and type of independent variables and/or type of outcome variable.

For multiple regression, the dependent or outcome variable should be an interval or scale level variable,
which is normally distributed in the population from which it is drawn. The independent variables should
be mostly interval or scale level variables, but multiple regression can also have dichotomous
independent variables, which are called dummy variables. Dummy variables are often nominal
categories that have been given numerical codes, usually 1 and 0. The 0 stands for whatever the 1 is not,
and is thus said to be “dumb” or silent. Thus, when we use gender, for instance, as a dummy variable in
multiple regression, we’re really coding it as 1 = female and 0 = not female (i.e., male). This gets
complex when there are more than two nominal categories. In that case, we need to convert the multiple
category variable to a set of dichotomous variables indicating presence versus absence of the categories.
For example, if we were to use the ethnic group variable, we would have to code it into several
dichotomous dummy variables such as Euro-American and not Euro-American, African-American and
not African-American, and Latino-American and not Latino-American.

Assumptions of Multiple Linear Regression

There are many assumptions to consider but we will focus on the major ones that are easily tested with
SPSS. The assumptions for multiple regression include the following: that the relationship between each
of the predictor variables and the dependent variable is linear and that the error, or residual, is normally
distributed and uncorrelated with the predictors. A condition that can be extremely problematic as well is
multicollinearity, which can lead to misleading and/or inaccurate results. Multicollinearity (or
collinearity) occurs when there are high intercorrelations among some set of the predictor variables. In
other words, multicollinearity happens when two or more predictors contain much of the same
information.

Although a correlation matrix indicating the intercorrelations among all pairs of predictors is helpful in
determining whether multicollinearity is a problem, it will not always indicate that the condition exists.
Multicollinearity may occur because several predictors, taken fogether, are related to some other
predictors or set of predictors. For this reason, it is important to test for multicollinearity when doing
multiple regression.

There are several different ways of computing multiple regression that are used under somewhat different
circumstances. We will have you use several of these approaches, so that you will be able to see that the
method one uses to compute multiple regression influences the information one obtains from the

analysis. If the researcher has no prior ideas about which variables will create the best prediction
equation and has a reasonably small set of predictors, then simultaneous regression is the best method
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to use. It is preferable to use the hierarchical method when one has an idea about the order in which
one wants to enter predictors and wants to know how prediction by certain variables improves on
prediction by others. Hierarchical regression appropriately corrects for capitalization on chance;
whereas, stepwise, another method available in SPSS in which variables are entered sequentially, does
not. Both simultaneous regression and hierarchical regression require that you specify exactly which
variables serve as predictors. Sometimes you have a relatively large set of variables that may be good
predictors of the dependent variable, but you cannot enter such a large set of variables without sacrificing
the power to find significant results. In such a case, stepwise regression might be used. However, as
indicated earlier, stepwise regression capitalizes on chance more than many researchers find acceptable.

e Retrieve your data file: hshdataB.sav

Problem 6.1: Using the Simultaneous Method to
Compute Multiple Regression

To reiterate, the purpose of multiple regression is to predict an interval (or scale) dependent variable
from a combination of several interval/scale, and/or dichotomous independent/predictor variables. In the
following assignment, we will see if math achievement can be predicted better from a combination of
several of our other variables, such as the motivation scale, grades in high school, and mother s and
Jather’s education. In Problems 6.1 and 6.3, we will run the multiple regression using alternate methods
provided by SPSS. In Problem 6.1, we will assume that all seven of the predictor variables are important
and that we want to see what is the highest possible multiple correlation of these variables with the
dependent variable. For this purpose, we will use the method that SPSS calls Enter (often called
simultaneous regression), which tells the computer to consider all the variables at the same time. In
Problem 6.3, we will use the hierarchical method.

6.1.How well can you predict math achievement from a combination of seven variables: motivation,
competence, pleasure, grades in high school, father’s education, mother’s education, and gender?

In this problem, the computer will enter/consider all the variables at the same time. Also, we will ask
which of these seven predictors contribute significantly to the multiple correlation/regression.

It is a good idea to check the correlations among the predictor variables prior to running the multiple
regression, to determine if the predictors are sufficiently correlated such that multicollinearity is highly
likely to be a problem. This is especially important to do when one is using a relatively large set of
predictors, and/or if, for empirical or conceptual reasons, one believes that some or all of the predictors
might be highly correlated. If variables are highly correlated (e.g., correlated at .50 or .60 and above),
then one might decide to combine (aggregate) them into a composite variable or eliminate one or more of
the highly correlated variables if the variables do not make a meaningful composite variable. For this
example, we will check correlations between the variables to see if there might be multicollinearity
problems. We typically also would create a scatterplot matrix to check the assumption of linear
relationships of each predictor with the dependent variable and a scatterplot between the predictive
equation and the residual to check for the assumption that these are uncorrelated. In this problem, we will
not do so because we will show you how to do these assumption checks in Problem 6.2.

Click on Analyze => Correlate => Bivariate. The Bivariate Correlations window will appear.
Select the variables motivation scale, competence scale, pleasure scale, grades in h.s., father’s
education, mother’s education, and gender and click them over to the Variables box.

¢ Click on Options => Missing values => Exclude cases listwise.
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e Click on Continue and then click on OK. A correlation matrix like the one in Output 6.1a should
appear.

Output 6.1a: Correlation Matrix

CORRELATIONS
/VARIABLES=motivation competence pleasure grades faed maed gender
/PRINT=TWOTAIL NOSIG
/MISSING=LISTWISE.

H High correlations among predictors indicate
Correlations it is likely that there will be a problem with
multicollinearity.

Correlations® / “
/

motivation competence pleasure father's mother's
_Scale scal & rades in h.8. | education\ [ education gender
motivation scale Pearson Correlation 1 517+ 277 .020 049 15 -178
Sig. (2-talled) . .000 .021 872 692 .347 143
competence scale  Pearson Correlation 517 1 A13 218 031 234 -037
Sig. (2-tailed) .000 . .000 075 799 .053 .760
pleasure scale Pearson Correlation 277 4131 1 -.081 .020 \ .108 084
Sig. (2-tailed) 021 000 . 509 869 378 492
grades inh.s. Pearson Correlation 020 216 -.081 1 31544 \i:s' .162
Sig. (2-tailed) 872 075 509 . .008 042 182
father's education  Pearson Correlation 049 031 020 3154 1 649 -.266*
Sig. (2-tailed) 892 799 .869 .008 . X 027
mother's education  Pearson Correlation 115 234 .108 248" .649*% 1 ~.223
Sig. (2-tailed) 347 063 378 042 .000 . 065
gender Pearson Correlation -.178 -.037 .084 .162 -.266* -.223 1
Sig. (2-tailed) 143 .760 492 182 027 065

**. Correlation Is significant at the 0.01 level (2-tailed).
*. Comsiation Is significant at the 0.05 lavel (2-tailed).
8. Listwiso N=69

The correlation matrix indicates large correlations between motivation and competence and between
mother’s education and father’s education. To deal with this problem, we would usually aggregate or
eliminate variables that are highly correlated. However, we want to show how the collinearity problems
created by these highly correlated predictors affect the Tolerance values and the significance of the beta
coefficients, so we will run the regression without altering the variables. To run the regression, follow the
steps below:

e Click on the following: Analyze => Regression => Linear. The Linear Regression window (Fig.
6.1) should appear.
Select math achievement and click it over to the Dependent box (dependent variable).
Next select the variables motivation scale, competence scale, pleasure scale, grades in h.s., father’s
education, mother’s education, and gender and click them over to the Independent(s) box
(independent variables).

¢ Under Method, be sure that Enter is selected.
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Fig. 6.1. Linear Regression.

e Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit,
Descriptives, and Collinearity diagnostics. (See Fig. 6.2.)

Fig. 6.2. Linear Regression: Statistics.

e Click on Continue.
¢ Click on OK.

Compare your output and syntax to Qutput 6.1b.

Output 6.1b: Multiple Linear Regression, Method = Enter

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT mathach
/METHOD=ENTER motivation competence pleasure grades faed maed gender.
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Regression
Descriptive Statistics
Mean Std. Deviation N ~ -
math achievement test | 12.7536 6.66293 B\ ]6" ;;‘:?c}’;:;‘s‘se
Motivation scale 2.8913 62676 69 have some
Competence scale 3.3188 62262 69 missing data.
pleasure scale 3.1667 .66789 69
grades in h.s. 5.71 1.573 69
father's education 4.65 2,764 69
mother's education 4.07 2.185 69
gender .54 .502 69
7 This is a repeat of the
correlation matrix we

Correlations with math

did earlier, indicating

a. All requested variables entered.
b. Dependent Variable: math achievement test
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achievement. high correlations among
predictors.
P {ather's
b1 rades in h.s. | education
oo Corelaton—mali scRavemaTiast —:ﬂm "‘——qﬂF——m— :
Motivation scale 274 020 049 .
Competence scale .438 > .218 031 .
pleasure scale K 111 -.008 . J
grades in h.s. . =111 1.000 315 . .
father's education K -.008 315 1.000 . -
mother's education . .085 246 849 Rk -
gender - .037 .162 -.266 . .
Sig. (1-tailed) ‘math achievement test K 239 .000 000 .001 012
Motivation scale i 01 436 348 173 072
Comgpetence scale . .000 037 400 026 380
pleasure scale .000 . .182 474 244 383
grades In h.s. . .037 .182 . 004 021 091
father's education . 400 AT4 .004 . .000 014
mother's education . 028 244 .021 ,000 . 032
gender K 380 383 091 014 032 .
N math achievement test 69 69 69 69 60 [T) 69
Motivation scale 69 69 69 69 69 69 69 69
Comgpetence scale 89 68 -] 69 69 69 69 69
pleasura scale 68 68 68 68 69 68 68 69
grades in h.s. 89 68 69 69 69 -] &9 69
father's education 69 1] 68 69 68 -] 69 69
mother's education 89 69 69 89 69 69 68 -]
gender 69 69 69 69 [:] 69 68 69
Variables Entared/Removed® \ Significance level of
Variables Variables corr_elatlons with math
Model | Entered | Removed | Method achievement.
1 gender,
pleasure
scale,
grades in
h.s.,
Motivation
scale, Enter
mother's
education,
Competen
ce scale,
father's
education
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Multiple Indicates that 36% of the variance
correlation can be predicted from the
coefficient. '\ Mode! Summany independent variables.
\ Adjusted [ Std. Error of
Model R R Square | R Square | | the Estimate
1 6547 427 /.36 5.32327
a. PredictMstant). gender, ple scale, grades

in h.s., Motivation scale, mother's education,
Competence scale, father's education

b. Dependent Variable: math achievement test

ANOVAP
Sum of
Model Squares df Mean Square F Si
1 Regression | 1290.267 7 184.324 6.505 { .0002
Residual 1728.571 61 28.337
Total 3018.838 68

a. Predictors: (Constant), gender, pleasure scale, grades in h.s., Motivation scale,
mother's education, Competence scale, father's education

b. Dependent Variable: math achievement test Indicates that the combination of these
variables significantly (p < .001) predicts
the dependent variable.

Coefficients®
Unstandardized Standardized Col s
Coefficients Coefficients linearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) 5.912 4.749 -1.455 151
Motivation scale 1.639 1.233 .154 1.330 .188 698 1.432
Competence scale |1.424E-02 1.412 .001 010 992 539 1.854
pleasure scale 953 1.119 .096 .852 .398 748 1.340
grades in h.s. 1.921 480 4001 | 580 731 1.368
father's education .303 .331 126 915 .364 497 2.013
mother's education 333 406 | ————400—+——820 415 529 1.892
gender -3.497 1.424< -.264 -2.455 5017 814 1,228

4. Dependent Variable: math achievement test

Only grades and gender are significantly contributing to
the equation. However, all of the variables need to be
included to obtain this result, since the overall F value
was computed with all the variables in the equation.

Tolerance and VIF give the same
information. (Tolerance = 1/VIF) They tell
us if there is multicollinearity. If the
Tolerance value is low (< 1-R?), then there is
probably a problem with multicollinearity. In

This tells you how much each
variable is contributing to any
collinearity in the model.

this case, since adjusted R? is .36, and 1- R?
is about .64, then tolerances are low for
competence, mother’s and father's

Collinearity Diagnostic
Varniance P Fm
Candition Comp p father's mother's
Model _Dimension | Eigenvalue Index (Constant scale scale gradesin h.s. | education | education gender
7.035 1.000 .00 .00 .00 .00 00 .00 .00 .00
2 .550 3.577 .00 .00 00 .00 .00 .04 .02 .49
3 218 5722 .00 .02 .01 .0 .00 18 .09 .32
4 8.635E-02 8.026 .00 .00 00 .00 .08 45 .78 01
5 5.650E-02 11.159 .00 .01 00 .10 .80 23 04 .08
8 2911E-02 15.645 .01 59 .00 43 .05 .01 .00 .08
7 1.528E-02 21.456 70 .00 48 02 .02 .05 .04 01
8 1.290E-02 23.350 .29 .38 .53 44 .28 .03 .02 .00
8. Dep le: math achi test
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Interpretation of Output 6.1

First, the output provides the usual descriptive statistics for all eight variables. Note that the N is 69
because 6 participants are missing a score on one or more variables. Multiple regression uses only the
participants who have complete data for all the variables. The next table is a correlation matrix similar to
the one in Output 6.1a. Note that the first column shows the correlations of the other variables with math
achievement and that motivation, competence, grades in high school, father's education, mother’s
education, and gender are all significantly correlated with math achievement. As we observed before,
several of the predictor/ independent variables are highly correlated with each other; that is, competence
and motivation (.517) and mother’s education and father s education (.649).

The Model Summary table shows that the multiple correlation coefficient (R), using all the predictors
simultaneously, is .65 (R’ = .43) and the adjusted R is .36, meaning that 36% of the variance in math
achievement can be predicted from gender, competence, etc. combined. Note that the adjusted R’ is lower
than the unadjusted R’ This is, in part, related to the number of variables in the equation. The adjustment
is also affected by the magnitude of the effect and the sample size. As you will see from the coefficients
table, only father ’s education and gender are significant, but the other five variables will always add a
little to the prediction of math achievement. Because so many independent variables were used, a
reduction in the number of variables might help us find an equation that explains more of the variance in
the dependent variable. It is helpful to use the concept of parsimony with multiple regression, and use
the smallest number of predictors needed.

The ANOVA table shows that F = 6.51 and is significant. This indicates that the combination of the
predictors significantly predict math achievement.

One of the most important tables is the Coefficients table. It indicates the standardized beta
coefficients, which are interpreted similarly to correlation coefficients or factor weights (see chapter 4).
The ¢ value and the Sig opposite each independent variable indicates whether that variable is significantly
contributing to the equation for predicting math achievement from the whole set of predictors. Thus, A.s.
grades and gender, in this example, are the only variables that are significantly adding anything to the
prediction when the other five variables are already considered. It is important to note that all the
variables are being considered together when these values are computed. Therefore, if you delete one of
the predictors that is not significant, it can affect the levels of significance for other predictors.

However, as the Tolerances in the Coefficients table suggest, and as we will see in Problem 6.2, these
results are somewhat misleading. Although the two parent education measures were significantly
correlated with math achievement, they did not contribute to the multiple regression predicting math
achievement. What has happened here is that these two measures were also highly correlated with each
other, and multiple regression eliminates all overlap between predictors. Thus, neither father's education
nor mother’s education had much to contribute when the other was also used as a predictor. Note that
tolerance for each of these variables is < .64 (1-.36), indicating that too much multicollinearity (overlap
between predictors) exists. The same is true for competence, once motivation is entered. One way to
handle multicollinearity is to combine variables that are highly related if that makes conceptual sense.
For example, you could make a new variable called parents’ education, as we will for Problem 6.2.

Problem 6.2: Simultaneous Regression Correcting Multicollinearity

In Problem 6.2, we will use the combined/average of the two variables, mother s education and father's
education, and then recompute the multiple regression, after omitting competence and pleasure.
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We combined father’s education and mother’s education because it makes conceptual sense and because
these two variables are quite highly related (» = .65). We know that entering them as two separate
variables created problems with multicollinearity because tolerance levels were low for these two
variables, and, despite the fact that both variables were significantly and substantially correlated with
math achievement, neither contributed significantly to predicting math achievement when taken together.

When it does not make sense to combine the highly correlated variables, one can eliminate one or more
of them. Because the conceptual distinction between motivation, competence, and pleasure was
important for us, and because motivation was more important to us than competence or pleasure, we
decided to delete the latter two scales from the analysis. We wanted to see if motivation would
contribute to the prediction of math achievement if its contribution was not canceled out by competence
and/or pleasure. Motivation and competence are so highly correlated that they create problems with
multicollinearity. We eliminate pleasure as well, even though its tolerance is acceptable, because it is
virtually uncorrelated with math achievement, the dependent variable, and yet it is correlated with
motivation and competence. Thus, it is unlikely to contribute meaningfully to the prediction of math
achievement, and its inclusion would only serve to reduce power and potentially reduce the predictive
power of motivation. It would be particularly important to eliminate a variable such as pleasure if it were
strongly correlated with another predictor, as this can lead to particularly misleading results.

6.2.Rerun Problem 6.1 using the parents’ education variable (parEduc) instead of faed and maed and
omitting the competence and pleasure scales.

First, we created a matrix scatterplot (as in chapter 2) to see if the variables are related to each other in a
linear fashion. You can use the syntax in Qutput 6.2 or use the Analyze => Scatter windows as shown
below.

Click on Graphs => Scatter...

Select Matrix and click on Define.

Move math achievement, motivation, grades, parent’s education, and gender into the Matrix
Variables: box.

Click on Options. Check to be sure that Exclude cases listwise is selected.

Click on Continue and then OK.

Then, run the regression, using the following steps:

e Click on the following: Analyze => Regression => Linear. The Linear Regression window (Fig.
6.1) should appear. This window may still have the variables moved over to the Dependent and
Independent(s) boxes. If so, click on Reset.

Move math achievement into the Dependent box.

Next select the variables motivation, grades in h.s., parent’s education, and gender and move them
into the Independent(s) box (independent variables).

Under Method, be sure that Enter is selected.

¢ Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit,
Descriptives, and Collinearity diagnostics (See Fig. 6.2.).

e Click on Continue.

¢ Click on OK.
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Then, we added a plot to the multiple regression to see the relationship of the predictors and the residual.
To make this plot follow these steps:

e Click on Plots... (in Fig. 6.1 to get Fig. 6.3.)

Fig. 6.3. Linear Regression: Plots.

Move ZRESID to the Y: box.
Move ZPRED to the X: box. This enables us to check the assumption that the predictors and
residual are uncorrelated.

Click on Continue.
Click on OK.

Refer to Output 6.2 for comparison.

Output 6.2: Multiple Linear Regression with Parent’s Education, Method = Enter

GRAPH
/SCATTERPLOT (MATRIX)=mathach motivation grades parEduc gender
/MISSING=LISTWISE .

REGRESSION
/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT mathach
/METHOD=ENTER motivation grades parEduc gender
/SCATTERPLOT=(*ZRESID , *ZPRED) .
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The top row shows four scatterplots

(relationships) of the dependent variables with
each of the predictors. To meet the assumption

of linearity a straight line, as opposed to a

curved line, should fit the points relatively well.

Dichotomous variables have two
columns (or rows) of data points. If
the data points bunch up near the top
of the left column and the bottom of
the right, the correlation will be

negative (and vice versa). Linearity
would be violated if the data points
bunch at the center of one column and
at the ends of the other column.

Ko R
x X%

%
»%
. §
% xx 5 ¥¥x | WEEX & ! §
x
e
% Xxx X x xx: xm » X g
% x X¥X 433 x x ¥
Xy X x » *
x20mK o AWK 00C  2NC 20N x x
RIONWIMOON KX 206 WX WK X W K M x x
O 0NN 00¢ 2 2000¢ 200¢ RKR00K MW X x X
XIK HEOOOK 3 3¢ 300000 X 3¢ WK K X x b 3 x
MWE M K ’W0 X 3¢ 06X x x x
X X0 AR K W » X x X
x x x X
* x x XXy * x¥ § ¥
. | g g x ¥ x %
x% X xx o x ¥y x
x %, g S HE X
% | Rowa | xxElHY i ¥
JCNINENOO0K NN 00M0000C 2K XXX XXX WX H00006¢ 3¢ 3¢
NN 220030000000 RHARXXXXX 3000¢ 20¢ % % 20¢ 2K
math achievement test ! grades in h.s. ) gender

motivation scale

99

parents’ education



SPSS for Intermediate Statistics

Regression
Descriptive Statistics
Mean Std. Deviation N Note that N =73, indicaﬁng
math achievement test 12.6028 6.75676 73 that eliminating competence
motivation scale 2.8744 .63815 73 and pleasure reduced the
grades in h.s. 568 1.589 ~——73/ amount of missing data.
parents’ education 4.3836 2.30266 73 T
gender 55 501 73
Note that all the predictors are None of the relationships among
significantly related to math achievement. | Correlations predictors is greater than .25.
math L
chievement | motivation parents'
| _ test scale  grades in h.s.\education | gender
Pearson Correlats math achievement 1.000 316 504 394 | -303
motivation scale 316 1.000 084 090 | 209
grades in h.s. .504 .0 1.000 250 A15
parents' education 394 .090 .250 1.000 -.227
gender -.303/ -.209 115 -.227 1.000
Sig. (1-tailed) math achievement . .003 .000 .000 .005
motivation scale .003 . 241 225 .038
grades in h.s. .000 241 . 016 166
parents' education .000 225 .016 . .027
gender .005 .038 .166 .027 .
N math achievement { 73 73 73 73 73
motivation scale 73 73 73 73 73
grades in h.s. 73 73 73 73 73
parents' education 73 73 73 73 73
gender 73 73 73 73 73
Variables Entered/Removed®
Variables Variables e
Model Entered Removed Method This indicates
! gender, ;Ni;lﬁifaieous
gr:des in / regression in
motivation Enter this problem.
scale,
parents’
education®

a All requested variables entered.
b Dependent Variable: math achievement test
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Model SummanP The Adjusted R Square
indicates that we have a
Adjusted | Std. Ermor of fairly good model,
Model R R Square | R Square | the Estimate explaining about 43% of
1 6782 459 427 5.11249 the variance in math
a. Predictors: (Constant), gender, grades in h.s., achievement.
motivation scale, parent's education
b. Dependent Variable: math achievement test
ANOVAP Our model
significantly
Sum of redicts math
Model Squares df Mean Square F Sig. ‘ /’;chievemem.
1 Regression 1509.723 4 377.431 14.440 .000? /
Residual 1777.353 68 26.138 /
Total 3287.076 72

8. Predictors: (Constant), gender, grades in h.s., motivation scale, parent's education
b. Dependent Variable: math achievement test

Coefficients
Unstandardized Standardized
Coefficients Coefficients | Collinearity Statistics |

Model B Std. Error Beta Sig. Toler VIF
1 (Constant) -5.444 3.605 -1.510 136 \

motivation scale 2,148 972 .203 2211 .030 .944 1.059

grades in h.s. 1.991 400 468 4972 .000 .897 1115

parent's education .580 .280 -198 2.070 .042 871 1.148

gender -3.631 1.284 -.269 -2.828 006 .87j 1.141

o

8. Dependent Variable: math achievement test

Collinearity Diagnosticé

Here are the values to
check for multicollinearity.
Note that all tolerances are
well over .57 (1-R?).

Variance Proportions
Condition motivation parent's

Model Dimension | Eigenvalue Index Constant) scale gradesinh.s. | education | gende

1 1 4.337 1.000 .00 .00 .00 01 .01
2 457 3.082 .00 .00 .00 07 68
3 135 5.665 02 07 02 85 A7
4 .052 9.120 01 .20 87 .06 .06
5 019 15.251 .97 73 A1 .01 .08

a. Dependent Variable: math achievement test
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Casewise Diagnosticd

math
achievement

Case Number ] Std. Residual test
63 -3.174 1.00

a. Dependent Variable: math achievement test

Residuals Statistics
Minimum | Maximum Mean Std. Deviation N
Predicted Value 1.5029 22.2180 12.6028 4.57912 73
Residual -16.2254 10.3169 .0000 4.96845 73
Std. Predicted Value -2.424 2.100 .000 1.000 73
Std. Residual -3.174 2.018 .000 972 73

2. Dependent Variable: math achievement test

Charts Because the dots are
scattered, it indicates the
data meet the assumptions

If the dots created a pattern, this would of the errors being
indicate the residuals are not normally normally distributed and
distributed, the residual is correlated with Scatterplot the variances of the

the independent variables, and/or the residuals being constant.
variances of the residuals are not constant.

Dependent Variable: math achievement test
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Interpretation of Output 6.2

This output begins with the scatterplot matrix, which shows that the independent variables are generally
linearly related to the dependent variable of math achievement, meeting this assumption. One should
check the matrix scatterplots to see if there are curvilinear relationships between any of the variables; in
this example, there are none. If the variables had not met this assumption, we could have transformed
them, aggregated some, and/or eliminated some independent variables. (See chapter 2 for how to do
transformations.) There are also only low to moderate relationships among the predictor variables in the
Correlations table. This is good. The other assumptions are checked in the residual scatterplot at the
end of the output, which indicates that the errors are normally distributed, the variances of the residuals
are constant, and the residual is relatively uncorrelated with the linear combination of predictors.

The next important part of the output to check is the Tolerance and VIF values in the Coefficients table
for the existence of multicollinearity. In this example, we do not need to worry about multicollinearity
because the Tolerance values are close to 1.

The Model Summary table gives the R (.68) and Adjusted R square (.43). Thus, this model is
predicting 43% of the variance in math achievement. If we want to compare this model to that in
Problem 6.1, we use the Adjusted R square to see which model is explaining more of the variance in the
dependent variable. Interestingly, this model is predicting more of the variance in math achievement than
the model in Problem 6.1, despite using fewer predictors.

As can be seen from the ANOVA table, the model of motivation, grades in h.s., parents’ education, and
gender significantly predicts math achievement, F (4, 68) = 14.44, p <.001.

We can see from the Coefficients table that now all of the predictors are significantly contributing to the
equation (see the Sig. column).

How to Write About Qutput 6.2

Results
Multiple regression was conducted to determine the best linear combination of gender, grades in h.s.,
parents’ education, and motivation for predicting math achievement test scores. The means, standard
deviations, and intercorrelations can be found in Table 6.1. This combination of variables significantly
predicted math achievement, F(4,68) = 14.44, p < .001, with all four variables significantly contributing
to the prediction. The beta weights, presented in Table 6.2, suggest that good grades in high school
contribute most to predicting math achievement, and that being male, having high math motivation and
having parents who are more highly educated also contribute to this prediction. The adjusted R squared
value was .43. This indicates that 43% of the variance in math achievement was explained by the model.
According to Cohen (1988), this is a large effect.
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Table 6.1

Means, Standard Deviations, and Intercorrelations for Math Achievement and Predictor Variables

(N=73)

Variable M SD 1 2 3 4
Math Achievement 12.60 6.76 32%* S0x* 39%* -30%*
Predictor variable
1. Motivation scale 2.87 .64 - .08 .09 -21%*
2. Grades in h.s. 5.68 1.59 - 25% A2
3. Parent’s education 438 230 - -23*
4. Gender .55 .50 -

*p <.05; **p < .01.

Table 6.2

Simultaneous Multiple Regression Analysis Summary for Motivation, Grades in High School,
Parent’s Education, and Gender Predicting Math Achievement (N = 73)

Variable B SEB B
Motivation scale 2.15 97 20*
Grades in h.s. 1.99 40 AT**
Parent’s education .58 28 20*
Gender -3.63 1.28 -27**
Constant -5.44 3.61

Note. R = .46; F(4,68) = 14.44, p < .001
*» <.05; **p < .0l

Problem 6.3: Hierarchical Multiple Linear Regression

In Problem 6.3, we will use the hierarchical approach, which enters variables in a series of blocks or
groups, enabling the researcher to see if each new group of variables adds anything to the prediction
produced by the previous blocks of variables. This approach is an appropriate method to use when the
researcher has a priori ideas about how the predictors go together to predict the dependent variable. In
our example, we will enter gender first and then see if any of the other variables make an additional
contribution. This method is intended to control for or eliminate the effects of gender on the prediction.

6.3.1f we control for gender differences in math achievement, do any of the other variables significantly
add anything to the prediction over and above what gender contributes?
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We will include all of the variables from the previous problem; however, this time we will enter the
variables in two separate blocks to see how motivation, grades in high school, and parents’ education
improve on prediction from gender alone.

Click on the following: Analyze => Regression => Linear.

Click on Reset.

Select math achievement and click it over to the Dependent box (dependent variable).

Next, select gender and move it to the over to the Independent(s) box (independent variables).
Select Enter as your Method. (See Fig. 6.4.)

Fig. 6.4. Linear regression.

Click on Next beside Block 1 of 1. You will notice it changes to Block 2 of 2.
Then move motivation scale, grades in h.s., and parent’s education to the Independent(s) box
(independent variables).

e Under Method, select Enter. The window should look like Fig. 6.5.

Fig. 6.5. Hierarchical Regression.

e Click on Statistics, click on Estimates (under Regression Coefficients), and click on Model fit and
R squared change. (See Fig. 6.2.)

Click on Continue.

Click on OK.

Compare your output and syntax to Output 6.3.
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Output 6.3: Hierarchical Multiple Linear Regression

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN

/DEPENDENT mathach
/METHOD=ENTER gender

/METHOD=ENTER motivation grades parEduc

Regression
Variables Entered/Removed °
Variables Variables ;
Model Entered Removed Method In the first column of this
3 gender © Enter table there are tvyo l-nodels
2 ___| gradesin (1 and 2). This indicates
= that first we tested a model
motivation -\_m with gender as a predictor,
S:ar:\-‘ , 1 then we added the other
gducazon predictors and tested that
a. All requested variables entered. model (Model 2).
b. Dependent Variable: math achievement test -
Footnotes provide
you with relevant
information.

Model Summary

Change Statistics
Std. Error R
Mode R Adjusted of the Square F Sig. F
I R Square | R Square | Estimate | Change | Change df1 df2 Change
1 .303(a) .092 .079 6.48514 .002 7.158 1 71 009
2 .678(b) 459 427 5.11249 .368, 15.415 3 68 .000

a Predictors: (Constant), gender

mm\

b Predictors: (Constant), gender, grades in h.s., motivation scale, par

The Mode! Summary output shows there were two models run: Model 1 (in
the first row) and Model 2 (in the second row). It also shows that the addition
of grades, motivation, and parents’ education significantly improved on the
prediction by gender alone, explaining almost 37% additional variance.

ANOVA(c)
Sum of
Model Squares df Mean Square F Sig.
1 Regression 301.026 1 301.026 7.168 .009(a)
Residual 2986.050 71 42,057
Total 3287.076 72
2 Regression 1509.723 4 377.431 14.440 .000(b)
Residual 1777.353 68 26.138
Total 3287.076 72

a Predictors: (Constant), gender
b Predictors: (Constant), gender, grades in h.s., motivation scale, parents' education
¢ Dependent Variable: math achievement test
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Coefficients®
Unstandardized Standardized
Coefficients Coefficients
Model — B Std. Error Beta t Sig.
1 (Constant) 14.838 1.129 13.144 .000
gender -4.080 1.525 -.303 -2.675 .00
2 (Constant) -5.444 3.605 -1.510 136
gender -3.631 1.284 -.269 -2.828 .006
motivation scale 2.148 972 203 2.211 .030
grades in h.s. 1.991 .400 468 4.972 .000
parents' education .580 .280 .198 2.070 .042
a. Dependent Variable: math achievement test
Excluded Variables(b)
Collinearity
Statistics
Partial
Model Beta In T Sig. Correlation Tolerance
1 motivation
scale .264(a) 2.358 .021 271 956
grades in h.s. .546(a) 5,784 .000 569 .087
Parents’
education .343(a) 3.132 .003 .351 849

a Predictors in the Model: (Constant), gender
b Dependent Variable: math achievement test

Interpretation of Output 6.3
We did not need to recheck the assumptions for this problem, because we checked them in Problem 6.2
with the same variables.

The Descriptives and Correlations tables would have been the same as those in Problem 6.2 if we had
checked the Descriptive box in the Statistics window.

The other tables in this output are somewhat different than the previous two outputs. This difference is
because we entered the variables in two steps. Therefore, this output has two models listed, Model 1 and
Model 2. The information in Model 1 is for gender predicting math achievement. The information in
Model 2 is gender plus motivation, grades in h.s., and parents’ education predicting math achievement.

We can see from the ANOVA table that when gender is entered by itself, it is a significant

predictor of math achievement, F(1,71) = 7.16, p = .009; however, the model with the addition of the
other predictor variables is a better model for predicting math achievement F(4,68) = 14.44, p < .001.
That Model 2 is better than Model 1 can also be seen in the Model Summary table by the increase in the
adjusted R’ value from R? = .08 to an R’ = 43, F (3, 83) = 15.42, p < .001.

Note also that results for the final model, with all of the variables entered, is identical to the model in
Problem 6.2. No matter how they are entered, the same regression coefficients are selected to produce
the best model with the same set of predictors and the same dependent variable.
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Interpretation Questions

In Output 6.1: a) What information suggests that we might have a problem of collinearity? b)
How does multicollinearity affect results? c) What is the adjusted R* and what does it mean?

Using Output 6.2: a) How does combining (aggregating) mother s education and father's
education and eliminating competence and pleasure scales change the results from those in
Output 6.1? b) Why did we aggregate mother s education and father'’s education? c) Why did
we eliminate the competence and pleasure scales?

In Output 6.3: a) Compare the adjusted R’ for Model 1 and Model 2. What does this tell you? b)
Why would one enter gender first?

Extra SPSS Problems

Open the file, ‘World95°’. You will use this data set for all extra problems for Chapter 6. Using
People living in cities (urban), People who read (literacy), Infant mortality (babymort), Gross
domestic product (gdp_cap),Aids cases (aids), and Daily calorie intake (calories) as independent
variables and Average male life expectancy (l/ifeexpm) as the dependent variable, conduct a
linear regression.
a. Is the regression significant?
b. What is the Adjusted R Square?
c. Is multicollinearity an issue for this analysis, according to the criteria we have been
using? Are tolerances high? What does this imply?
d. Which variables are weighted most highly in the regression equation? Which betas are
significant?

Rerun the analysis from problem 1, but this time omit babymort as a predictor.

a. Is the regression significant?

b. What is the Adjusted R Square?

c. Is multicollinearity an issue for this analysis, according to the criteria we have been
using? Are tolerances high? How have tolerances and multicollinearity been affected by
leaving out babymort ?

d. Which variables are weighted most highly in the regression equation? Which betas are
significant?

Run a hierarchical regression, using Average female life expectancy (J/ifeexpy) as the dependent
variable, entering Average male life expectancy (/ifeexpm) as the first block, and then the same
predictors from problem 2 for the second block. Be sure to check R square change under
statistics.

a. Is the regression significant?

b. What is the Adjusted R Square?

c. Is multicollinearity an issue for this analysis, according to the criteria we have been
using? Are tolerances high? How have tolerances and multicollinearity been affected by
including lifeexpm as a predictor?

e. Which variables are weighted most highly in the regression equation? Which betas are
significant? Do any variables predict /ifeexpf after lifeexpm is taken into account? Which
variables might you want to eliminate from the equation? Why?
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CHAPTER 7
Logistic Regression and Discriminant Analysis

Logistic regression and discriminant analysis, like multiple regression, are useful when you want to
predict an outcome or dependent variable from a set of predictor variables. They are similar to a linear
regression in many ways. However, logistic regression and discriminant analysis are more appropriate
when the dependent variable is categorical. Logistic regression is useful because it does not rely on some
of the assumptions on which multiple regression and discriminant analysis are based. As with other
forms of regression, multicollinearity (high correlations among the predictors) can lead to problems for
both logistic and discriminant analysis.

Logistic regression is helpful when you want to predict a categorical variable from a set of predictor
variables. Binary logistic regression is similar to linear regression except that it is used when the
dependent variable is dichotomous. Multinomial logistic regression is used when the
dependent/outcome variable has more than two categories, but that is complex and less common, so we
will not discuss it here. Logistic regression also is useful when some or all of the independent variables
are dichotomous; others can be continuous.

Discriminant analysis, on the other hand, is useful when you have several continuous independent
variables and, as in logistic regression, an outcome or dependent variable that is categorical. The
dependent variable can have more than two categories. If so, then more than one discriminant function
will be generated (number of functions = number of levels of the dependent variable minus 1). For the
sake of simplicity, we will limit our discussion to the case of a dichotomous dependent variable here.
Discriminant analysis is useful when you want to build a predictive model of group membership based on
several observed characteristics of each participant. SPSS can create a linear combination of the predictor
variables that provides the best discrimination between the groups.

In Problems 7.1 and 7.2, we will use logistic regression to predict a dichotomous outcome (whether or
not students will take algebra 2) from continuous and dichotomous predictors. In Problem 7.1, we will
enter all four predictors simultaneously into the equation. This is similar to the first multiple regression
problem in chapter 6. In Problem 7.2, we use a hierarchical approach, in which blocks of variables are
entered sequentially. In Problem 7.3, we will use discriminant analysis to do the same problem that we
did with logistic regression in Problem 7.1 in order to compare the two techniques.

e  Get your hsbdataB data file.
Problem 7.1: Logistic Regression

Assumptions of logistic regression

There are fewer assumptions for logistic regression than for multiple regression and discriminant
analysis, which is one reason this technique has become popular, especially in health related fields.
Binary logistic regression assumes that the dependent or outcome variable is dichotomous and, like most
other statistics, that the outcomes are independent and mutually exclusive; that is, a single case can only
be represented once and must be in one group or the other. Finally, logistic regression requires large
samples to be accurate: Some say there should be a minimum of 20 cases per predictor, with a minimum
of 60 total cases. These requirements need to be satisfied prior to doing statistical analysis with SPSS. As
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with multiple regression, multicollinearity is a potential source of confusing or misleading results and
needs to be assessed.

7.1. Is there a combination of gender, parents’ education, mosaic, and visualization test that predicts
whether students will take algebra 2?

Let’s try a logistic regression to predict a dichotomous (two category) dependent variable when the
independent variables (called covariates in SPSS) are either dichotomous or normal/scale.

First, we should check for multicollinearity. Because tolerance and VIF scores are not available through
the logistic regression command, one way to compute these values is through the linear regression
command, using algebra 2 as the dependent variable and gender, mosaic, visualization test, and parents’
education as independent variables. If you did this, you would find that the tolerance statistics are all
above .87 so there is little multicollinearity. (See chapter 6 for how to do this.)

Use these commands to compute the logistic regression:

e Analyze => Regression => Binary Logistic to get to Fig. 7.1.

e Move algebra 2 in h.s. into the Dependent variable box.

e Move gender, mosaic, visualization test, and parents’ education into the Covariates box.

e Make sure Enter is the selected Method. (This enters all the variables in the covariates box into the
logistic regression equation simultaneously.)

¢ Click on Options to produce Fig. 7.2.

Fig. 7.1. Logistic regression.

e Check CI for exp(B), and be sure 95 is in the box (which will provide confidence intervals for the
odds ratio of each predictor’s contribution to the equation).
e (Click on Continue.
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Fig. 7.2. Logistic
regression: Options.

Click on OK. Does your output look like Qutput 7.1?

Output 7.1: Logistic Regression, Method = Enter

LOGISTIC REGRESSION VAR alg2
/METHOD=ENTER gender mosaic visual parEduc
/PRINT=CI {95)
/CRITERIA = PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .

Case Processing Summary

Unweighted Cases® N Percent

Selected Cases Included in Analysis 75 100.0 No participants
Missing Cases Q:—\O*F— have missing data.
Total 75 100.0

Unselected Cases 0 .0

Total 75 100.0

a. If weight is in effect, see classification table for the total
number of cases.

Dependent Variable Encoding

Qriginal Value { Internal Value .
—nc?qtgken 0 Algebra 2 is the dependent outcome

variable and is coded 0 or 1.

taken 1
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Block 0: Beginning Block

Overall Percentage

Classification Tablé®
Predicted
a!gebra 2in h.s. Percentage
Observed not taken taken Correct
Step0 algebra 2 in h.s. not taken 40\5 0 100.0
taken 35 0 0

=

a. Constant is included in the model.
b. The cut value is .500

o

40 students didn’t take algebra 2 and 35 did. 53% did not take
algebra 2. Thus, if one simply guessed that no students took algebra
2, one would classify 53.3% of the students correctly by chance.

Variables in the Equation

Variables not in the Equation

B S.E. Wald df Sig. Exp(B)
§tep 0 Constant -134 231 .333 1 .564 875
Only the constant M Gender, visual, and parents’ education are each
is in the equation. separately significantly related to algebra 2.

Score df Sig.
Step  Vanables “GENDER 5606 1 ‘@ l
0 MOSAIC 480 1 488
VISUAL 10.339 1 . {
PAREDUC 12.5659 1 .000
Overall Statistics 22.031 4 .000
Block 1: Method=Enter
Omnibus Tests of Model Coefficients
Chi-square df Sig. |
[Step 1 Step 24.231 4 .000 The overall model is
Block 24.231 4 .000 significant when all four
Model 24.231 4 ( .000 p——— independent variables are
entered.
Model Summary
These are similar to R and give a
-2 Log Cox & Snell | Nagelkerke rough estimate of the varianie that
1Step fikelihood R Squa R Square can be predicted from the
79.407 3.75 iig combination of the four variables.
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Note, 33/40 (83%) of those who didn’t
take algebra 2 were predicted correctly
with this model, but 71% of those who

did were predicted correctly.

Classification Tablé
Predicted
algebra 2 in h.s. Percentage
Observed not taken taken Correct— |
Step1 algebra 2 in h.s. not taken 33 7 82.5\.
taken 10 25 71.4
Overall Percentage

2. The cut value is .500

Parents’ education and visualization, but not gender, are significant
predictors when all four variables are considered together. This
suggests some correlation among predictors since gender was a
significant predictor when used alone. Mosaic fails to predict
algebra2 whether used alone or with the other predictors.

Variables in the Equation

95.0% C.1.for EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper
[Sjep GENDER -497 577 742 1 389 609 197 1.884
1 MOSAIC -.030 031 892 1 o7 -1 -
VISUAL 490 075 8.428 1 011 1.209 1.044 1.400
PAREDUC 380 431 8.418 1 004 1.482 1.131 1.889
Constant -1.736 1.158 2.243 1 138 Tt 76-

2. Variable(s) entered on step 1: GENDER, MOSAIC, VISUAL, PAREDUC.

Interpretation of Output 7.1

There are three main parts to this output. First, two tables provide descriptive information (see callout
boxes). Next, there are three tables in Block 0 that provide information about the baseline situation,
when only the constant is in the equation or model. That is, how well can we predict algebra 2 without
using gender, parents’ education, mosaic, or visualization test, if we predicted that all the students would
not take algebra 2? The last section of four tables is below Block 1. They show the results when the
four predictors are entered simultaneously.

The first table under Block 0, the initial Classification Table, shows the percentage of correct
predictions (53%) if all of the students were predicted to be in the larger (algebra 2 not taken) group.
The first Variables in the Equation table shows that if you predicted that all students would not take
algebra 2, the odds of successful prediction would not be significantly different from 50-50 (i.e., no
better than chance).

The Variables not in the Equation table shows that three of the four variables (gender, parents’
education, and visualization test) are, individually, significant predictors of whether a student would take
algebra 2 or not. Mosaic is not a significant predictor.

Logistic regression in SPSS provides several ways to interpret the results of using these four variables
(gender, parents’ education, mosaic and visualization test) as predictors of whether or not students took
algebra 2. The last four tables in Output 7.1 show these several ways. The Omnibus Tests of Model
Coefficients table indicates that, when we consider all four predictors together, the Model or equation is

significant (y *=24.23, df=4, N=175, p < .001).
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The Model Summary table includes two different ways of estimating R’ (percent of variance accounted
for) as was done in multiple regression. These “pseudo” R’ estimates (.28 and .37) indicate that
approximately 28% or 37% of the variance in whether or not students took algebra 2 can be predicted
from the linear combination of the four independent variables. The Cox & Snell R’ (28%) is usually an
underestimate.

The final Classification Table indicates how well the combination of variables predicts algebra 2. In
this problem we have tried to predict, from four other variables, whether or not students would take
algebra 2. Note from the classification table that, overall, 77% of the participants were predicted
correctly. The independent/covariate variables were better at helping us predict who would rot take
algebra 2 (83% correct) than at who would take it (71% correct).

Note, in the Variables in the Equation table, that only parents’ education and visualization test are
significant. Gender is not significant, which is probably due to several factors: 1) the fact that SE is quite
high relative to B, which makes the Wald statistic lower, 2) the fact that gender is dichotomous, and 3)
the fact that in this sample, gender is modestly (.25 and .28) but significantly related to visualization test
and parents’ education, so when they are already included, gender does not add enough to be significant
(p = .389). Note that Exp(B) gives the odds ratios for each variable. The odds ratio and confidence
interval for parents’ education was 1.46 (95% CI = 1.13-1.89) and for visualization test was 1.21 (CI =
1.04-1.4). These indicate that the odds of estimating correctly who takes algebra 2 improve by 46%
(1.46-1) if one knows parents’ education and by about 21% if one knows the visualization test score.

Example of How to Write About Problem 7.1
Results

Logistic regression was conducted to assess whether the four predictor variables, gender, parents’
education, mosaic pattern test, and visualization test, significantly predicted whether or not a student took
algebra 2. When all four predictor variables are considered together, they significantly predict whether or
not a student took algebra 2, % 2=24.23,df=4,N=175, p<.001. Table 7.1 presents the odds ratios,
which suggest that the odds of estimating correctly who takes algebra 2 improve by 46% if one knows
parents’ education and by about 21% if one knows students’ visualization scores.

Table 7.1

Logistic Regression Predicting Who Will Take Algebra 2

Variable )} SE Odds ratio P
Gender -.50 .58 61 389
Parents’ education 38 A3 1.46 .004
Mosaic -03 .03 97 345
Visualization test .19 .08 1.21 011
Constant -1.74 1.16 18 134

Problem 7.2: Hierarchical Logistic Regression

We will rerun Problem 7.1, but this time ask the computer to enter the background variables gender and
parents’ education first and then, on the second step or block, enter mosaic and visualization test.
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7.2. If we control for gender and parents’ education, will mosaic and/or visualization test add to the
prediction of whether students will take algebra 2?

Now use the same dependent variable and covariates except enter gender and parents’ education in
Block 1 and then enter mosaic and visualization test in Block 2.

Use these commands: Analyze => Regression => Binary Logistic.

Click on Reset.

Move algebra 2 in h.s. into the Dependent variable box.

Move gender and parents’ education into the Covariates box (in this problem we actually are
treating them as covariates in that we remove variance associated with them first; however, in SPSS
all predictors are called Covariates).

Make sure Enter is the selected Method.

Click on Next to get Block 2 of 2 (see Fig. 7.1 if you need help).

Move mosaic and visualization test into the Covariates box.

Click on OK. Does your output look like Output 7.2?

Output 7.2: Logistic Regression

LOGISTIC REGRESSION alg2
/METHOD = ENTER gender parEduc /METHOD = ENTER mosaic visual
/CRITERIA = PIN(.05) POUT(.10) ITERATE(20) CUT{(.5) .

Case Processing Summary

| Unweighted Cases® N Percent
Selected Cases Included in Analysis 75 100.0
Missing Cases 0 .0
Total 75 100.0
Unselected Cases 0 .0
Total 75 100.0
a. |f weight is in effect, see classification table for the total
number of cases.
Dependent Variable Encoding ——————— | Again, algebra 2 is the
— dependent variable and is
Original Val
no't tl::en alue } intermal Valug coded ta(:( for not taken and
taken 4 1 for taken.
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Block 0: Beginning Block

Classification Tabld"P

Predicted
alggbra 2inh.s. Percentage
Observed not taken taken Correct
Step0 algebra2inh.s. not taken 40 0 100.0
taken 35 0 0
Overall Percentage 53.3

a. Constant is included in the model.
b. The cut value is .500

Variables in the Equation

If we predicted that no one would
take algebra 2, we would be
correct 53% of the time, which is
not significant, p=.56.

S.E.

Wald

Exp(B)

Step 0 Constant

-134

231

.333

df Sig.
1 8564)

875

Both gender and parents’ education are significant
predictors when entered separately.

Variables not in the Equation

Score df
[Step  Variables GENDER 5.696 1
0 PAREDUC 12.559 1
Overall Statistics 14.944 2

Block 1: Method=Enter

Gender and parents’ education are entered in
Block 1, the first step.

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step1 Step 16.109 2 .000
Block 16.109 2 .000
Model 16.109 2 .000
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Model Summary
2log | Cox =1 Nagelk\eTR\ These are estimates of how much
Step | likelihood | R Hquare R Square knowing student’s gender and
1 87.530 \_-193 258 parents’ education helps you
—— predict whether or not the student
will take algebra 2.
Classification Tablé'
Predicted
al_gebra 2in h.s. Percentage
Observed not taken taken Correct
Step1 algebra2inh.s. not taken 32 8 80.&
taken 14 21 60.0 )
Overall Percentage 70.7 4]
2. The cut value is .500 )

We can predict who won’t take algebra 2 (80%) better
than we can predict who will (60%).

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Slep  GENDER -.858 522 2707 1T .100 424

1 PAREDUC 374 127 8.638 : 1.454
Constant -1.297 681 3.625 057 273

8. Variable(s) entered on step 1: GENDER, PAREDUC.

When both gender and parents’ education
are entered, gender is no longer significant.

Block 2: Method=Enter
Omnibus Tests of Model Coefficients
Chi-square df Sig.
[Step T Step 8.123 2 01 )"‘—— Note that adding mosaic
Block 8.123 2 017 and visual to the equation
Model 24.231 4 .000 increases the prediction
significantly.
Model Summary Note that these pseudo R’s and
2 Log Cox & Snell | Nagelkerke percentage correct are higher than they
Step | likelihood | R Square uare were when only gender and parents’
1 79.407 az&i education were entered, and they are

the same as we found when all
variables were entered simultaneously.
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Classification Tablé'
Predicted
_algebra2in h.s. Percentage
Observed not taken taken Correct d
Step1 algebra2in h.s. not taken a3 7 82.5
taken 10 25 714
Overall Percentage 77.3 |

a. The cut value is .500

Note that neither gender nor mosaic is
significant when all of these variables
are entered together.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

Sjep  GENDER ~497 577 742 1 389 609

1 PAREDUC 380 431 8.418 1 1004 E
MOSAIC -030 031 892 1 , 671
VISUAL 180 075 6.428 1| o 1.209
Constant -1.736 1.159 2.243 1 134 176

a. Variable(s) entered on step 1: MOSAIC, VISUAL.

Interpretation of Output 7.2

The first four tables are the same as in OQutput 7.1. In this case, we have an additional step or block.
Block 1 shows the Omnibus Chi-Square, Model Summary, Classification Table, and Variables in
the Equation when gender and parents’ education were entered as covariates. Note that the Omnibus
Test is statistically significant (% 2-16.11, p <.001). With only gender and parents’ education
entered, overall we can predict correctly 71% of the cases. Note from the last table in Block 1, that
gender is not significant (p = .100) when it and parents’ education are both in the equation.

In Block 2, we entered mosaic and visualization test to see if they would add to the predictive power of
gender and parents’ education. They do, as indicated by the Step in the Omnibus Tests table () 2=
8.12, p = .017). Note in the same table that the overall Model ( 2 =2423, p <.001) with all four
predictors entered is significant. In this example, there is only one step in each block so the four tables

in Block 2 all say Step 1. The last three tables, as would be expected, are the same as those from
Problem 7.1.

Problem 7.3: Discriminant Analysis (DA)

Discriminant analysis is appropriate when you want to predict which group (in this example, who took
algebra 2) participants will be in. The procedure produces a discriminant function (or for more than two
groups, a set of discriminant functions) based on linear combinations of the predictor variables that
provide the best overall discrimination among the groups. The grouping or dependent variable can have
more than two values, but this will greatly increase the complexity of the output and interpretation. The
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codes for the grouping variable must be integers. You need to specify their minimum and maximum
values, as we will in Fig. 7.3. Cases with values outside these bounds are excluded from the analysis.

Discriminant analysis (DA) is similar to multivariate analysis of variance (MANOVA, discussed in
chapter 10), except that the independent and dependent variables are switched; thus, the conceptual basis
for the study is typically different. In DA, one is trying to devise one or more predictive equations to
maximally discriminate people in one group from those in another group; in MANOV A, one is trying to
determine whether group members differ significantly on a set of several measures. The assumptions for
DA are similar to those for MANOVA.

Assumptions of Discriminant Analysis

The assumptions of discriminant analysis include that the relationships between all pairs of predictors
must be linear, multivariate normality must exist within groups, and the population covariance matrices
for predictor variables must be equal across groups. Discriminant analysis is, however, fairly robust to
these assumptions, although violations of multivariate normality may affect accuracy of estimates of the
probability of correct classification. If multivariate nonnormality is suspected, then logistic regression
should be used. Multicollinearity is again an issue with which you need to be concerned. It is also
important that the sample size of the smallest group (35 in this example) exceed the number of predictor
variables in the model (there are four in this example, so this assumption is met). The linearity
assumption as well as the assumption of homogeneity of variance-covariance matrices can be tested, as
we did for multiple regression in chapter 6, by examining a matrix scatterplot. If the spreads of the
scatterplots are roughly equal, then the assumption of homogeneity of variance-covariance matrices can
be assumed. This assumption can also be tested with Box’s M.

7.3 'What combination of gender, parents’ education, mosaic, and visualization test best distinguishes
students who will take algebra 2 from those who do not?

This is a similar question to the one that we asked in Problem 7.1, but this time we will use discriminant
analysis, so the way of thinking about the problem is a little different.

You can use discriminant analysis instead of logistic regression when you have a categorical outcome or
grouping variable, if you have all continuous independent variables. It is best not to use dichotomous
predictors for discriminant analysis, except when the dependent variable has a nearly 50-50 split as is
true in this case.

We created scatterplots (below) after splitting the data by the grouping variable (in this case algebra 2 in
h.s.) so we could check the assumption of homogeneity of variance-covariance matrices across groups.
To split the file into groups, use Split File. See the Quick Reference Guide (Appendix A) if you need
assistance. Then do a scatterplot, selecting “matrix,” as shown in chapter 5, with gender, parents’
education, mosaic, and visualization test as the variables. Don’t forget to turn off the split file command
before you run other analyses.

Next, follow these steps to do the Discriminant Analysis:

® Select Analyze =>Classify => Discriminant...
e Move algebra 2 in h.s. into the Grouping Variable box (see Fig. 7.3).
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e Click on Define Range and enter 0 for Minimum and 1 for Maximum (see Fig. 7.4).
e Click on Continue to return to Fig. 7.3.

Disciiminant Analysis: Deline Ha

G "Gonire ] | Fig. 7.4. Discriminant analysis:
y s——— | Define range.

o Now move gender, parents’ education, mosaic, and visualization test into the Independents box.
e Make sure Enter independents together is selected.
o Click on Statistics.

o Select Means, Univariate ANOVAs, and Box’s M (see Fig. 7.5). Click on Continue.

Fig. 7.5. Discriminant analysis: Statistics.

e Click on Classify to get Fig. 7.6.
¢ Check Summary Table under Display.
¢ Click on Continue.

Fig. 7.6. Discriminant
analysis: Classification.
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o Finally, click on OK and compare your output to Output 7.3.

Output 7.3: Discriminant Analysis, Enter Independents Together

SORT CASES BY alg2 .
SPLIT FILE
LAYERED BY alg2 .
GRAPH
/SCATTERPLOT (MATRIX) =gender parEduc mosaic visual
/MISSING=LISTWISE .
SPLIT FILE
OFF.

DISCRIMINANT
/GROUPS=alg2 (0 1)
/VARIABLES=gender parEduc mosaic visual
/ANALYSIS ALL
/PRIORS EQUAL
/STATISTICS=MEAN STDDEV UNIVF BOXM TABLE
/CLASSIFY=NONMISSING POOLED .

Graph
algebra 2 in h.s.; not taken
amoa o [~ O D @ 0000000
£
wow © oo O oo
% ° o o
° o o Compare the comparable
§ o (-] o p
u| 8 8 °R° o BERe scatterplots for the two
g 8 g o IR 3 o & groups. The scatterplots
// for the same variables
§ o 8 | 8.0 ®° appear to be very similar
o 8 in variability for the two
o =]
g g l QQ; °° ‘&: ) groups, suggesting that
g olo o the assumption of
homogeneity of variance-
i s & %o covariance matrices is
-g 4 ° met.
o [~] o o
N o
= 8 E %% o &Le
>

gender parents’ education mosaic, pattern test  visualization test
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Analysis Case Processing Summary

Unweighted Cases N Percent

Valid 75 100.0

Excluded Missing or out-of-range 0 0
group codes :

At least one missing

discriminating variable 0 0

Both missing or

out-of-range group co_des 0 0

and at least one missing )

discriminating variable

Total 0 0
Total 75 100.0
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Box's Test of Equality of Covariance Matrices

Log Determinants

Log
| algebra 2 in h.s. Rank Determinant
not taken 4 6.904
taken 4 6.258
Pooled within-groups 4 7.101

The ranks and natural logarithms of determinants
printed are those of the group covariance matrices.
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Group Statistics
Valid N (listwise)
| algebra 2in h.s. Mean Std. Deviation | Unweighted | Weighted
not taken gender 6750 A7434 40 40.000
parents’ education 3.5125 1.68891 40 40.000
mosaic, pattern test 28.1250 12.03188 40 40.000
visualization test 3.8938 3.42122 40 40.000
taken gender 4000 49705 35 35.000
parents' education 5.4000 2.54026 35 35.000
mosaic, pattern test 26.6000 5.67088 35 35.000
visualization test 6.7857 3.91037 35 35.000
Total gender .5467 50117 75 75.000
parents' education 4.3933 2.31665 75 75.000
mosaic, pattern test 27.4133 9.57381 75 75.000
visualization test 5.2433 3.91203 75 75.000
Gender, parents’
education, and
visualization are
Tests of Equality of Group Means each significant
Wilks' predictors by
Lambda F dft df2 themselves.
gender 924 6.000 1 73 Mosaic is not.
parents' education .833 14.683 1 73
mosaic, pattern test .994 470 1 73
visualization test .862 11.672 1 73
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This indicates that the assumption of homogeneity of
the covariance matrices has not been met, according
to this test. However, this test is strongly influenced
by nonnormality and may not be accurate. We

Test Results checked this assumption with matrix scatterplots for
Box's M 36.324 each group, and these suggested the assumption was
F Approx. 3.416 not badly violated. We could use logistic regression
dft 10 instead of discriminant analysis if we are concerned
a2 2443 about the degree to which we met this assumption.
Sig. .000

 Tests null hypothesis of eqUatpopulation covariance matrices.

Analysis 1

Summary of Canonical Discriminant Functions

Eigenvalues
Canonical
Function | Eigenvalue | % of Variance | Cumulative % Correlation
1 4162 100.0 100.0 .542
a. First 1 canonical discriminant functions were used in the
analysis.
This indicates that the
Wilks' Lambda / predictors significantly
/ discriminate the groups.
Wilks'
Test of Function(s) | Lambda Chi-square df Sig. ‘
1 .706 24,692 4 N\ .000 |
\__/

Standardized Canonical Discriminant Function Coefficients

Function

This table indicates how heavily each
1 variable is weighted in order to

gender -213 maximize discrimination of groups. In
parents' education this example, parents’ education and
mosaic, pattern test -.220 visual are weighted more than gender
visualization test ( .6232 and mosaic.
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Structure Matrix

Function

These are the correlations of
each independent variable with
the standardized discriminant
function.

parents' education
visualization test
gender

mosaic, pattern test

Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within function.

Functions at Group Centroids
Function
algebra 2 in h.s. 1
not taken -.595
taken .680

Unstandardized canonical discriminant
functions evaluated at group means

Classification Statistics

Classification Processing Summary

“Processed 75
Excluded Missing or out-of-range 0
group codes
At least one missing 0
discriminating variable
Used in Output 75

Prior Probabilities for Groups

Cases Used in Analysis

| algebra 2 in h.s. Prior Unweighted | Weighted
not taken .500 40 40.000
taken 500 35 35.000
Total 1.000 75 75.000
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Classification Results

Predicted Grou
Membership P This shows how well the
_ _algebra2in h.s. | nottaken taken Total model predicts who will
Original Count not taken 32 8 40 take aI,]gebsrgo /2 fglr N
example, 80% of those who
9 taken Uy 25 35 did not take algebra 2 were
* not taken g.g.g 200 100.0 correctly predicted
6

taken ; (113)] 1000
p—
a @ of original grouped cases correctly classified.

Interpretation of Output 7.3

The Group Statistics table provides basic descriptive statistics for each of the independent/ predictor
variables for each outcome group (didn’t take algebra 2 and did take it) separately and for the whole
sample. The Tests of Equality of Group Means table shows which independent variables are significant
predictors by themselves; it shows the variables with which there is a statistically significant difference
between those who took algebra 2 and those who didn’t. As was the case when we used logistic
regression, gender, parents’ education, and visualization test are statistically significant.

Note, from the Standardized Canonical Discriminant Function Coefficients table, that only parents’
education and visualization test are weighted heavily to maximize the discrimination between groups.
Because gender correlates with parents’ education, it has a low function coefficient. But in the
Structure Matrix table, gender has a higher (-.45) correlation because it is correlated with the
discriminant function that best predicts who took algebra 2 and who did not.

The last table is similar to the classification table for logistic regression. It shows how well the
combination of four independent variables classifies or predicts who will take algebra 2. Note that
overall, 76% of the sample was classified correctly. As with logistic regression, discriminant analysis did
better at predicting who did not take algebra 2 (80% correct) than it did at predicting who would take it
(71% correct).

Example of How to Write About Problem 7.3
Results

Discriminant analysis was conducted to assess whether the four predictors, gender, parents’
education, mosaic, and visualization test, could distinguish those who took algebra 2 from those who did
not. Wilks’ lambda was significant, A = .71, xz =24.69, p < .001, which indicates that the model
including these four variables was able to significantly discriminate the two groups. Table 7.3 presents
the standardized function coefficients, which suggest that parents’ education and the visualization test
contribute most to distinguishing those who took algebra 2 from those who did not, using these
predictors. The classification results show that the model correctly predicts 80% of those who did not
take algebra 2 and 71% of those who did take algebra 2. The correlation coefficients in the table indicate
the extent to which each variable correlates with the resulting discriminant function. Note that even
though mosaic didn’t contribute strongly to the discriminant function, it is moderately highly
(negatively) correlated with the overall discriminant function.
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Table 7.3
Standardized Function Coefficients and Correlation Coefficients
Standardized Correlations between variables
Function Coefficients and discriminant function
Parents’education 1 .62
Visualization test .62 -12
Gender =21 70
Mosaic, pattern test -22 -45

Interpretation Questions

7.1.  Using Output 7.1: a) Which variables make significant contributions to predicting who took
algebra 2?7 b) How accurate is the overall prediction? ¢) How well do the significant variables
predict who took algebra 2? d) How about the prediction of who didn 't take it?

7.2.  Compare Outputs 7.1 and 7.2. How are they different and why?

7.3.  InOutput 7.3: a) What do the discriminant function coefficients and the structure coefficients tell
us about how the predictor variables combine to predict who took algebra 2? b) How accurate is
the prediction/classification overall and for who would not take algebra 2? c) How do the results
in Output 7.3 compare to those in Output 7.1, in terms of success at classifying and contribution
of different variables to the equation?

7.4.  Comparing Outputs 7.3 and 7.1, what kind of information does the discriminant analysis provide
that is not provided by the logistic regression?

7.5.  InOutput 7.2: Why might one want to do a hierarchical logistic regression?

7.6.  a)In Output 7.1: How can one tell which variables are contributing more to the classification of
participants using logistic regression? b) In Output 7.3: How can one tell which variables are
contributing to the classification of participants using discriminant analysis? What is the
difference between the function coefficients and the coefficients in the structure matrix?

Extra SPSS Problems

7.1. A marketing firm would like to understand why people do or do not buy their product. Retrieve
the data set called ‘satisf” and conduct a logistic regression with Made purchase (purchase) as
the dependent variable and the variables Shopping frequency (regular), Price satisfaction (price),
Variety satisfaction (numitems), and Organization satisfaction (org) as covariates.

a. Is the logistic regression significant?

b. What overall percentage of consumers were correctly classified as to whether or not
they purchased the product? How accurately were purchasers predicted? How
accurately were non-purchasers predicted?
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Which predictor(s) contribute significantly to predicting whether or not individuals
purchased the product? What do the odds ratios say about how useful these
predictors were?

Approximately how much variance in consumers’ tendency to purchase the product
could be predicted from these variables? If you owned the company that sold these
products and you wanted to understand who bought your product, would you be wise
to find out about these predictor variables or would you use other predictors, given
the results of this analysis?

7.2. Do a discriminant function analysis using these same variables.

a.
b.

Is the discriminative function significant?

Which predictor(s) contribute significantly to predicting whether or not individuals
purchased the product?

What overall percentage of consumers were correctly classified as to whether or not
they purchased the product? How accurately were purchasers predicted? How
accurately were non-purchasers predicted? How do these results differ from those for
the logistic regression?

Given the results of both of these analyses, what would you conclude about your
understanding of these consumers’ tendency to purchase the products? Describe
your conclusions in non-technical terms, making sure to describe the statistical
results of the discriminant function analysis.
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CHAPTER 8
Factorial ANOVA and ANCOVA

In this chapter, we will introduce two complex difference statistics: factorial ANOVA and ANCOVA.
Both factorial ANOVA and ANCOVA tell you whether considering more than one independent variable
at a time gives you additional information over and above what you would get if you did the appropriate
basic inferential statistics for each independent variable separately. Both of these inferential statistics
have two or more independent variables and one scale (normally distributed) dependent variable.
Factorial ANOVA is used when there is a small number of independent variables (usually two or three)
and each of these variables has a small number of levels or categories (usually two to four).

ANCOVA typically is used to adjust or control for differences between the groups based on another,
typically interval level, variable called the covariate. For example, imagine that we found that boys and
girls differ on math achievement. However, this could be due to the fact that boys take more math
courses in high school. ANCOVA allows us to adjust the math achievement scores based on the
relationship between number of math courses taken and math achievement. We can then determine if
boys and girls still have different math achievement scores after making the adjustment. ANCOVA can
also be used if one wants to use one or more discrete or nominal variables and one or two continuous
variables to predict differences in one dependent variable.

e Retrieve hshdataB from your data file.

Problem 8.1: Factorial (2-Way) ANOVA

We would use a 7 test or one-way ANOV A to examine differences on a scale dependent variable between
two or more groups comprising the levels of one independent variable or factor. These designs, in which
there is only one independent variable, and it is a discrete or categorical variable, are called single factor
designs. In this problem, we will compare groups formed by combining two independent variables. The
appropriate statistic for this type of problem is called a two factor, 2-way, or factorial ANOVA. One
can also have factorial ANOVAs in which there are more than two independent variables. If there are
three independent variables, one would have a three factor or 3-way ANOVA. It is unusual, but possible,
to have more than three factors as well. Factorial ANOVA is used when there are two or more
independent variables (each with a few categories or values) and a between groups design.

Assumptions of Factorial ANOVA

The assumptions for factorial ANOVA are that the observations are independent, the variances of the
groups are equal (homogeneity of variances), and the dependent variable is normally distributed for each
group. Assessing whether the observations are independent (i.e., each participant’s score is not related
systematically to any other participant(s)’s score) is a design issue that should be evaluated prior to
entering the data into SPSS. To test the assumption of homogeneity of variances, SPSS computes the
Levene Statistic, which can be requested using the General Linear Model command. We will demonstrate
it below. Factorial ANOVA is robust against violations of the assumption of the normal distributions of
the dependent variable. One way to test this assumption is to compare box plots of the dependent variable
for each group (cell) defined by each combination of the levels of the independent variables.

8.1 Are there differences in math achievement for people varying on math grades and/or father’s
education revised, and is there a significant interaction between math grades and father’s education
on math achievement? (Another way to ask this latter question: Do the “effects” of math grades on
math achievement vary depending on level of father’s education revised?)
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Follow these commands:

o  Analyze => General Linear Model => Univariate.

e Move math achievement to the Dependent (variable) box.

e Move the first independent variable, math grades, to the Fixed Factor(s) box and then move the
second independent variable, father's educ revised (Not father’s education), to the Fixed Factor(s)

box. (See Fig. 8.1.)

Now that we know the variables we will be dealing with, let’s determine our options.

M Linivariaie

[@ vem12 motivaton ) Dependent Varisble Model |

@ item13 motivation fi | @ math achievement test
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Fig. 8.1. GLM: Univariate,

o Click on Plots and move faedRevis to the Horizontal Axis and marhgr to the Separate Lines box in
Fig. 8.2. This “profile plot” will help you picture the interaction (or absence of interaction) between
your two independent variables. Note, the plots will be easier to interpret if you put father s educ
revised with its three values on the horizontal axis.

e Then press Add. You will see that mathgr and faedRevis have moved to the Plots window as shown

at the bottom of Fig, 8.2.
e Click on Continue to get back Fig.8.1.

Univariate: Profile Plots

AT e |
X | p—"
Separale Plots.
B ———
Plols ‘ Paid I Chawge ] Remowe |
[ToecHevis mathgy

Fig. 8.2. Univariate: Profile plots.

e Select Options and check Descriptive statistics, Estimates of effect size, and Homogeneity tests in

Fig. 8.3.

130



Chapter 8 — Factorial ANOVA and ANCOVA

| Factes(e] anl Fuctes

| [pvERa)
aedFevs

¢ {mathgrisedFlev

D i
¢ ¥ Descriptive statistics

W Evimates of affect sice
| T Ohsrved pows

| T Pesmets estinates

| I Conlast cosffichent matne

Fig. 8.3. Univariate: Options.
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e Click on Continue. This will take you back to Fig. 8.1.
e Click on OK. Compare your output to Output 8.1.

Output 8.1: GLM General Factorial (2-Way) ANOVA

UNIANOVA
mathach BY mathgr faedRevis
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/PLOT = PROFILE( faedRevis*mathgr )
/PRINT = DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = mathgr faedRevis mathgr*faedRevis .

Univariate Analysis of Variance

Between-Subjects Factors
Value Label N
math 0 less A-B 43
grades 1 most A-B 30
father's 1.00 HS grad or
d 38
educ g less
revise
2.00 Some
16
College
3.00
BS or More 19
These six-cell means will be
Descriptive Statistics shown in the plot.
Dependent Variable: math achievement test
math grades father's education revised M Std. Deviation N
less A-B HS grad or less 9.826 5.03708 23
Some Coliege 12.8149 5.05553 9
BS or More 12.363 7.18407 11
Total 41,1008 5.69068 43
most A-B HS grad or less 6.56574 16
Some College 3.43059 7
BS or More 2.84518 8
Totat 14,9000 7.00644 30
Total HS grad or less 10.0877 5.61297 38
Some College 14,3958 4.66544 16
BS or More 16.3509 7.40918 19
Total 12.6621 6.49659 73
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Levene's Test of Equality of Error Variance8

Dependent Variable: math achievement test

F df1 df2

2.548 5 67

dependent variable is equal across groups.

Tests the null hypothesis that the error variance of the

This indicates that the assumption of homogeneity
of variances has been violated. Because Levene’s
test is significant, we know that the variances are
significantly different. Luckily, SPSS uses the
regression approach to calculate ANOVA, so this
problem is less important.

a. Design: Intercept+MATHGR+FAEDR+MATHGR

* FAEDR Eta squared indicates that
24% of the variance in
math achievement can be
predicted from father’s
Tests of Between-Subjects Effects education.
Dependent Variable: math achievement test
Type lll Sum Partial Eta
Source of Squares Mean Square F Sig. Squared
Corrected Model 1029.236(a) 5 205.847 6.863 .000 339
Intercept 12094.308 1 12094.308 403.230 .000 .858
mathgr 325.776 1 325.776 0.862 .002 9
faedRevis 646.015 2 323.007 10.769 > .000 -_
mathgr * faedRevis 237.891 2 118.946 3.966 024 106
Error 2009.569 67 29.904
Total 14742.823 73
Corrected Total 3038.804 72
a R Squared = .339 (Adjusted R Squared = .289)
| Focus on these three £,
The R Squared value is the percent of variance in especially the Mathgr x

math achievement predictable from both
independent variables and the interaction,

/ﬂ'/——

—mmath grades

\ 9 fessAB
e

)
most

BS or More

Profile Plots
Estimated Marginal Means of math achievement 1
24
22 4
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FaedRevis interaction.

Plot for students with high math grades.

Note that for students whose fathers have
a BS or more, there is a big difference in
math achievement between those with
high and low math grades. However,
there is little difference for students
whose fathers are high school grads or
less.

Plot for students with low math grades.
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Interpretation of Output 8.1

The GLM Univariate program allows you to print the means and counts, provides measures of effect
size (eta), and plots the interaction, which is helpful in interpreting it. The first table in Output 8.1 shows
that 73 participants (43 with low math grades and 30 high math grades) are included in the analysis
because they had data on all of the variables. The second table, Descriptive Statistics, shows the cell
and marginal (total) means; both are very important for interpreting the ANOVA table and explaining the
results of the test for the interaction.

The ANOVA table, called Tests of Between Subjects Effects, is the key table. Note that the word
“effect” in the title of the table can be misleading because this study was not a randomized experiment.
Thus, you should not report that the differences in the dependent variable were caused by the
independent variable. Usually you will ignore the information about the corrected model and intercept
and skip down to the interaction F (mathgr*faedRevis). It is important to look at the interaction first
because it may change the interpretation of the separate “main effects” of each independent variable.

In this case, the interaction is statistically significant, F (2,67)=3.97, p=.024. This means that the
“effect” of math grades on math achievement depends on which father s education level is being
considered. If you find a significant interaction, you should examine the profile plots of cell means to
visualize the differential effects. If there is a significant interaction, the lines on the profile plot will not
be parallel. In this case, the plot indicates that math achievement is relatively low for both groups of
students whose fathers had relatively low education (high school grad or less). However, for students
whose fathers have a high education level (BS or more), differences in math grades seem to have a large
“effect” on math achievement. This interpretation, based on a visual inspection of the plots, needs to be
checked with inferential statistics. When the interaction is statistically significant, you should analyze
the “simple effects™ (differences between means for one variable at each particular level of the other
variable). We will illustrate one method for statistically analyzing the simple effects in Problem 8.2.

Now, examine the main effects of math grades and of father’s education revised. Note that both are
statistically significant, but because the interaction is significant this is somewhat misleading. The plots
show that the effect of math grades does not seem to hold true for those whose fathers had the least
education. Note also the callout boxes about the adjusted R squared and eta squared. Eta, the correlation
ratio, is used when the independent variable is nominal and the dependent variable (math achievement in
this problem) is scale. Eta is an indicator of the proportion of variance that is due to between groups
differences. Adjusted R’ refers to the multiple correlation coefficient, squared and adjusted for number
of independent variables, N, and effect size. Like 7, eta squared and R* indicate how much variance or
variability in the dependent variable can be predicted; however, the multiple R is used when there are
several independent variables, and the #* is used when there is only one independent variable. In this
problem, the eta’ values for the three key Fs vary from .106 to .243. Because eta and R, like r, are
indexes of association, they can be used to interpret the effect size. However, the guidelines according to
Cohen (1988) for eta and R are somewhat different (for eta: small = .10, medium = .24, and large = .31;
for R: small = .10, medium =.36, and large = .51).

In this example, eta for math grades is about .37 ( +.139 =.37) and, thus, according to Cohen (1988) a
large effect. Eta for father's education (revised) is about .49, a large effect. The interaction eta is about
.33, a large effect. The overall adjusted R is about .54, a large effect, but not really bigger than for
father’s education alone, when you consider the different criteria for “large” for eta vs. R. Notice that the
adjusted R’ is lower than the unadjusted (.29 vs. .34). The reason for this is that the adjusted R’ takes into
account (and adjusts for) several things including the fact that not just one but three factors (mathgr,
JfaedRevis, and the interaction), some of which have more than two levels, were used to predict math
achievement.
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An important point to remember is that statistical significance depends heavily on the sample size so that
with 1,000 subjects, a much lower F or r will be significant than if the sample is 10 or even 100.
Statistical significance just tells you that you can be quite sure that there is at least a tiny relationship
between the independent and dependent variables. Effect size measures, which are more independent of
sample size, tell how strong the relationship is and, thus, give you some indication of its importance.

How to write the results for Problem 8.1 is included in the interpretation box for Problem 8.2.

Problem 8.2: Post Hoc Analysis of a Significant Interaction

We have described, in the interpretation of Output 8.1, how to visually inspect and interpret the Profile
Plots when there is a statistically significant interaction. In Problem 8.2 we will illustrate one way to test
the simple main effects statistically. In the interpretation of Output 8.1, we indicated that you should
examine the interaction F first. If it is statistically significant, it provides important information and
means that the results of the main effects may be misleading. Figure 8.4 is a decision tree that illustrates
this point and guides the analysis in this section.

Is the interaction
statistically significant?

No i Yes ——1

Examine the interaction
Examine the two main effects first (then the main
one at a time. effects with caution).

A

One method of interpreting the interaction:

1. Compute a new variable with each of the original cells as a
level.

2. Run a one-way ANOVA and follow-up contrasts that
compare the means that are relevant for the simple effects.

3. Examine the simple main effects using the contrast results.

Fig. 8.4. Steps in analyzing a two-way factorial ANOVA.

8.2. Which simple main effects of math grades (at each level of father's education revised) are
statistically significant?

e Select Transform => Compute. You will see the Compute Variable window. (See Fig. 8.5.)
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Under Target Variable, type cellcode. This is the name of the new variable you will compute.

Click on Type and Label. You will see the Compute Variable: Type and Label window. {See Fig.
8.6.)

o Type six new cell codes in the label box.

| Fig. 8.6. Compute variable: Type and label.

Click on Continue. You will see the Compute Variable window (Fig. 8.5) again.

In the Numeric Expression box, type the number 1. This will be the first value or level for the new
variable.

Next, click on the If... button in Fig. 8.5 to produce Fig. 8.7.
Select Include if case satisfies condition.
Type mathgr=0 & faedRevis=1 in the window. You are telling SPSS to compute level 1 of the new

variable, cellcode, so that it combines the first level of math grades (0) and the first level of father s
education revised (1). (See Fig. 8.7.)

Compute Variable: If Cases
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@ tem08 roversed it Fig. 8.7. Compute variable: If cases.
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Click on Continue to return to Fig. 8.5.
Click on OK. If you look at your Data View or Variable View screen, you will see a new variable
called cellcode. In the Data View screen, you should also notice that several of the cases now show a

value of 1. Those are the cases where the original variables of math grades and father’s education
revised met the requirements you just computed.
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You will need to repeat this process for the other five levels of this new variable. We will walk you
through the process once more.

Select Transform=>Compute to see the Compute Variable window. (See Fig. 8.5.)

Ensure that cellcode is still in the target variable box.

Type 2 in the Numeric Expression box.

Click on the If... button.

Ensure that Include if case satisfies condition is selected.

Type mathgr=1 & faedRevis=1 in the box. You are now telling SPSS to use the other (higher) level

of math grades with the first level of father’s education revised.

Click on Continue.

¢ Click on OK.

e SPSS will ask you if you want to change the existing variable. Click on OK. This means that you
want to add this second level to the cellcode variable. If you look at the Data View screen, you will
notice that some of the cases now indicate a value of 2.

e Complete the above steps for the remaining four levels: Level 3 of cellcode: mathgr=0 &

Saedrevi=2; Level 4. mathgr = 1 & faedRevis = 2; Level 5: mathgr = 0 & faedRevis = 3; and Level

6: mathgr = 1 & faedRevis = 3.

Next, you will use this new variable, cellcode, to examine the statistical significance of differences
among certain of the six cells using one-way ANOVA and the contrasts command. This will help us to
interpret the simple effects that we discussed above.

e Select Analyze=>Compare Means=>0One Way ANOVA.... You will see the One Way ANOVA
window. (See Fig. 8.8.)

® Move math achievement into the Dependent List: box by clicking on the top arrow button.

e Move six new cell codes into the Factor: box by clicking on the bottom arrow button.

B One Way AHOVA

gendes [gender] Dependent List oK
grma education [ @ math achievement tesi :
@ mother's education .. oo N
gma ; nha (s Resst Flg. 8.8. One—way ANOVA.
agebia 2inha [al =
gmhh: [oe ._Ld._.“;.
Inigonomstry in hs. Facioe Help
® cacisinhs [ca e ee ool COOBE R
b-Gemgirsegion m @ Sk new cel codes
@ goderinhr gad .
& mosaic, oatiem tes 1 Conbests . | PostHoc .| opions.. |

Instead of doing Post Hoc tests, we will do Contrasts, which compare preselected pairs of means rather
than all possible pairs of means. In this case, we want to compare the math achievement of high versus
low math grade students at each of the three levels of father’s education. This is done by telling SPSS
specific cell means to contrast. For example, if we want to compare only the first and second means
while ignoring the other four means, we would write a contrast statement as follows 1 -1 0 0 0 0. This
can be done with the SPSS syntax or using the point and click method as shown below.

Click on the Contrasts... button to see Fig. 8.9.

Enter 1 in the Coefficients: window.

Then click on Add which will move the 1 to the larger window.

Next enter -1 and press Add; enter 0, press Add; enter another 0, press Add.
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o Enter a third 0, press Add,; enter a fourth 0. Fig 8.9 is how the window should look just before you
press Add the final time. This compares the math achievement scores of students with low versus
high math grades if their fathers have the lowest level of education.

Now press Next so that the Fig. 8.9 says Contrast 2 of 2.

Now enter the following coefficients as you did for the first contrast: 0 0 1 -1 0 0. Be sure to press
Add after you enter each number. This compares the math achievement scores of students with low
versus high grades if their fathers have the middle level of education.

e Press Next and enter the following Coefficients for Contrast 3 of 3: 0 0 0 0 1 -1. This compares the
math achievement scores of students with low versus high grades if their fathers have the highest
level of education.

Fig. 8.9. One-way ANOVA: Contrasts.

Thus, what we have done with the above instructions is simple main effects, first comparing students
with high and low math grades who have fathers with less than a high school education. Second, we
have compared students with high and low math grades who have fathers with some college. Finally, we
have compared students with high and low math grades who have fathers with a B.S. or more. Look
back at how we computed the cellcode variable (or the syntax below) to see why this is true. Note that in
cases like this it might be easier to type the syntax, which is part of the reason many experienced SPSS
users prefer to use syntax. However, you must type the syntax exactly correct or the program will not
run.

Click on Continue.

Click on Options.

Click on Descriptives and Homogeneity of Variance.

Click on Continue.

Click on OK.

Output 8.2: One-Way ANOVA for Comparing New Cell Means
Oneway

IF (mathgr=0 & faedrevi=l) cellcode = 1 .
VARIABLE LABELS cellcode 'Six new cell codes' .
EXECUTE .
IF (mathgr=1 & faedRevis=1) cellcode = 2 .
EXECUTE .
IF (mathgr=0 & faedRevis=2) cellcode
EXECUTE .
IF (mathgr=1 & faedRevis=2) cellcode
EXECUTE .
IF (mathgr=0 & faedRevis=3) cellcode
EXECUTE .
IF (mathgr=1 & faedRevis=3) cellcode = 6 .
EXECUTE .
ONEWAY
mathach BY cellcode
/CONTRAST= 1 -1 0 0 0 0 /CONTRAST= 0 0 1 -1 0 0 /CONTRAST= 00001 -1
/STATISTICS DESCRIPTIVES HOMOGENEITY
/MISSING ANALYSIS .

[

3.

4 .

5.
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138

Means to be compared
\ Descriptives
math achiavement test
95% Confidence Interval for
Mean
Std. Deviation | Std Eror | Lower Bound Bound | Minimum | Maximum
less A-B & hs grad or less 23 5.03708 1.05030 12.0043 233 210
most A-B & hs grad or less 15 6.56574 1.69527 6.8520 14.1249 1.00 27
less A-B & some college 9 5.05553 1.68518 8.9289 16.7000 5.00 18.7
most A-B & some collega 7 3.43059 1.29664 13.2557 19.6012 143 237
fess A-B & BS or more 1 7.18407 2.16608 7.5373 17.1900 1.00 237
most A-B & BS or more 8 2.84518 1.00592 19.4549 242121 15.7 237
Total 73 8.49650 768037 11.1463 14.1779 1,00 23.7 |
Test of Homogeneity of Variances
math achievement test The. ass““?"“‘.’“ of equal
3 variances is violated, so we
evene .
will select our contrast test
Statistic df1 df2 Sig. .
> 545 3 5 536 accordingly (see below).
ANOVA
math achievement test
Sum of .
Squares df Mean Square F Sig. 'ljhe _overall Fis
Between Groups | 1029.236 5 205.847 6.863 .000 }___ significant at
Within Groups 2009.569 67 29.994 p <.001.
Total 3038.804 72
Contrast 1 looks at the difference
between codes 1 and 2 (having
lower and higher math grades if
fathers have little education).
Contrast Coefficients
Six new cell codes
Contrast 1.00 3.00 4.00 5.00 6.00
1) Q S ) 0 0 0 0
2 o o <] 1D 0 0
3 0 0 0 0 <] 1
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Because Levene Test was

significant we will use Note, only the third contrast is significant.
\ Contrast Tests
Value of
Contrast | Contrast | Std. Error t df Sig. (2-tailed)
math achievemeniNest Assume equal variances 1 -.6628 1.81759 -.365 67 717
2 -3.6135 2.75997 -1.309 67 195
3 94699 2.54478 -3.721 67
Does not assume equaly 1 ' -6628 )\ 1.99426 -332 24512 742 Y
variances 2 -3.6135 > 2.12629 -1.699 13.819 (\ 112
3 -9.469 2.38826 -3.965 13.858 .001/]
- l
Difference between The circle in the contrasts table
contrasted means. above indicates the three simple
main effects shown in Fig. 8.10.

Interpretation of Output 8.2

This output is the result of doing the first two steps, shown in Fig. 8.4, for interpreting a statistically
significant interaction. Using Output 8.2, we can examine the simple effects statistically. The first table,
Descriptives, provides the means of the six new cell code groups that will be compared, two at a time, as
shown in the Contrast Coefficients table. The second table is the Levene test for the assumption that
the variances are equal or homogeneous. In this case, the Levene’s test is significant, so the assumption
is violated and the variances cannot be assumed to be equal. The third table is the ANOVA table and the
overall F (6.86) is significant (p < .001), which indicates that there are significant differences
somewhere. The Contrast Tests table helps us identify which simple main effects were statistically
significant. We will focus on one set of simple main effects in our interpretation, the ones based on ¢
tests that do not assume equal variances. Note that we have circled three Sigs. (the significance level or
p). These correspond to the three simple main effects shown with arrows in our drawing of the
interaction plot (Fig. 8.10). For example, the left-hand arrow (and the first contrast) compares math
achievement scores for both high and low math grades of students whose fathers have a relatively low
education level.

High Math grades

20
ostly A and B
Math (Mostly )
Achievement q)
Low Math grades
T M

10 (Less that Bs)

4 Arrows show simple main
effects that we tested with the

% Ir l Contrast command. This

. graph was not produced by
Low Med. High SPSS but is similar to the
Fa Bduc Fa Educ Fa Educ profile plot in Output 8.1.

Fig. 8.10. Interaction plot showing three simple main effects.
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We can now confirm statistically what we thought from visual inspection of the profile plot in Output
8.1. Asyou can see in Fig. 8.10 and the circled parts of the Contrast Test table, there is not a significant
difference ( p = .742) in math achievement between students with high and low math grades when their
Jather's education is low. Likewise, this difference, while bigger (3.61 points), is not statistically
significant (p = .112) when their father's education is medium (some college). However, when father's
education is high, students with high (mostly As and Bs) math grades do much better (9.47 points) on the
achievement test than those with low grades (p = .001). Thus, math achievement depends on both a
student's marh grades and their father's education. It would also be possible to examine the simple main
effects for high and low math grades separately (the two lines), but this is usually not necessary to
understand the interaction.

Example of How to Write About Problems 8.1 and 8.2
Results

Table 8.1 shows that there was a significant interaction between the effects of math grades and
father’s education on math achievement, F (2,67)=3.97, p=.024. Table 8.2 shows the number of subjects,
the mean, and standard deviation of math achievement for each cell. Simple effects analyses revealed
that, of students with more highly educated fathers, those who had mostly A and B grades had higher
math achievement than did students who had lower grades, 7 (13.86) =-3.97, p =.001). Simple effects at
the other levels of father education were not significant, indicating that for students whose fathers were
less educated, students with higher and lower math grades had similar math achievement scores.

Table 8.1
Two-Way Analysis of Variance for Math Achievement as a Function of Math Grades and
Father’s Education

Variable and source df MS F n’
Math Achievement
Math Grades i 325.78 10.86* 139
Father’s Education 2 323.00 10.77%* 243
Grades*Father’s Educ 2 118.95 3.97* 106
Error 67 29.99

*p < .05, **p < .001

Table 8.2
Means, Standard Deviations, and n for Math Achievement as a Function of Math Grades and
Father’s Education

Less A-B Most A-B Total
Father’s n M SD n M SD M SD
Education
HS grad or less 23 9.83 5.04 15 10.49 6.57 10.09 5.61
Some College 9 12.81 5.06 7 16.43 343 14.40 4.67
BS or More 11 1236 7.18 8 21.83 2.85 16.35 7.41
Total 43 11.10  5.69 30 14.90 7.01 12.66 6.50
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Problem 8.3: Analysis of Covariance (ANCOVA)

ANCOVA is an extension of ANOVA that typically provides a way of statistically controlling for the
effects of continuous or scale variables that you are concerned about but that are not the focal point or
independent variable(s) in the study. These scale variables are called covariates (or sometimes, control
variables). Covariates usually are variables that may cause you to draw incorrect inferences about the
ability of the independent variables to predict the dependent variable if not controlled (confounds). It is
also possible to use ANCOVA when you are interested in examining a combination of a categorical
(nominal) variable and a continuous (scale) variable as predictors of the dependent variable. In this latter
case, you would not consider the covariate to be an extraneous variable, but rather a variable that is of
interest in the study. SPSS will allow you to determine the significance of the contribution of the
covariate, as well as whether the nominal variables (factors) significantly predict the dependent variable,
over and above the “effect” of the covariate.

Assumptions of Analysis of Covariance (ANCOVA)

The first assumption for analysis of covariance (ANCOVA) is that the observations must be independent.
This is a design issue that should be addressed prior to data collection. Using random sampling is the best
way of ensuring that the observations are independent; however, this is not always possible. The most
important thing to avoid is having known relationships among participants in the study (e.g., several
family members or several participants obtained through “snowball” sampling included as “separate”
participants). The second assumption is that the dependent variable needs to be normally distributed,
which can be checked with skewness values. It is also important to have homogeneity of variances,
particularly if sample sizes differ across levels of the independent variable(s). Homogeneity can be
assessed through Box’s Test or Levene’s test. The fourth assumption is that there needs to be a linear
relationship between the covariates and the dependent variable. This can be checked with a scatterplot
(or matrix scatterplot if there is more than one covariate). The regression slopes for the covariates (in
relation to the dependent variable) need to be the same for each group (this is called homogeneity of
regression slopes). This assumption is one of the most important assumptions, and it can be checked with
an F test on the interaction of the independent variables with the covariate. If the F test is significant,
then this assumption has been violated.

In the HSB data, boys have significantly higher math achievement scores than girls. To see if the males’
higher math achievement scores are due to differences in the number of math courses taken by the male
and female students, we will use math courses taken as a covariate and do ANCOVA.

8.3 Do boys have higher math achievement than girls if we control for differences in the number of
math courses taken?

To answer this question, first, we need to assess the assumption of homogeneity of regression slopes:

e Analyze => General Linear Model => Univariate.

e Next, move math achievement to the Dependent box, gender to the Fixed Factor box, and math
courses taken to the Covariates box. (See Fig. 8.11.)
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Fig. 8.11. GLM: Univariate.

Click on Model and then click on the button next to Custom under Specify Model. (See Fig. 8.12.)

Fig. 8.12. Univariate: Model.

Move gender from the Factor & Covariates box to the Model box. Do the same for mathcrs.

Next highlight gender again, but hold down the “Shift” key and highlight mathcrs. This will allow
you to have both gender and mathcrs highlighted at the same time. Click on the arrow to move both
variables together to the Model box. This will make gender*mathcrs.

Click on Continue and then OK. Your syntax and output should look like the beginning of Qutput

83.

Next, do the following:

Analyze => General Linear Model => Univariate.

Click on Reset.
Next, move math achievement to the Dependent box, gender to the Fixed Factor box, and math

courses taken to the Covariates box. (See Fig. 8.11.)
Click on Options to get Fig. 8.13.
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Fig. 8.13. GLM: Univariate options.

T T T T 17T = W,

o Select Descriptive statistics, Estimates of effect size, and Homogeneity tests. (See Fig. 8.13.)
® Move gender into the box labeled Display Means for.
¢ Click on Continue and then OK. Your syntax and output should look like the rest of Output 8.3.

Output 8.3: Analysis of Covariance (ANCOVA)

UNIANOVA
mathach BY gender WITH mathcrs
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/CRITERIA = ALPHA(.05)
/DESIGN = gender mathcrs gender*mathcrs .

Tests of Between-Subjects Effects

Dependent Variable: math achievement test

Type Il Sum
Source of Squares df Mean Square F Sig. ‘
Corrected Model 2085.6982 3 695.233 40.903 .000
Intercept 833.723 1 833.723 49.051 .000
GENDER 8.941E-05 1 8.941E-05 .000 .998
MATHCRS 1775.937 1 1775937 104.486 660
GENDER * MATHCRS 3.369 1 3.369 198 @
Error 1206.783 71 16.997 \
Total 15132.393 75
Corrected Total 3292.481 74 \
2. R Squared = .633 (Adjusted R Squared = .618)
Recall that this analysis was done to check
the assumption of homogeneity of
UNIANOVA regression slopes, not to test the llnain
mathach BY gender WITH mathcrs hypothesis. The factor and covariate do not
/METHOD = SSTYPE(3) interact, so the assumption of homogeneity
/INTERCEPT = INCLUDE :
/EMMEANS = TABLES (gender) WITH(mathcrs=MEAN) of regression slopes has been met.
/PRINT = DESCRIPTIVE ETASQ HOMOGENEITY

/CRITERIA = ALPHA(.05)
/DESIGN = mathcrs gender .
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Univariate Analysis of Variance

Between-Subjects Factors

Value Label N
gender 0 male 34
1 female 41
Descriptive Statistics

Note that the mean score of

Dependent Variable: math achi

| gender ~Mean \] Sid. Deviation N
male 14.7550 6.03154 34
female 10.747 6.69612 41
Total 12.5645 6.67031 75

Levene's Test of Equality of Error Variance$

Dependent Variable: math achievement test

F df1 dR2 /Sig. )
55672 1 73| | .021

Tests the null hypothesis that the error vanance-of
the dependent variable is equal across groups.

a. Design: Intercept+MATHCRS+GENDER

males was four points higher
than females on math before
the ANCOVA.

This is significant; therefore, it indicates
that the assumption of homogeneity of
variances has been violated. However, since
cell sizes are almost equal (34 and 41), this
is not a big problem, especially given the
way SPSS calculates the ANCOVA.

Tests of Between-Subjects Effects

Dependent Variable: math achievement test

Type il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Corrected Model 2082.329° 2 1041.164 61.946 .000 632
Intercept 946.381 1 946.381 56.306 .000 439
MATHCRS 1783.894 1 1783.894 106.136 .000 .596
GENDER 6.001 1 6.001 357 552 > .005
Error 1210.152 72 16.808
Total 15132.393 75
Corrected Total 3292.481 74

2. R Squared = .832 (Adjusted R Squared = .622)

The covariate (MATHCRS) J
is significant but the gender
difference is not significant.
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Estimated Marginal Means
gender

Dependent Variable: math achievement test
95% Confidence Interval

| gender Mean__ | Std. Error | Lower Bound | Upper Bound
male (1 2.8932 .726 11.446 14.340

female 12.2922 .658 10.981 13.603

a. Covariates appearing in the model are evaluated at the
following values: math sQurses taken = 2.11.

Note that these are similar after differences in math courses taken were controlled.

Interpretation of Output 8.3

The ANCOVA (Tests of Between Subject Effects) table is interpreted in much the same way as
ANOVA tables in earlier outputs. The covariate (mathcrs) has a highly significant “effect” on math
achievement, as should be the case. However, the “effect” of gender is no longer significant, F(1,72)=
.36, p=.55. You can see from the Estimated Marginal Means table that the statistically adjusted math
achievement means for boys and girls are quite similar once differences in the number of math courses
taken were accounted for.

Example of How to Write About Problems 8.3
Results

An analysis of covariance was used to assess whether boys have higher math achievement than girls
after controlling for differences between boys and girls in the number of math courses taken. Results
indicate that after controlling for the number of math courses taken, there is not a significant difference
between boys and girls in math achievement, F(1, 72) = .36, p = .552. Table 8.3 presents the means and
standard deviations for boys and girls on math achievement, before and after controlling for number of
math courses taken. As is evident from this table, virtually no difference between boys and girls remains
after differences in number of math courses taken are controlled.

Table 8.3

Adjusted and Unadjusted Gender Means and Variability for Math Achievement Using Math Grades as a
Covariate

Unadjusted Adjusted
N M SD M SE
Males 34 14.76 6.03 12.89 73
Females 41 10.75 6.70 12.29 .66
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Table 8.4
Analysis of Covariance for Math Achievement as a Function of Gender, Using Number of Math Courses
Taken as a Covariate

Source Df Ms F P eta’
Math Courses 1 1783.89 106.14 <.001 .60
Gender 1 6.00 36 552 .01
Error 72 16.81

Interpretation Questions

8.1 In Output 8.1: a) Is the interaction significant? b) Examine the profile plot of the cell means
that illustrates the interaction. Describe it in words. c) Is the main effect of father’s education
significant? Interpret the eta squared. d) Is the “effect” of math grades significant? e) Why did
we put the word effect in quotes? f) How might focusing on the main effects be misleading?

8.2 Interpret in words, the contrasts shown in Output 8.2.

8.3 In Output 8.3: a) Are the adjusted main effects of gender significant? b) What are the
adjusted math achievement means (marginal means) for males and females? c) Is the effect of the
covariate (mathcrs) significant? d) What do a) and c) tell us about gender differences in math
achievement scores?

Extra SPSS Problems

8.1.  Using the College Student data file, do gender and marital status seem to have an effect on
student’s height and do gender and marital status interact? Run the appropriate SPSS analysis
and interpret the results.

8.2. A county is interested in assessing the costs of their road construction (cost); whether it is more
expensive in the South Florida District or in other districts in the county (district) in relation to
whether the contractors were found through competitive contracts or fixed contracts (status).
Using the Road construction bids.sav data set, conduct factorial ANOVA.

a. Are these factors independently significant in the level of cost?

b. Is there a significant interaction effect between the district and the status on the cost?
c. How much total variance in cost can be attributed to these variables?

d. If a post-hoc test is necessary, conduct an appropriate test and discuss the results.

8.3.  Answer the following question using the Mall rentals.sav data file. Do people with higher levels

of education (edu) have a shorter time for getting a mall rental (interval) than people with lower
levels of education if we control for differences in the number of status?
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CHAPTER 9
Repeated Measures and Mixed ANOVAs

In this chapter, you will analyze a new data set that includes repeated measure data. These data allow you
to compare four products (or these could be four instructional programs), each of which was evaluated by
12 consumers/judges (6 male and 6 female). The analysis requires statistical techniques for within
subjects and mixed designs.

In Problem 9.1, to do the analysis, you will use the SPSS General Linear Model program (called GLM)
and do a repeated measures ANOVA., In Problem 9.3, you will use the same GLM program to do a
mixed ANOVA, one that has a repeated measures independent variable and a between groups
independent variable. In Problem 9.2, you will use a nonparametric statistic, the Friedman test, which is

similar to the repeated measures ANOVA. SPSS does not have a nonparametric equivalent to the mixed
ANOVA.

Chapter 3 provides several tables to help you decide what statistic to use with various types of difference
statistics problems. Tables 3.1 and 3.3 include the statistics used in this chapter. Please refer back to
chapter 3 to see how these statistics fit into the big picture.

Assumptions of Repeated Measures ANOVA

The assumptions of repeated measures ANOVA are similar to those for the ANOVA, and they include
independence of observations (unless the dependent data comprise the “within-subjects” or “repeated
measures” factor), normality, and homogeneity of variances. However, in addition to variances, which
involve deviations from the mean of each person’s score on one measure, the repeated measures design
includes more than one measure for each person. Thus, covariances, which involve deviations from the
mean of each of two measures for each person, also exist, and these covariances need to meet certain
assumptions as well. The homogeneity assumption for repeated measures designs, known as sphericity,
requires equal variances and covariances for each level of the within subjects variable. Another way of
thinking about sphericity is that, if one created new variables for each pair of within subjects variable
levels by subtracting each person’s score for one level of the repeated measures variable from that same
person’s score for the other level of the within subject variable, the variances for all of these new
difference scores would be equal. Unfortunately, it is rare for behavioral science data to meet the
sphericity assumption, and violations of this assumption can seriously affect results. However,
fortunately, there are good ways of dealing with this problem—either by adjusting the degrees of freedom
or by using a multivariate approach to repeated measures. Both of these are discussed later in this
chapter. One can test for the sphericity assumption using the Mauchly’s test, the Box test, the
Greenhouse-Geisser test, and/or the Huynh-Feldt tests (see below). Even though the repeated measures
ANOVA s fairly robust to violations of normality, the dependent variable should be approximately
normally distributed for each level of the independent variable.

Assumptions of Mixed ANOVA

The assumptions for mixed ANOVA are similar to those for the repeated measures ANOVA, except that
the assumption of sphericity must hold for levels of the within subjects variable at each level of between
subjects variables. This can be tested using SPSS with Box’s M.
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The Product Data Set

Open the SPSS for Windows program. Open the Product data set. Do not retrieve the hsbdata for this
assignment.

In this study, each of the 12 participants (or subjects) has evaluated four products (e.g., four brands of
DVD players) on 1-7 Likert scales. You will find the data presented in the SPSS data editor once you
have opened the product data set.

¢ Click on the Data View tab at the bottom of the screen to get Fig 9.1.

Note that this is what the data view for
your product data looks like. In most
studies the N would be larger.

Fig. 9.1. Data view for the
product data.
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Figure 9.1 shows the Data View for 12 participants who were asked to rate four products (p1, p2, p3, and
p4) from 1 (very low quality) to 7 (very high quality). The participants were also asked their gender
(1=male, 2=female). Thus, subjects 1-6 are males and 7-12 are females.

¢ Click on the Variable View tab to see the names and labels of the variables as shown in Fig. 9.2.

= —— TI = 1 — Lélll-. = dia. V..;‘“_ gt~ _“_'_%I_ S ..o - — T— - " -
el - 8 [Right

L] Product 1 {1, Very Low}.. [None TScale .
0 Product2 ({1, Very Low)..|None B Righ  [Scale Flg..9.2. '
| 0 Product3 (i,VeryLow}.None (8 [Right _|Scale Variable view.
8 [Productd (i, Very Low}.[None 8 [Righ |Scle
G ‘Gender (1, Male).. |None B |Righ  |Nominal

We have labeled the measurement of the four products scale because the frequency distribution of each is
approximately normal. We label gender and other dichotomous variables as nominal; however, despite
this traditional designation for dichotomous variables, dichotomous variables, unlike other types of
nominal variables, provide meaningful averages (indicating percentage of participants falling in each
category) and can be used in multiple and logistic regression as if they were ordered. Furthermore, many
dichotomous variables (but not gender) even have an implied order (e.g., 0=do not have the characteristic
and 1= have the characteristic; thus, a score of 1 indicates more of the characteristic than does a score of
0).

In repeated measures (also called within-subjects) analyses, SPSS creates the Within-Subjects Factor or
independent variable from two or more existing variables (in this case p/, p2, p3, and p4). These then
become levels of the new independent variable. In this example, we will call the new variable product,
and it has four levels (p1, etc.), indicating which product was being rated. In order for a set of variables
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to be converted into a meaningful within-subject factor, the scores on each of the existing variables
(which will become levels of the new within-subjects variable) have to be comparable (e.g., ratings on the
same 7-point Likert scale) and each participant has to have a score on each of the variables. The within-
subject factor could be based on related or matched subjects (e.g., the ratings of a product by mother,
father, and child from each family) instead of a single participant having repeated scores. The within-
subjects design should be used whenever there are known dependencies in the data, such as multiple
family members, that are consistent across the independent participants, such as families (i.e., there is a
mother, father, and child rating for each family) but would otherwise violate the between-subjects
assumption of independent observations. The dependent variable for the data in Fig. 9.1 could be called
product ratings and would be the scores/ratings for each of the four products. Thus, the independent
variable, product, indicates which product is being rated, and the dependent variable is the rating itself.
Note that gender is a between subjects independent variable that will be used in Problem 9.3.

Problem 9.1: Repeated Measures ANOVA

The GLM repeated measures procedure provides a variety of analysis of variance procedures to use when
the same measurement is made several times on each subject or the same measurement is made on several
related subjects. The single-factor repeated measures ANOVA, which we will use for Problem 9.1, is
appropriate when you have one independent variable with two or more levels that are repeated measures
and one dependent variable. If there are only two levels, the sphericity assumption is not a problem
because there is only one pair of levels. If between subjects factors are specified, they divide the sample
into groups. There are no between subject or group factors in this problem. Finally, you can use a
multivariate or univariate approach to testing repeated measures effects.

9.1. Are there differences between the average ratings for the four products?

Let’s test whether there are differences between the average ratings of the four products. We are
assuming the product ratings are scale/normal data. Follow these commands:

Analyze => General Linear Model => Repeated Measures. (See Fig. 9.3.)

Delete the factor 1 from the Within-Subject Factor Name box and replace it with the name
product, our name for the repeated measures independent variable that SPSS will generate from the
four products. :

Type 4 in the Number of Levels box since there are four products established in the data file.

Click on Add, then click on Define, which changes the screen to a new menu box. (See Fig. 9.4.)

- gy Fig. 9.3. Repeated measures GLM
P define factor(s).

T

O |
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Fig. 9.4. GLM Repeated measures.

Now move pl, p2, p3, and p4 over to the Within-Subjects Variables box.
Click on Contrasts, be sure Polynomial is in the parenthesis after product. (See Figure 9.5.) SPSS
does not provide post hoc tests for the within subjects (repeated measures) effects, so we will use
contrasts. If the products are ordered, let’s say, by price, we can use the polynomial contrasts that are
interpreted below. If we wanted to use a different type of contrast, we could change the type by
clicking on the arrow under Change Constant.

e Click on Continue.

Fig 9.5. Repeated measures: Contrasts

Click on Options. (See Fig. 9.6.)
Click on Estimates of effect size.

Fig 9.6. Repeated measures: Options.

o Click on Continue, then on OK.
Compare your syntax and output to Output 9.1.
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Output 9.1: Repeated Measures ANOVA Using the General Linear Model Program

GLM
pl p2 p3 p4

/WSFACTOR = product 4 Polynomial
/METHOD = SSTYPE(3)

/PRINT = ETASQ
/CRITERIA = ALPHA({.05)
/WSDESIGN = product .

General Linear Model

Within-Subjects Factors

Measure: MEASURE_1

PRODUCT

Dependent
Variable

1

P1
P2
P3

2
3
4

P4

This shows four similar multivariate tests of the within subjects
effect. These are actually a form of MANOV A, which is discussed
in the next chapter. In this case, all four tests have the same Fs, and
are significant. If the sphericity assumption is violated, a
multivariate test could be used or one could use the procedure
shown below, which corrects the degrees of freedom.

Multivariate Tests” /
Pa:zéta
Effect _ Value F Hypothesis df Error df Sig. Squéred
product Pillai's Trace .864 19.0652 3.000 9.000 .000 / .864
Wilks' Lambda 436<__19.065° 3.000 9.000 000 | BBA>
Hotelling's Trace 6.355 19.0652 3.000 9.000 .000 .864
Roy's Largest Root 6.355 19.0652 3.000 9.000 .000 .864

a. Exact statistic

b.

Design: Intercept
Within Subjects Design: product

This is a test of an assumption of
the univariate approach to
repeated measures ANOVA. As is
commonly the case,
statistic is significant and, thus,
the assumption is violated.

the Mauchly

bound”
epsilon

The epsilons, which are measures of degree of sphericity, are less than
1.0, indicating that the sphericity assumption is violated. The “lower-

either use the multivariate results or use epsilons to adjust the numerator
and denominator dfs. Typically, when epsilons are less than .75, use the
Greenhouse-Geisser epsilon, but use Huynh-Feldt if epsilon > .75.

indicates the lowest value that epsilon could be. The highest
possible is always 1.0. When sphericity is violated, you can

Measure: MEASURE_1

Mauchly's Test of Sphericit}

\ Epsilona
Approx. \ Greenhous
Within Subjects Effect] Mauchly's W | Chi-Square df ~~Sig. e-Geisser | Huynh-Feldt | Lower-bound
PRODUCT 101 22.253 5 .001 .544 626 333

Tests the null hypothesis that the error covariance matrix of the orthonommalized transformed dependent variables is
proportional to an identity matrix.
a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in th
Tests of Within-Subjects Effects table.

b.
Design: Intercept

Within Subjects Design: PRODUCT
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Note that 3 and 33 would be the 4fs to use if
sphericity were not violated. Because it is,
we will use the Greenhouse-Geisser
correction, which multiplies 3 and 33 by
epsilon, which in this case is .544, yielding
dfs of 1.63 and 17.95.

Tests of Within-Subjects Effects
Measure: MEASURE 1
Type Il Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
product Sphericity Assumed 17.229 3 5743 23 82 2.000 682
Greenhouse-Geisser 17| 1632 10.556 23.629 .000 882 P
Huynh-Feldt 17.229 1.877 gI7e 23629 000 .682
Lower-bound 17.229 1.000 17.220 23.629 .001 682
Error(product)  Sphericity Assumed 8.021 .243
Greenhouse-Geisser 8.021 17.953 447
Huynh-Feldt 8.021 20.649 .388
Lower- . P
ower-bound 8.021 729 Slgnl ficance of
linear, quadratic,
and cubic trends.
Tests of Within-Subjects Contrasts
Measure: MEASURE 1
Type Il Sum I | partial Eta
Source product of Squares df Mean Square F Si Squared
product Linear 13.537 1 13.537 26.532 .000 707
Quadratic 188 1 .188 3.667 .082 .250
Cubic 3.504 1 3.504 20.883 .001 .655
Emor(product) Linear 5613 11 510 N
Quadratic .563 11 .051
Cubic 1.846 11 .168
— Ignore this. There were no
Tests of Between-Subjects Effects between groups/subjects
variables in this problem.
Measure: MEASURE_1
Transformed Variable: Average
Type Ul Sum Partial Eta
Source of Squares df Mean Square F Sig. Squared
Intercept 682.521 1 682.521 56.352 .000 837
Error 133.229 11 12.112
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Interpretation of Output 9.1
The first table identifies the four levels of the within subjects repeated measures independent variable,
product. For each level (P1 to P4), there is a rating of 1-7, which is the dependent variable.

The second table presents four similar Multivariate Tests of the within-subjects effect (i.e., whether the
four products are rated equally). Wilks’ Lambda is a commonly used multivariate test. Notice that in this
case, the Fs, df, and significance are all the same: F(3, 9) = 19.07, p < .001. The significant  means that
there is a difference somewhere in how the products are rated. The multivariate tests can be used whether
or not sphericity is violated. However, if epsilons are high, indicating that one is close to achieving
sphericity, the multivariate tests may be less powerful (less likely to indicate statistical significance) than
the corrected univariate repeated measures ANOVA.

The third table shows that the Mauchly Test of Sphericity is significant, which indicates that these data
violate the sphericity assumption of the univariate approach to repeated measures analysis of variance.
Thus, we should either use the multivariate approach, use the appropriate nonparametric test (Friedman),
or correct the univariate approach with the Greenhouse-Geisser or other similar correction.

You can see in the Tests of Within-Subject Effects that these corrections reduce the degrees of freedom
by multiplying them by Epsilon. In this case, 3 x .544 = 1.63 and 33 x .544 = 17.95. Even with this
adjustment, the Within-Subjects Effects (of product) is significant, F (1.63, 17.95) = 23.63, p <.001, as
were the multivariate tests. This means that the ratings of the four products are significantly different.
However, this overall (product) F does not tell you which pairs of products have significantly different
means.

SPSS has several tests of within subject contrasts. We have chosen to use the polynomial contrast on the
assumption that the products are ordered, say from the most expensive as P/ to the least as P4. The Tests
of Within-Subjects Contrasts table shows whether the four product means are significantly like a
straight line (linear effect), a line with one change in direction (quadratic), and a two bend line (cubic).
You can see that there is a highly significant linear trend and a significant cubic trend. If you plot the
means (shown in Output 9.2), these trends should be clear. Overall, there is a linear decline in ratings
from Product 1 (3.67) to Product 4 (1.33). However, Product 2 has a somewhat lower mean (2.25) than
Product 3 (2.75) producing the cubic trend.

In Output 9.1, we ignore the “Tests of Between Subject Effects » table because we do not have a
between subject/groups variable.

How to Write about Output 9.1.

Results

A repeated measures ANOVA, with Greenhouse-Geisser correction, was conducted to assess whether

there were differences between the average ratings of the four products. Results indicated that
participants did rate the four products differently, F (1.63, 17.95) = 23.63, p < .001, R = .68, eta’ = .68.
The means and standard deviations for the products listed in order from most expensive to least
expensive, are presented in Table 9.1. Examination of these means suggests that participants rated
products that are more expensive more highly than less expensive products. Polynomial contrasts
indicated, in support of this, there was a significant linear trend, F (1,11) = 26.53, p <.001, eta’=.71.
However, this finding was qualified by the significant cubic trend, F (1,11) =20.88, p = .001, eta’ = .66,
reflecting the higher rating for Product 3 than Product 2.
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Table 9.1.

Means and Standard Deviations of the Four Product Ratings
Variable M SD
Product 1 4.67 1.92
Product 2 3.58 1.93
Product 3 3.83 1.64
Product 4 3.00 1.65

Problem 9.2: The Friedman Nonparametric Test for Several Related Samples

What could you do if the product ratings are ordinal data or the repeated measures ANOV A assumptions
are markedly violated? One answer is to use a nonparametric statistic. As you can tell from Table 3.1

(p. 49), an appropriate nonparametric test for when you have more than two levels of one repeated
measures or related samples (i.e., within-subjects) independent variables is the Friedman test.

9.2. Are there differences among the mean ranks of the product ratings?

Let’s use pl to p4 again with the following commands:

¢ Analyze => Nonparametric tests => K Related Samples... and move producti[pl] to product4
[p4] to the Test Variables box (see Fig. 9.7).

Make sure the Friedman test type is checked.
Then click on Statistics to get Fig. 9.8.

Fig. 9.7. Tests for several related samples.

e Now click on Descriptive statistics.
¢ Click on Continue, then OK. Look at your output and compare it to Output 9.2a.

Fig. 9.8. Descriptive statistics for
nonparametric tests for several related
samples.
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Output 9.2a: Nonparametric Tests With Four Related Samples

NPAR TESTS
/FRIEDMAN = pl p2 p3 p4d
/STATISTICS DESCRIPTIVES
/MISSING LISTWISE.

Descriptive Statistics
| N Mean Std. Deviation | Minimum | Maximum
Froduct 1 12 4.67 1.92 1 7
Froduct 2 12 3.58 1.93 1 7
FProduct 3 12 3.83 1.64 1 6
Froduct 4 12 3.00 1.65 1 6
Friedman Test
Ranks
| Mean Rank
Product 1 3.67
Product 2 2.25
Product 3 2,75
Product 4 1.33
Test Statistics®
N 12 The overall difference between the
Chi-Square 26.170 mean ranks is significant at p <.001.

df
Asymp. Sig. ( .000

Jpan s ———
a. Friedman Test

Interpretation of Output 9.2a

The Descriptive Statistics table provides familiar statistics that were useful for interpreting the
polynomial contrasts in Output 9.1 but are not, themselves used in the Friedman test. Rather, ratings are
ranked, and the means of these ranks are used in the Friedman. The Ranks table shows the mean rank for
each of the four products.

The Friedman Test Statistic table tests the null hypothesis that the four related variables come from the
same population. For each rater/case, the four variables are ranked from 1 to 4. The test statistic is based
on these ranks. The Asymp. Sig. (asymptotic significance, which means this is not an exact significance
level) of p <.001 indicates that there is a significant overall difference among the four mean ranks.

Unfortunately, SPSS does not have a post hoc test built into the Friedman test program. Therefore, in
order to determine which differences between mean ranks are significant, and thus the likely source of the
significant Friedman test, we will need to perform a nonparametric related sample test like the Wilcoxon.
See Table 3.1 (p. 49) for a more complete view of all of the different statistical tests and their uses.
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e Analyze => Nonparametric tests => 2 Related Samples and make sure that Wilcoxon is checked.
Then highlight product1[1] and product2{2] and click the arrow to move them over. Next, repeat for
product2[2] and product3[3] and for product3[3] and product4{4]. Check to make sure your syntax
and output are like those in Output. 9.2b.

Output 9.2b: Follow-up Paired Comparisons for Significant Friedman

NPAR TEST
/WILCOXON=pl p2 p3 WITH p2 p3 p4 (PAIRED)
/MISSING ANALYSIS.

Ranks
N Mean Rank | Sum of Ranks
Product 2 - Product 1 Negative Ranks 10° 5.50 55.00
Positive Ranks ob .00 .00
Ties 2¢
Total 12
Product 3 - Product 2 Negative Ranks 14 3.00 3.00
Positive Ranks 4° 3.00 12.00
Ties 7
Total 12
Product 4 - Product 3 Negative Ranks 109 5.50 55.00
Positive Ranks ob .00 .00
Ties 2
Total 12
a. Product 2 < Product 1
b. Product 2 > Product 1
C. Product 1 = Product 2
d. Product 3 < Product 2
€. Product 3 > Product 2
f. Product 2 = Product 3
9. Product 4 < Product 3
h. Product 4 > Product 3
i. Product 3 = Product 4
Test Statistics®

Product 2 - | Product 3- | Product 4 -
Product 1 Product 2 Product 3

Z 2,919 -1.342° -3.162°
Asymp. Sig. (2-tailed) .004 .180 .002

a. Based on positive ranks. \ /—
b. Based on negative ranks.

C. Wilcoxon Signed Ranks Test

These two contrasts are
statistically significant.

156



Chapter 9 — Repeated Measures and Mixed ANOVAs

Interpretation of Output 9.2b

Given that there was a significant overall difference between the mean ranks, we followed up the
Friedman with Wilcoxon tests. Since the products are ordered and there are four levels, it makes sense to
do three orthogonal contrasts, contrasting adjacent pairs. A larger number of comparisons would prevent
the comparisons from being completely independent of one another. Given that three post hoc
comparisons were made, it would be desirable to make a Bonferroni correction on alpha, such that p
would need to be .05/3 ( about .017) to be significant. Notice that the contrasts between products 2 and /
and between 4 and 3 are significant at this level and that they both indicate that the higher numbered
product was given a lower rating than the lower numbered product. On the other hand, the difference
between ratings for products 3 and 2 was not significant. This is not surprising when you look at the
means in Output 9.2 and suggests that the slight increase in ratings for product 3 compared to product 2
may not be important. Remember, however, that the Wilcoxon is not performed on the rating scores
themselves, but rather on the ranks of the ratings.

How to Write About Outputs 9.2a and 9.2b

Results
A Friedman test was conducted to assess if there were differences among the mean ranks of the
product ratings, * (3, N = 12) = 26.17, p = .001. This indicates that there were differences among the four
mean ranks. Three orthogonal contrasts were performed using Wilcoxon tests with the Bonferroni
correction (comparison-wise alpha = .017). The contrasts between Product 1 and 2, and between Products
3 and 4 were found to be significant; however that between Products 2 and 3 was not significant. In both
cases, the significant contrasts indicated that the more expensive product was rated more highly.

Problem 9.3: Mixed ANOVA

Using this General Linear Model procedure, you can test null hypotheses about the effects of both the
between groups factors and the within subjects factors. You can investigate interactions between factors
as well as the effects of individual factors on one or more dependent variables.

Repeat Problem 9.1 except add gender to see if there are any gender differences as well as product
differences and if there is an interaction between gender and product. Is gender a between groups/subjects
or within subjects variable? The answer is important in how you compute and interpret the analysis.

9.3. Are there gender as well as product differences? Is there an interaction between gender and product?

¢ Click on Analyze => General Linear Model => Repeated Measures...

In the Repeated Measures Define Factor(s) window (Fig. 9.3), you should see, product (4) in the
big box. If so, click on Define (if not repeat the steps for Problem 9.1).

Then move gender to the Between Subjects Factor(s) box (Fig. 9.4).

Click on Contrasts.

Click on product(polynomial) under Factors.

Be sure that None is listed under Contrasts, then click Change. This will make it say product(none).
Click Continue.

Click on OK.

Compare your syntax and output with Output 9.3.
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Output 9.3: Mixed ANOVA: Product by Gender

GLM
pl p2 p3 p4 BY gender
/WSFACTOR = product 4
/METHOD = SSTYPE(3)
/PRINT = ETASQ
/CRITERIA = ALPHA{.05)
/WSDESIGN = product
/DESIGN = gender .

General Linear Model

Within-Subjects Factors
Measure: MEASURE_1

Dependent
PRODUCT | Variable
1 P1
2 P2
3 P3
4 P4
Between-Subjects Factors
Value
L Label N
Gender 1 Male 6 The multivariate test for product and
2 Female 6 the interaction are significant.
Multivariate Testd
Partial Eta
Effect Value F Hypothesis df Error df Sig. Squared
product Pillai's Trace .897 ’_—girﬁ_?’ 3-000 & 000 897
Wilks' Lambda 103 $__23.1528 3.000 8.000 .000 897
Hotelling's Trace 8.682 23.1529 3.000 8.000 .000 .897
Roy's Largest Root 8.682 23.1522 3.000 8.000 ,000 .897
product * gender  Pillai's Trace 763 8.606° 3.000 8.000 007 .763
Wilks' Lambda .237 ¢ 8.606% 3.000 8.000 .007 763 ]
Hotelling's Trace 3.227 8. 000 O 007 763
Roy's Largest Root 3.227 8.6062 3.000 8.000 .007 .763
a. Exact statistic
b.

Design: intercept+gender
Within Subjects Design: product
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The assumption is violated

Mauchly's Test of Sphericity because W is significant.
Measure: MEASURE 1
/ Epsilon®
Approx. Greenhous
Within Subjects Effect | Mauchly's W | Chi-Square df Sig. [ e-Geisser | Huynh-Feldt | Lower-bound
product 176 15.138 5 hw‘ 547 .705 333

Tests the null hypothesis that the error covariance matrix of the orthonorma
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in
the Tests of Within-Subjects Effects table.

b.
Design: intercept+gender
Within Subjects Design: product

transformed dependent variables is

Univariate test adjusted with
Greenhouse-Geisser epsilons
because of lack of sphericity.

Tests of Within-Subjects Effects
Measure: MEASURE 1
Type lil Sum Partial Eta
Source of Squares df | Mean Square F Sig. Squared
product Sphericity Assumed 17.229 3 5743 __,A.LZB8—————996—~—-—-80-7_
Greenhouse-Geisser 17.229 1.840 10.5079 .000 807 | >
Huynh-Feldt 17.229 2.114 8.148 41.768 .000 .807
Lower-bound 17.229 1.000 17.229 41,768 .000 .807
product * gender  Sphericity Assumed 3.808 3 1.299 9.444 .000 486
Greenhouse-Geisser 3.806 1.640 2.376 444 .003 486 >
Huynh-Feldt 3.806 2.114 1.842 Y 001 _—io
Lower-bound 3.806 1.000 3.896 9.444 012 486
Error(product) Sphericity Assurned 4125 30 138
Greenhouse-Geisser 4125 16.398 .252
Huynh-Feldt 4125 21.145 .195
Lower-bound 4125 10.000 13
Univariate
within subjects and
interaction trends.
Tests of Within-Subjects Contrasts
Measure: MEASURE 1
Type Il Sum Partial Eta
Source product of Squares df Mean Square F Sig. Squared
product Linear 13.537 1 13.537 64.209 .000 .865
Quadratic .188 1 .188 5.000 .049 .333
Cubic 3.504 1 3.504 21.345 .001
product * gender Linear 3.504 1 3.504 16.621 002 624
Quadratic .188 1 .188 5.000 .049 .333
Cubic .204 1 .204 1.244 291 AN
Eror(product)  Linear 2.108 10 211 ~
Quadratic 375 10 .038
Cubic 1.642 10 .164
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The test of wheth
Tests of Between-Subjects Effects ma?ese :m‘:l gmile:rrate
Measure: MEASURE_1 the products differently
Transformed Variable: Average 15 n.ot significant.
Type ill Sum Pirtial Eta
Source of Squares df Mean Square F Sig. quared
Intercept 682.521 1 682.521 65.183 d;ﬁd 867
gender 28.521 1 28.521 2.724 214
Error 104,708 10 10.471
Interpretation of Output 9.3

Most of these tables are similar in format and interpretation to those in Output 9.1. However, the addition
of gender as a between subjects independent variable makes the last table meaningful and adds an
interaction (product * gender) to both the multivariate tests table and the univariate (within-subjects
effects) tables. Both multivariate and univariate tables indicate that (as in Output 9.1) there are
differences among the products. Again, there are significant linear and cubic trends, but now the
quadratic trend is significant as well. In addition, the interaction of product and gender are significant
with both univariate and multivariate tests. This means that the downward overall trend for all subjects is
somewhat different for males and females. Moreover, the linear and quadratic trends are significant for
the interaction between product and gender.

If we had three groups, instead of just males and females, for our between groups variable and if the
ANOVA had been significant, we would have used a post hoc test for this effect. SPSS provides the same
wide variety of post hoc multiple comparisons that were available for one-way ANOVA and factorial
ANOV As, including the Tukey and Games Howell.

How to Write About Output 9.3
Results

A mixed ANOVA was conducted to assess whether there were gender and product differences in
product ratings. Results indicated a significant main effect of product, F (1.64, 16.4) =41.77, p <. 001,
but not of gender, F (1, 10) =2.72, p = .13. However, the product main effect was qualified by a
significant interaction between product and gender, F (1.64, 16.40) = 9.44, p = .003. This indicates that
even though as a general rule, males do not rate products higher or lower than females, males do rate
particular products differently than do females.

Interpretation Questions

9.1.  InOutput 9.2: a) Explain the results in nontechnical terms.

9.2.  In Output 9.2b: a) Why did we do Wilcoxons after the Friedman test? Why Wilcoxons
rather than paired ¢ tests or Mann-Whitney U tests? b) Explain the results of the Wilcoxons in
nontechnical terms.

9.3 In Output 9.3: a) Is the Mauchly sphericity test significant? Does this mean that the assumption is

or is not violated? If it is violated, what can you do? b) How would you interpret the F for
product (within subjects)? c) Is the interaction between product and gender significant? How

160




9.4

9.1

9.2

Chapter 9 — Repeated Measures and Mixed ANOVAs

would you describe it in nontechnical terms? d) Is there a significant difference between the
genders? Is a post hoc multiple comparison test needed? Explain.
Compare the F and significance for product in Output 9.3 to the same F in Output 9.1. Compare

the Fs for the linear, quadratic, and cubic trends for product in Outputs 9.1 and 9.3. Why are
some things different?

Extra SPSS Problems

Using the Anxiety 2.sav data file find out if there are there differences between the
average score for the trails.

Using the Anxiety 2.sav data file: Are there anxiety as well as trial differences? Is there an
interaction between anxiety and trial? Are post-hoc tests needed?
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CHAPTER 10

Multivariate Analysis of Variance (MANOVA)
and Canonical Correlation

In this chapter, we introduce multivariate analysis of variance (MANOVA), which is a complex statistic
similar to ANOVA but with multiple dependent variables analyzed together. The dependent variables
should be related conceptually, and they should be correlated with one another at a low to moderate level.
If they are too highly correlated, one runs the risk of multicollinearity. If they are uncorrelated, there is
usually no reason to analyze them together. The General Linear Model program in SPSS provides you
with a multivariate F based on the linear combination of dependent variables that maximally distinguishes
your groups. This multivariate result is the MANOVA. SPSS also automatically prints out univariate Fs
for the separate univariate ANOV As for each dependent variable. Typically, these ANOVA results are
not examined unless the multivariate results (the MANOV A) are significant, and some statisticians
believe that they should not be used at all.

In this chapter, you will first do a one-way or single factor MANOVA. This problem has one
independent variable (father s education revised) and three dependent variables (grades, math
achievement, and visualization tesf). One could do three separate one-way ANOV As; however, using
MANOVA, you will see how the combination of the three variables distinguishes the groups, in one
analysis. The second problem is a two-way or two-factor MANOVA. It is two-way because there are
two independent variables (math grades and gender) and MANOV A because two test scores are
examined simultaneously as dependent variables. Problem 10.3 is a doubly multivariate or mixed
MANOVA. It is mixed because there is a between groups independent variable (intervention group) and
a repeated measures independent variable (time: pretest and posttest). It is MANOVA because these are
two (or more) dependent variables. Mixed MANOV As are one way to analyze intervention
(experimental) studies that have more than one dependent variable.

Finally, Problem 10.4 uses canonical correlation for a problem with two sets of two or more variables
each. Canonical correlation relates variables in set 1 to those in set 2.

Assumptions of MANOVA

The assumptions of MANOVA include: independent observations (each person’s scores are independent
of every other person’s scores), multivariate normality, and homogeneity of variance/covariance matrices
(variances for each dependent variable are approximately equal in all groups plus covariances between
pairs of dependent variables are approximately equal for all groups). MANOVA is robust to violations of
multivariate normality and to violations of homogeneity of variance/covariance matrices if groups are of
nearly equal size (N of the largest group is no more than about 1.5 times the N' of the smallest group).

e Retrieve hsbdataB. Note: You are to get the hshdataB file, not the product file from the last lab
assignment.

Problem 10.1: GLM Single-Factor Multivariate Analysis of Variance

Sometimes you have more than one dependent variable that you want to analyze simultaneously. The
GLM multivariate procedure allows you to analyze differences between levels of one or more (usually
nominal level) independent variables, with respect to a linear combination of several dependent variables.
One can also include scale variables (covariates) as predictors of the linear combination of dependent
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variables. When you include both nominal variables and scale variables as predictors, one usually refers
to the analysis as MANCOVA (Multivariate Analysis of Covariance).

10.1. Are there differences between the three father’s education groups on a linear combination of
grades, math achievement, and visualization test? Also, are there differences between groups on any of
these variables separately? Which ones?

Before we answer these questions, we will correlate the dependent variables, to see if they are moderately
correlated. To do this:

Select Analyze=> Correlate=>Bivariate.

Move grades in h.s., math achievement test, and visualization test into the Variables box.

Click on Options and select Exclude cases listwise (so that only participants with all three variables
will be included in the correlations, just as they will be in the MANOVA).

Click on Continue.

Click on OK. Compare your output to 10.1a.

Output 10.1a: Intercorrelations of the Independent Variables

CORRELATIONS
/VRRIABLES=grades mathach visual
/PRINT=TWOTAIL NOSIG
/MISSING=LISTWISE .

. The three circled correlations should be low to
Correlations moderate.
Correlations®
math
achievement visualization
grades in h.s. test test

grades in h.s. Pearson Correlation 1 .504“) 127

Sig. (2-tailed) . QOOOJ (279/>
math achievement test Pearson Correlation 504" 1 42

Sig. (2-tailed) .000 . .000 >
visualization test Pearson Correlation 427 423" 1

Sig. (2-tailed) 279 .000

**. Correlation is significant at the 0.01 leve! (2-tailed).

a. Listwise N=75

Interpretation of Output 10.1a
Look at the correlation table, to see if correlations are too high or too low. One correlation is a bit
high: the correlation between grades in h.s. and math achievement test (.504). Thus, we will keep
an eye on it in the MANOVA that follows. If the correlations were .60 or above, we would
consider either making a composite variable (in which the highly correlated variables were
summed or averaged) or eliminating one of the variables.

Now, to do the actual MANOV A, follow these steps:

e Select Analyze => General Linear Model => Multivariate.
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® Move grades in h.s., math achievement, and visualization test into the Dependent Variables box.
o Move father’s education revised into the Fixed Factor(s) box (see Fig. 10.1).

Fig. 10.1. Multivariate.

e Click on Options.
Check Descriptive statistics, Estimates of effect size, Parameter estimates, and Homogeneity
tests (see Fig. 10.2). These will enable us to check other assumptions of the test and see which
dependent variables contribute most to distinguishing between groups.

e Click on Continue.

Fig. 10.2 Multivariate options.

¢ Click on OK. Compare your output to Output 10.1b.
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Output 10.1b: One-Way Multivariate Analysis of Variance
GLM

grades mathach visual BY faedr

/METHOD = SSTYPE(3)

/INTERCEPT = INCLUDE

/PRINT = DESCRIPTIVE ETASQ PARAMETER HOMOGENEITY
/CRITERIA = ALPHA(.05)

/DESIGN = faedr .

General Linear Model

Between-Subjects Factors
Value Label N To meet the assumptions it is best to
father's education 1 HS grad or 38 /— have approximatel)}: equal cell sizes.
revised less Unfortunately, here the largest cell
2 Some 16 (38) is more than 1 % times the
College smallest However, fortunately,
3 BS or More 19 Box’s Test (below) indicates that
that assumption is not violated.
Descriptive Statistics

father's education revised Mean Std. Deviation N
grades in h.s. “HS grad or less 5.34 1.475 38

Some College 5.56 1.788 16

BS or More 6.53 1.219 19

Total 5.70 1.552 73
math achievement test HS grad or less 10.0877 5.61297 38

Some College 14.3958 466544 16

BS or More 16.3509 7.40918 19

Total 12.6621 6.49659 73
visualization test HS grad or less 46711 3.96058 38

Some College 6.0156 4.56022 16

BS or More 5.4605 2.79044 19

Total 5.1712 3.82787 73

Box's Test of Equality of Covariance Matrice$
\ This checks the assumption of
Box's M homogeneity of covariances
F across groups.
df1
dfz . . . . .
Sig. ———— | This indicates that there are no significant
differences between the covariance matrices.
Tests the null hypothesis that the observed covariance Therefore, the assumption is not violated
matrices of the dependent variables are equal across groups. and Wilk’s Lambda is an appropriate test to
a. Design: Intercept+FAEDR use (see the Multivariate Tests table).
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a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

C. Design: Intercept+FAEDR

Levene's Test of Equality of Error Variance$

F df1 df2
grades in h_s. 1.546 2 70
math achievement test 3.157 2 70
visualization test 1.926 2 70

.153

Tests the null hypothesis that the error variance of the dependent variable is
equal across groups.

Muitivariate Tests
Partial Eta This is the

Effect Value F Hypothesis df | Error df Sig. Squared MANOVA
Intercept  Pillai's Trace 938 341.884° 3.000 68.000 .000 .938 using the

Wilks' Lambda .062 341.884° 3.000 68.000 .000 .938 Wilks’

Hotelling's Trace 15.083 341.884° 3.000 68.000 .000 .938 Lambda

Roy's Largest Root 15.083 341.884° 3.000 68.000 .000 .938 test.
FAEDR  Pillai's Trace .229 2.970 6.000 138000 2009 | 114

Wilks' Lambda 777 §£_3.040° 6.000 | 136.000 .008 ﬁ>

Hotelling's Trace 278 3.106 6.000 134.000 007 122

Roy's Largest Root 245 5.645P 3.000 69.000 .002 197

cal/

Because this is significant, we
know that the assumption of
homogeneity of variances is
violated for math
achievement, We could
choose to transform this
variable to enable it to meet
the assumption. Given that
the Box test is not significant
and this is the only Levene
test that is (barely) significant,
we are opting to conduct the
analysis anyway, but to use
corrected follow-up tests.

2. Design: Intercept+FAEDR These are the three univariate
analyses of variance.
Tests of Between-Subjects Effects
Type [if Sum Partial Eta || p,
Source Dependent Variable of Squares df Mean Square F Sig. Squared
Corrected Model  grades in h.s. 18.143° 2 9.071 4.091 .021 105
math achievement test 558.481° 2 279.240 7.881 .001 .184
visualization test 22.505° 2 11.252 763 ATO .021
intercept grades in h.s. 2148.057 1 2148.057 968.672 ,000 .933
math achievement test 11788.512 1 11788.512 | 332,697 .000 826
visualization test 1843.316 1 1843.316 | 124.973 -00 641
FAEDR grades in h.s. 18.143 2 9.071 -~ 4.001 021 05Y 32
math achievement test 558.481 2 279.240( 7.881 .001 184l 43
visualization test 22.505 2 11.252 [\ 763 470 0211 14
Ervor gradesin h.s. 165.227 70 2.218 o~
math achievement test 2480.324 70 35.433
visualization test 1032.480 70 14.750
Total grades in h.s. 2544.000 73
math achievement test 14742,823 73
visualization test 3007.125 73
Corrected Total grades in h.s. 173.370 T2
math achievement test 3038.804 72
visualization test 1054.985 72
a. R Squared = .105 (Adjusted R Squared = .079)
b. R Squared = .184 (Adjusted R Squared = .160) We have calculated the
¢. R Squared = .021 (Adjusted R Squared = -.007) etas to help you interpret
these effect sizes.
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Parameter Estimates

95% Confidence interval Partial Eta

Dependent Variable Parameter B Std. Error 1 Sig. Lower Bound | Upper Bound Squared
grades inh.s. Intercept 6.526 342 19.103 .000 5.845 7.208 839
[FAEDR=1] @ 418 -2.830 006 -2.019 -.350 103
[FAEDR=2] B )\ .505 -1.907 061 -1.972 4,393E-02 .049
[FAEDR=3] [1g . . . . . .
math achievement test  Intercept 16.351 1.366 11.973 .000 13.627 19.075 872
[FAEDR=1] -6.263 1.673 -3.745 .000 -9.599 -2.927 167
{FAEDR=2} -1 2.020 -.968 336 -5.983 2,073 013
[FAEDR=3] 0¢ . . . . . .
visualization test Intercept 5.461 881 6.198 .000 3.703 7.218 354
[FAEDR=1] -.789 / 1:%\ -.732 487 -2.942 1.363 .008
[FAEDR=2] . 1.303 \ 428 671 -2.044 3.154 .003
~———|EAEDR3] | 2 . . X . X X

a. This er is set to zero because it is redundant, \

Each of the variables in brackets under Parameter comprises a dummy variable devised to
distinguish one group from the others. For example, the circled weights (B) were devised to
maximize differences between the first group (students whose fathers had high school
education or less) and all other groups (those whose fathers had more education). Note that
there are actually just two dummy variables, as a third would provide redundant information.

Interpretation of Output 10.1

The GLM Multivariate procedure provides an analysis for “effects” on a linear combination of several
dependent variables of one or more fixed factor/independent variables and/or covariates. Note that many
of the results (e.g., Descriptive Statistics, Test of Between Subjects Effects) refer to the univariate tests.

The first test we encounter is the Box’s test of equality of covariance matrices. This tests whether or
not the covariances among the three dependent variables are the same for the three father's education
groups. The Box test is strongly affected by violations of normality and may not be accurate. If Ns for
the various groups are approximately equal, then the Box test should be ignored. Our largest group (N =
38) is 2.3 times larger than our smallest group (N = 16), so we should look at the Box test, which is not
significant (p = .147). Thus, the assumption of homogeneity of covariances is not violated. If the Box
test had been significant, we would have looked at the correlations among variables separately for the 3
groups and noted the magnitude of the discrepancies. Pillai’s trace is the best Multivariate statistic to
use if there is violation of the homogeneity of covariance matrices assumption and group sizes are similar
(not the case here). None of the multivariate tests would be robust if Box’s test had been significant and
group sizes were very different.

MANOVA provides four multivariate tests (in the Multivariate Tests table). These tests examine
whether the three father 's education groups differ on a linear combination of the dependent variables:
grades in h.s., math achievement, and visualization test. Under most conditions when assumptions are
met, Wilks’ Lambda provides a good and commonly used multivariate F (in this case F =3.04, df= 68,
136, p=.008). The “intercept” effect is just needed to fit the line to the data so skip over it. The main part
of this multivariate test table to look at is the FAEDR effect. This significant F indicates that there are
significant differences among the FAEDR groups on a linear combination of the three dependent
variables.

Next, we see the Levene’s test table. This tests the assumption of MANOVA and ANOVA that the
variances of each variable are equal across groups. If the Levene’s test is significant, as it is in this output
for math achievement, this means the assumption has been violated. Results for math achievement should
be viewed with caution (or the data could be transformed so as to equalize the variances).

Because the MANOVA was significant, we will now examine the univariate ANOVA results (in the
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Tests of Between Subject Effects table). Note that these tests are identical to the three separate
univariate one-way ANOV As we would have performed if we opted not to do the MANOVA. Because
the grades in h.s. and math achievement dependent variables are statistically significant and there are
three levels or values of father’s education, we would need to do post hoc multiple comparisons or
contrasts to see which pairs of means are different.

Both multivariate and univariate (between subjects) tests provide measures of effect size (eta squared).
For the multivariate test eta is .34 (the square root of .118), which is about a medium effect size. The
univariate etas are .32, .43, .14 for grades in h.s., math achievement and the visualization test,
respectively. The first one is a medium effect and the second is a large effect. The eta for visualization
indicates a small effect, and because F (.76) is not significant (p=.470), this result could be due to chance
(See Table 3.5 on page 55 for interpretation of the effect size for eta.).

In MANOVA, a linear combination of the dependent variables is created and groups are compared on that
variable. To create this linear combination for each participant, the computer multiplies the participant’s
score on each variable by a weight (B), with the values of the weights being devised so as to maximize
differences between groups. Next, we see the Parameter Estimates, which tell us how the dependent
variables are weighted in the equation that maximally distinguishes the groups. Note that in the column
under Parameter in this table, three variables are listed that seem new. These are the dummy variables
that were used to test for differences between groups. The first one [FAEDR = 1] indicates differences
between students whose fathers have high school education or less and the other students whose fathers
have more education. The second one [FAEDR = 2] indicates differences between students whose fathers
have some college and students in the other 2 groups. A third dummy variable would provide redundant
information and, thus, is not considered; there are k-1 independent dummy variables, where k = number
of groups. The next column, headed by B indicates the weights for the dependent variables for that
dummy variable. For example, in order to distinguish students whose fathers have high school education
or less from other students, math achievement is weighted highest in absolute value (-6.263), followed by
grades in h.s. (-1.184), and then visualization test (-.789). In all cases, students whose fathers have less
education score lower than other students, as indicated by the minus signs. This table can also tell us
which variables significantly contributed toward distinguishing which groups, if you look at the sig
column for each dummy variable. For example, both grades in high school and math achievement
contributed significantly toward discriminating group 1 (high school grad or less) from the other two
groups, but no variables significantly contributed to distinguishing group 2 (some college) from the other
two groups (although grades in high school discriminates group 2 from the others at almost significant
levels). Visualization, does not significantly contribute to distinguishing any of the groups.

We can look at the ANOVA (Between Subjects) and Parameter Estimates table results to determine
whether the groups differ on each of these variables, examined alone. This will help us in determining
whether multicollinearity affected results because if two or more of the ANOV As are significant, but the
corresponding variable(s) are not weighted much (examine the B scores) in the MANOV A, this probably
is because of multicollinearity. The ANOVAs also help us understand which variables, separately, differ
across groups. Note again that some statisticians think that it is not appropriate to examine the univariate
ANOV As. Traditionally, univariate Fs have been analyzed to understand where the differences are when
there is a significant multivariate F. One argument against reporting the univariate F is that the univariate
Fs do not take into account the relations among the dependent variables; thus the variables that are
significant in the univariate tests are not always the ones that are weighted most highly in the multivariate
test. Univariate Fs also can be confusing because they will sometimes be significant when the
multivariate F is not. Furthermore, if one is using the MANOVA to reduce Type I error by analyzing all
dependent variables together, then analyzing the univariate F°s "undoes" this benefit, thus, increasing
Type I error. One method to compensate for this is to use the Bonferroni correction to adjust the alpha
used to determine statistical significance of the univariate Fs.
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How to Write about Output 10.1
Results

A multivariate analysis of variance was conducted to assess if there were differences between the
three father’s education groups on a linear combination of grades in h.s., math achievement, and
visualization test. A significant difference was found, Wilk’s A =.777, F (68, 136) = 3.04, p=.008,
multivariate n° = .12. Examination of the coefficients for the linear combinations distinguishing father
education groups indicated that grades in high school and math achievement contributed most to
distinguishing the groups. In particular, both grades in high school (-1.18) and math achievement (-6.26)
contributed significantly toward discriminating group 1 (high school grad or less) from the other two
groups (p = .006 and p < .001, respectively), but no variables significantly contributed to distinguishing
group 2 (some college) from the other two groups. Visualization did not contribute significantly to
distinguishing any of the groups.

Follow up univariate ANOV As indicated that both math achievement and grades in high school were
significantly different for children of fathers with different degrees of education, F (2,70) = 7.88, p =.001
and F (2,70) = 4.09, p = .021, respectively .

Problem 10.2: GLM Two-Factor Multivariate Analysis of Variance

MANOVA is also useful when there is more than one independent variable and several related dependent
variables. Let’s answer the following questions:

10.2. Do students who differ in math grades and gender differ on a linear combination of two dependent
variables (math achievement, and visualization test)? Do males and females differ in terms of
whether those with higher and lower math grades differ on these two variables (is there an
interaction between math grades and gender)? What linear combination of the two dependent
variables distinguishes these groups?

We already know the correlation between the two dependent variables is moderate (.42), so we will omit
the correlation matrix. Follow these steps:

Select Analyze => General Linear Model => Multivariate.

Click on Reset.

Move math achievement and visualization test into the Dependent Variables box (see Fig. 10.1 if
you need help).

Move both math grades and gender into the Fixed Factor(s) box.

Click on Options.

Check Descriptive statistics, Estimates of effect size, Parameter estimates, and Homogeneity
tests (see Fig. 10.2).

Click on Continue.

Click on OK. Compare your output to Output 10.2.

Output 10.2: Two-Way Multivariate Analysis of Variance

GLM
mathach visual BY mathgr gender
/METHOD = SSTYPE (3)
/INTERCEPT = INCLUDE
/PRINT = DESCRIPTIVE ETASQ PARAMETER HOMOGENEITY
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/CRITERIA = ALPHA(.05)
/DESIGN = mathgr gender mathgr*gender .

General Linear Model
Between-Subjects Factors

Value Label N
math grades 0 less A-B 44
1 most A-B 31
gender 0 male 34
1 female 41
Descriptive Statistics
math grades gender | Mean T Std. Deviation
math achievement test less A-B male 12.8751 5.73136 24
female 8.3333 5.32563 20
Total 10.8108 5.94438 44
most A-B male 19.2667 417182 10
female 13.0476 7.16577 21
Total 15.0538 6.04168 31
Total male 14.7550 6.03154 34
female 10.7479 6.69612 41
Total 12.5645 6.67031 75
visualization test less A-B male 5.7188 4.52848 24
female 3.2750 2.74209 20
Total 4.6080 3.97572 44
most A-B male 8.1250 404188 10
female 5.2024 3.20119 21
Total 6.1452 3.69615 31
Total male 6.4265 447067 34
female 4.2622 3.10592 41
Total 5.2433 3.91203 75

Box's Test of Equality of Covariance Matrices ®

Box's M 12.437

F 1.300

df1 9 This assumption is not
df2 12723.877 violated.

Sig. .231)

Tests the null hypothesis that the observed covariance

matrices of the dependent variables are equal across groups.
a. Design: Intercept+MATHGR+GEND+MATHGR * GEND

1
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b. Design; Intercept+MATHGR+GEND+MATHGR * GEND

Multivariate Tests ®
Partial Eta
| Effect Value F Hypothesis df Error df Sig. Squared
Tntercept "~ Pillals Trace 848 1950128 2.000 70.000 1000 848
Wilks' Lambda 152 195.0120 2.000 70.000 .000 848
Hotslling's Trace 5572 185,012 2.000 70.000 000 848
Roy's Largest Root 5572 195.012 2,000 70.000 000 848
MATHGR Pillai’s Trace 189 8.155% 2.000 70.000 001 189
Wilks' Lambda <317 8.156° 2.000 70.000 001 YT
Hotelling's Trace 233 BT5st 27000 07000 0T 189
Roy's Largest Root 233 8.155% 2,000 70.000 .001 189
GEND Pillai’s Trace 200 8.7438 2000 70.000 000 200
Wilks' Lambda qtg_‘ 8.743 2,000 70.000 000 [0S
Hotelling’s Trace ; - 2.000 20:000. —866——200 |
Roy's Largest Root 250 8743 2,000 70.000 .000 .200
MATHGR* GEND __ Pillai’s Trace 005 1718 2000 y 843 005
’ ~=
Wilks' Lambda 1995 are 2,000 70.000 843 005 | >
Hotelling's Trace .005 aITe 2 107000 —843 ] 005
Roy's Largest Root 005 1718 2.000 70.000 843 .005
a. Exact statistic

The effects of math grades and gender on the combination
dependent variable are significant but the interaction is not.

Levene's Test of Equality of Error Variance$

Because this is significant, we
know that the assumption of
homogeneity of variances is
violated for visualization.
However, since groups are nearly
equal in size, the test should not

F df1 df2 Sig. ‘
math achievement test 1.691 3 71 A77
visualization test 2.887 3 71 .042

Tests the null hypothesis that the error variance of the dependent variable is
equal across groups.

a. Design: Intercept+MATHGR+GEND+MATHGR * GEND

be strongly affected by this
violation.

These etas were computed so you would
Tests of Between-Subjects Effects |10t have to compute them.
Type lil Sum Partial Eta | E¢a
Source Dependent Variable of Squares df Mean Square F Sig. Squared
Corrected Model math achievement test 814.481° 3 271.494 7.7789 .000 .247
visualization test 165,986 3 55.329 4.084 .010 147
Intercept math achievement test 11971.773 1 11971.773 343.017 /___,M .829
visualization test 2082.167 1 2082.167 1 SM .000 )
MATHGR math achievement test 515.463 1 515.463 / 4.769 .000 A72 41
visualization test 78.485 1 78.485 / 5.766 .019 .075 27
GEND math achievement test 483.929 1 483.92 13.866 .000 .163 40
visualization test 120.350 1 1 20.351 8.841 .004 AN 33
MATHGR *GEND  math achievement test 11.756 1 11.756 \ .337 563 005 | o7
visualization test .958 1 .958 \ 070 792 001 1 03
Error math achievement test 2478.000 71 34.901 g
visualization test 966,510 7 13.613 ]
Total math achievement test 15132.383 75
visualization test 3194.438 75
Corrected Total math achievement test 3292.481 74
visualization test 1132.497 74

a. R Squared = .247 (Adjusted R Squared = .216)
b. R Squared = .147 (Adjusted R Squared = .111)
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Parameter Estimates
95% Confidence Interval Partial Eta
Dependent Variable Parameter B Std. Error 1 Sig. Lower Bound | Upper Bound | Squared

math achievementtest _Intercept 13,048 1280 | 10.121 .000 10.477 15618 591
THGR=0) 4714 1848 | -2.554 013 -8.395 -1.034 084
[MATHGR=1] o . . . . ) .
END=0] ~ 6219p \ 2270 2740 .008 1.693 10.745 098
{GEND= o . . . ) . )
MATHGR=0] * [GEND=0]  -1.677. D> 280 -.580 .563 -7.440 4.085 .005
m:;HGR: q° [GEND;O g: Note that the weights for r.nath ‘ach'ievement
[MATHGR=1] * [GEND=1] ot / are larger than those for visualization test. i
visualization Intercept 5202 | 7 805 6.482 .000 3.597 6.808 370
u\@:’}_—— .__'lf——m’ 1.153 -1.672 .09 4,226 371 038
[MA = o* . . . . . .
END=0) 2823p 1418 | 2062 043 | 9.808E-02 5.748 056
[GENDG=A] ot . . . . . .
MATHGR=0] * [GEND=0 475> 1.805 -.285 702 -4.078 3.120 .001

[MATHGR= =] o

{MATHGR=1] * [GEND=0 o

THGR=1] * [GEND=1

@mmﬂr is set to zero because it is redundant.

Interpretation of Output 10.2

Many of the tables are similar to those in Output 10.1. For the Descriptive Statistics, we now sec means
and standard deviations of the dependent variables for the groups made up of every combination of the
two levels of math grades and the two levels of gender. Box’s test is again non-significant, indicating that
the assumption of homogeneity of covariance matrices is met.

The main difference in 10.2, as compared to 10.1, for both the Multivariate Tests table and the
univariate Tests of Between Subjects Effects table, is the inclusion of two main effects (one for each
independent variable) and one interaction (of math grades and gender: math grades * gender). The
interpretation of this interaction, if it were significant, would be similar to that in Output 10.1. However,
note that although both the multivariate main effects of math grades and gender are significant, the
multivariate interaction is not significant. Thus, we can look at the univariate tests of main effects, but we
should not examine the univariate interaction effects.

The Levene’s test indicates that there is heterogeneity of variances for visualization test. Again, we could
have transformed that variable to equalize the variances. However, if we consider only the main effects
of gender and of math grades (since the interaction is not significant), then N are approximately equal
for the groups (34 and 41 for gender and 31 and 44 for math grades), so this is less of a concern.

The Tests of Between-Subjects Effects table indicates that there are significant main effects of both
independent variables on both dependent variables, with medium to large effect sizes. For example, the
“effect” of math grades on math achievement is large (eta = .41) and the effect of math grades on
visualization test is medium (eta = .27). Refer again to Table 3.5.

The Parameter Estimates table now has three dummy variables: for the difference between students with
less A-B and more A-B (MATHGR=0), for male versus not male (GEND=0), as well as for the
interaction term (MATHGR=0 GEND=0). Thus, we can see that math achievement contributes more than
visualization test to distinguishing students with better and worse math grades, as well as contributing
more to distinguishing boys from girls.
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How to Write about Output 10.2
Results

To assess whether boys and girls with higher and lower math grades have different math
achievement and visualization test scores, and whether there was an interaction between gender and
math grades, a multivariate analysis of variance was conducted. The interaction was not significant,
Wilk’s A =.995, F (2, 70) = .17, p =.843, multivariate nz =.005. The main effect for gender was
significant, Wilk’s A = .800, F (2, 70) = 8.74, p < .001, multivariate 1\2 = 20. This indicates that the
linear composite of math achievement and visualization test differs for males and females. The main
effect for math grades is also significant, Wilk’s A = .811, F (2, 70) = 8.15, p = .001, multivariate n2 =
.19. This indicates that the linear composite differs for different levels of math grades. Follow-up
ANOVAs (Table 10.2) indicate that effects of both math grades and gender were significant for both
math achievement and visualization. Males scored higher on both outcomes and students with higher
math grades were higher on both outcomes (see Table 10.1).

Table 10.1

Means and Standard Deviations for Math Achievement and Visualization Test as a Function of Math
Grades and Gender

Math achievement Visualization
Group n M SD M SD
Low math grades
Males 24 12.88 5.73 5.72 4.53
Females 20 8.33 5.33 3.28 2.74
High math grades
Males 10 19.27 4,17 8.13 4.04
Females 21 13.05 7.17 5.20 3.20
Table 10.2
Effects of Math Grades and Gender on Math Achievement and Visualization Test Scores
Source Dependent Variable daf F n P
Math Grades Math achievement 1 14.77 41 .001
Visualization test 1 5.77 27 019
Gender Math achievement 1 13.87 40 .001
Visualization test 1 8.84 33 .004
Math Grades x Gender  Math achievement 1 34 .07 .563
Visualization test 1 .07 .03 792
Error Math achievement 71
Visualization test 71

Problem 10.3: Mixed MANOVA

There might be times when you want to find out if there are differences between groups as well as within
subjects; this can be answered with Mixed MANOVA.
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Assumptions of Repeated and Mixed MANOVA

The assumptions of repeated or doubly multivariate (multiple measures obtained on multiple occasions)
MANOVA include: linearity of relations among the dependent variables and multivariate normality; for
mixed MANOV A, an additional assumption is homogeneity of variance-covariance matrices between
groups. If the sample sizes in each group are approximately equal, repeated MANOVA is robust to these
assumptions. Linearity can be assessed through matrix scatterplots. If sample sizes are not equal, than
Box’s M test can be conducted to check the homogeneity assumption, and univariate normality can be
assessed using plots to help assess the normality assumption. One should also make sure that sample sizes
are sufficiently large. If the number of variables times the number of levels of the within subjects
variable approaches the sample size, then the doubly multivariate analysis should not be conducted.
Rather, one should either use multiple MANOV As with only one or two dependent variable each (if there
are only two, three, or four dependent variables), or one should aggregate or drop some dependent
variables (if there are more dependent variables).

We have created a new dataset to use for this problem (MixedMANOV Adata).
¢ Retrieve Mixed MANOV Adata.
Let’s answer the following question:

10.3. Is there a difference between participants in the intervention group (group 1) and participants in the
control group (group 2) in the amount of change that occurs over time in scores on two different
outcome measures?

We will not check the assumptions of linearity, multivariate normality, or homogeneity of variance-
covariance matrices because the sample sizes are equal.

* Analyze => General Linear Model => Repeated Measures (see Fig. 10.3).

o Delete the factor 1 from the Within-Subject Factor Name box and replace it with the name time,
our name for the repeated measures independent variable that SPSS will generate.

Type 2 in the Number of Levels box.

Click on Add.

In the Measure Name box, type dv1.

Click on Add.

In the Measure Name box, type dv2.

Click on Add. The window should look like Fig. 10.3.

Fig. 10.3. Repeated measures define factor(s).
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Click on Define, which changes the screen to a new menu box (see Fig. 9.4 in chapter 9 if you need
help).

Now move outcome 1 pretest, outcome 1 posttest, outcome 2 pretest, and outcome 2 posttest over to
the Within-Subjects Variables box.

Move group to the Between-Subjects Factor(s) box.

Click on Plots.

Move time to the Horizontal Axis box.

Move group to the Separate Lines box.

Click on Add. This is will move the variables down to the Plots box.

Click on Continue.

Click on Options. (see Fig. 9.6 in chapter 9 if you need help).

Click on Descriptive Statistics and Estimates of effect size.

Click on Continue, then on OK.

Compare your syntax and output to Qutput 10.3.

Output 10.3: Repeated Measures MANOVA Using the General Linear Model

GLM

DV11l DV12 DV21 DV22 BY group
/WSFACTOR = time 2

/MEASURE = dvl dv2

/METHOD = SSTYPE(3)

/PLOT = PROFILE( time*group )
/PRINT = DESCRIPTIVE ETASQ
/CRITERIA = ALPHA(.05)
/WSDESIGN = time

/DESIGN = group .

General Linear Model

Within-Subjects Factors

Dependent
Measure time Variable

dv1 DV11
Dv12

1
2

dv2 1 Dv21
2 Dv22

Between-Subjects Factors

Value Label N

group 1 intervention 10

comparison 10
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Descriptive Statistics
roup Mean Std. Deviation N
outcome 1 pretest  intervention 5.00 1.826 10
comparison 510 1.370 10
Total 5.05 1.572 20
outcome 1 posttest intervention 10.00 1414 10
comparison 5.50 1.780 10
Total 7.75 2.789 20
outcome 2 pretest  intervention 20.00 7.454 10
comparison 20.50 6.852 10
Total 20.25 6.973 20
outcome 2 posttest intervention 20.50 6.852 10
comparison 19.00 8.097 10
Total 19.75 7.340 20

This table tells you what effects are significant. In this case, there are significant multivariate main

effects of group and time, but these are qualified by a group by time interaction. This indicates
that the difference between the intervention and control group on the linear combination of the two
dependent variables is different at pretest than at posttest. Examination of the means suggests that
this is because groups do not differ on either dependent variable at the time of the pretest, but they
do differ, particularly on the first dependent variable, at the time of the posttest.

Multivariate Tests® \

\ Partial Eta
_E_ffgct - Value F Hypothesis df "\ Error df Sig. Squared
Between Intercept Pillai's Trace 955 182,194¢ 2.000 7.000 000 955
Subjects Wilks' Lambda 045 | 182.194% 2.000 178Q0 .000 955
Hotelling's Trace 21.435 182.194° 2.000 17.00! .000 .955
Roy's LargestRoot |  21.435 | 182.194% 2.000 17.000 \ﬁﬁ\ 955
group Pillai's Trace 553 10.499* 2.000 17.000 .001 .553
Wilks' Lambda 447 10.499° 2.000 17.000 001 553
Hotelling's Trace 1.235 10.499* 2.000 17.000 .001 553
Roy's Largest Root 1.235 10.499* 2.000 17.000 .001 553
Within Subjects  time Pillai's Trace 822 39.321* 2.000 17.000 .000 .822
Wilks' Lambda 178 39.321* 2.000 17.000 .000 822
Hotelling's Trace 4,626 39.321* 2.000 17.000 .000 .B22
Roy's Largest Root 4,826 39.321* 2.000 17.000 .000 822
time * group  Pillal's Trace 786 31.235* 2.000 17.000 .000 .786
Wilks' Lambda 214 31.235* 2.000 17.000 .000 .786
Hotelling's Trace 3.678 31.235% 2.000 17.000 .000 .786
Roy's Largest Root 3.675 31.235" 2.000 17.000 .000 4 .786
a. Exact statistic
b.

Design: Intercept+group
Within Subjects Design: time
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Mauchly's Test of Sphericity
Epsilon®
Approx. Greenhous
\(Vithin Subjects Effect Measure Mauchly's W _|_Chi-Square df Sig. e-Geisser | Huynh-Feldt | Lower-bound
time dvi 1.000 .000 0 . 1.000 1.000 1.000
dv2 1.000 .000 0 1.000 1.000 1.000

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an
identity matrix.

2. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of

Within-Subjects Effects table.

b. . . . -
Design: Intercept+group Note that Mauchly’s test of sphericity would be needed only in relation to the
Within Subjects Design: time assumptions of the follow-up univariate repeated measures tests (second table

below, labeled “univariate tests™); sphericity is not required for the
multivariate tests. In this case, it is not needed even for univariate tests
because there are only two levels of the within subjects variable, so sphericity
is not an issue and all epsilons are 1.0. The follow-up repeated measures
ANOV As (see univariate effects table) and contrasts test whether these
apparent findings are statistically reliable.

Tests of Within-Subjects Effects

Multivariate®®
Partial Eta
Within Subjects Effect Value F Hypothesis df | Error df Sig. Squared
time ~Pillar's Trace .822 39.3212 2.000 17.000 .000 .822
Wilks' Lambda 478 39.3212 2.000 17.000 .000 822
Hotelling's Trace 4626 39.3212 2.000 17.000 .000 .822
Roy's Largest Root 4,626 39.3212 2.000 17.000 .000 .822
time * group Pillai's Trace .786 31.235% 2.000 17.000 .000 786
Wilks' Lambda 214 31.235° 2.000 17.000 .000 .786
Hotelling's Trace 3675 31.235° 2.000 17.000 .000 .786
Roy's Largest Root 3.675 31.235° 2.000 17.000 .000 .786
a. Exact statistic
b.

Design: intercept+group
Within Subjects Design: time

C. Tests are based on averaged variables.

Note that this table provides —
information that is redundant with the
previous multivariate table. You can
ignore it.
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Univariate Tests
Type I Sum Partial Eta
Source Measure of Squares df Mean Square o Squared
time dv1 Sphericity Assumed 72.900 1 72.900 .000 .0 .818
Greenhouse-Geisser 72.900 1.000 72.900 81.000 .000 .818
Huynh-Feldt 72.900 1.000 72.900 81.000 .000 818
Lower-bound 72.900 1.000 72.900 81.000 .000 818
dv2 Sphericity Assumed 2.500 1 2.500 [ C___.240 | 630 ] .013
Greenhouse-Geisser 2,500 1.000 2.500 .240 .630 013
Huynh-Feldt 2.500 1.000 2.500 240 630 013
Lower-bound 2.500 1.000 2.500 .240 630 013
time *group  dv1 Sphericity Assumed 52.900 1 52.900 @ .ooo‘ﬁ .766
Greenhouse-Gelsser 52,800 1.000 52.900 58.778 .000 766
Huynh-Feldt 52.900 1.000 52.900 58.778 .000 766
Lower-bound 52.900 1.000 52.900 56.778 .000 .766
dv2 Sphericity Assumed 10.000 1 10.000 .960 340 b1 051
Greenhouse-Geisser 10.000 1.000 10.000 .960 ——_'570/ .051
Huynh-Feldt 10.000 1.000 10.000 .960 .340 051
Lower-bound 10.000 1.000 10.000 .960 .340 051
Error(time)  av1 Sphericity Assumed 16.200 18 .900
Greenhouse-Geisser 16.200 18.000 .900
Huynh-Feldt 16.200 18.000 .900
Lower-bound 16.200 18.000 .900
dv2 Sphericity Assumed 187.500 18 10.417
Greenhouse-Geisser 187.500 18.000 10.417
Huynh-Feldt 187.500 18.000 10.417
Lower-bound 187.500 18,000 10.417
This table displays follow-up repeated measures ANOVAs for each dependent -
variable, which show that the main effect of time (change from pretest to posttest)
is significant only for dependent variable 1, and that the interaction between group
and time is only significant for dependent variable 1. This indicates that the change
over time is associated with the intervention, but only for dependent variable 1.
This table indicates that there is a significant linear trend only for dependent variable 1 and
that this time effect interacted with group. Examination of the means suggests that this
interaction indicates that the time effect held only for the intervention group. The linear
trend is the only polynomial contrast used because there are only two groups and only two
time points, so quadratic or cubic trends are not possible. This table also provides effect
sizes (partial eta squared), which indicate that the effects for dv1 were large.
Tests of Within-Subjects Contrasts
Type fll Sum Partial Eta
Source Measure _ time of Squares df Mean Square F Sig. Squared
time dv1 Linear 72.900 1 72.900 81.000 .000 .818
dv2 Linear 2.500 1 2,500 240 830 013
time * group  dv1 Linear 52.900 1 52.900 58.778 .000 .766
dv2 Linear 10.000 1 10.000 .960 .340 051
Error(time)  dv1 Linear 16.200 18 .900
dv2 Linear 187.500 18 10.417
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Tests of Between-Subjects Effects

Transformed Variable: Average

Type Il Sum Partial Eta
Source _Measure | of Squares df Mean Square F Sig. Squared
Intercept ~ dv1 1638.400 1 1638.400 | 382.010 .000 .955
dv2 16000.000 1 16000.000 | 164.807 .000 .902
group dvi 48.400 1 48.400 11.285 .003 .385
dv2 2.500 1 2.500 .026 .874 .001
Error dvi 77.200 18 4,289
dv2 1747.500 18 97.083

This table indicates that if one averages across the within subjects variable (time), then the groups
differ only on dependent variable 1. This table is misleading because we know that there is no
difference at the time of the pretest. In this case, it really does not provide much useful information.
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Interpretation of Output 10.3

This example illustrates the utility of the doubly multivariate analysis for testing a pretest-posttest design
with intervention and control groups. Not only do we see from these results that the intervention seemed
successful when both outcome measures were taken together, but that the effect was significant only for
one of the dependent variables, when each was considered separately. Sphericity was not an issue in this
case because there were only two levels of the within-subjects variable. If one creates difference scores
by subtracting each person’s score on the dependent variable at one level of the within-subjects variable
from the same dependent variable at each other level of the within-subjects variable, then sphericity exists
if the variances of the resulting difference scores are all equal. Because there are only two levels of the
within-subjects variable, there is only one set of difference scores, so sphericity has to exist. If we had
had more than two levels of the within-subjects variable, then we would have needed to be concerned
about the sphericity assumption when examining the univariate results. If epsilons did not approach 1.0,
then we would have used the Huynh-Feldt or Greenhouse-Geisser test results, which use an estimate of
epsilon to correct the degrees of freedom.

Example of How to Write About Problem 10.3
Results

A doubly multivariate analysis was conducted to assess if there was a difference between participants
in the intervention group and participants in the contro! group in the amount of change in their scores on
the two outcome measures. Significant multivariate effects were found for the main effects of group, F
(2,17)=10.5, p = .001 and time F (2,17) = 39.3, p <.001, as well as for the interaction between group
and time, F (2,17) = 31.2, p <.001. This interaction effect indicates that the difference between the
intervention and control group on the linear combination of the two dependent variables is different at
pretest than it is at posttest. Examination of the means suggests that this is because groups do not differ
on either dependent variable at the time of the pretest, but they do differ, particularly on the first
dependent variable, at the time of the posttest. Follow-up ANOV As reveal that the significant change
from pretest to posttest was significant only for the first outcome variable, F (1,18) = 81, p <.001, and
that the change in the first outcome variable was different for the two groups, F (1,18) = 58.78, p < .001.
Examination of the means suggests that the change in the first outcome variable only held for the
intervention group.

Problem 10.4: Canonical Correlation

Canonical correlation is similar to MANOVA in that it is used when you have two sets of two or more
variables each and you want to see how differences in one set relate to differences in the other set of
variables. With canonical correlation, however, there is no distinction between independent and
dependent variables; they are called by SPSS “Set 1” and “Set 2.” Moreover, usually canonical
correlation is used when both sets of variables are at least interval level (scale), whereas in MANOVA
usually at least some of the independent variables are dummy variables. Usually one would use canonical
correlation when the variables in each set can be grouped together conceptually, but you want to see if
there are particular subsets of them that relate to subsets in the other variable set, so you do not want to
sum each set to make an overall score. Usually, canonical correlation is used as an exploratory technique;
it is not commonly used to test specific hypotheses. Like principle components analysis, canonical
correlation enables you to see which variables go together; however, it determines which subset of the
“Set 1” variables best relate to which subset of the “Set 2” variables, then which other subset of the “Set
1” variables relate to another subset of the “Set 2” variables, etc. (Note: For those of you using earlier
versions of SPSS, it has been reported that SPSS versions below 10.0 tend to have problems running
canonical correlations. If you are using an earlier version and have problems, check the Help menu.)
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Assumptions of Canonical Correlation

The assumptions of canonical correlation include: linearity (between each variable as well as between the
variables and the linear composites), multivariate normality, and homoscedasticity. Because multivariate
normality is difficult to assess, univariate normality can be evaluated. Multicollinearity should be
assessed as well. All of the assumptions can be evaluated through a matrix scatterplot of the canonical
variate scores (the scores are generated by the canonical correlation syntax). It is recommended to have at
least 10 subjects per variable in order to have adequate power.

10.4. What is the pattern of relationships between the motivation items and the competence items?

We will need to check the assumptions of linearity, multivariate normality, and homoscedasticity. One
way to do this is to graph the canonical variate scores that are generated by the canonical correlation
syntax. Because the canonical correlation needs to be computed first, we have done that below, with the
matrix scatterplot of the canonical variates afterwards. Be sure not to save your data file after running
these commands, or you will save the canonical variates.

Canonical correlation must be computed through syntax. Use the following syntax to answer the question
above. The first line needs to include where your SPSS syntax macro file is located on your computer (in
this case, it is on the c: drive under program files\spss, but yours might be located in a different folder).

INCLUDE 'c:\Program files\spss\canonical correlation.sps'.
CANCORR SETl=item0l item07 iteml2 iteml3 /
SET2=item03 item09 / .

Compare your output with Output 10.4a below.

Output 10.4a: Canonical Correlation Output

INCLUDE ‘c:\Program files\spss\canonical correlation.sps'.
32 preserve.
33 set printback=off.
438 RESTORE.
439
441 * End of INCLUDE nesting level 01.
CANCORR SET1l=item0l item07 iteml2 iteml3 /
SET2=item03 item09 / .
NOTE: ALL OUTPUT INCLUDING ERROR MESSAGES HAVE BEEN TEMPORARILY
SUPPRESSED. IF YOU EXPERIENCE UNUSUAL BEHAVIOR THEN RERUN THIS
MACRO WITH AN ADDITIONAL ARGUMENT /DEBUG='Y'.
BEFORE DOING THIS YOU SHOULD RESTORE YOUR DATA FILE.
THIS WILL FACILITATE FURTHER DIAGNOSTICS OF ANY PROBLEMS

Matrix
Run MATRIX procedure:

Correlations for Set-1

item01l item07 iteml2 iteml3
item0l 1.0000 .4613 .1841  .1856 These are the
item07  .4613 1.0000 .3469  .3562 correlations among the
iteml2  .1841  .3463 1.0000 .5838 items of each set.
iteml3 .1856 .3562 .5838 1.0000 Remember to look on
only one side of the
diagonal.

Correlations for Set-2

item03 item09
item03 1.0000 . 3268
item09 .3268 1.0000
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These are bivariate correlations
between each variable in Set 1 and

Correlations Between Set~1 and Set-2

each variable in Set 2.

item03 item09
item0O1l .6260 .2082
itemclJ; . iggg . ggfz You can square these values
item . . st :
‘W1 n.
iteml3 .1669 .2894 to help with interpretatio

Canonical Correlations
1 . 645
2 .368

between Set 1 & Set 2
(.645).

Thus, Function! accounts for
42% of the variance shared

The Wilks’ lambda and corresponding
chi-square tests indicate that the
canonical correlation on that line plus all
later correlations are significantly
different from zero. Thus, the first line
tests whether both correlations, together,

Test that remaining correlations are zero:

Wilk's Chi-SQ DF
1 .505 46.175 8.000
2 .865 9.808 3.000 .020
Standardized Canonical Coefficients for Set-1l
1 2
item0l -.838 -.276
item07 -.259 -.089
iteml2 -.047 .914
iteml3 -.011 .190

Raw Canonical Coefficients for Set-1

1 2
item01l -.919 -.303
item07 -.243 -.083
iteml2 -.056 1.089
item13 -,013 .236

Standardized Canonical Coefficients for Set-2

1 2
item03 -.972 -.418
item09 -.077 1.055

Raw Canonical Coefficients for Set-2

1 2
item03 -1.070 -.459
item09 -.100 1.378

Canonical Loadings for Set-l

[

are significantly different from zero.
The second line tests whether the second
correlation is significant, even after
removing the variance explained by the
previous correlation. The degrees of
freedom are calculated as the number of
variables in Set 1 times number of
variables in Set 2 for the first chi-square,
and then df is decreased by 1 for each
variable set for each remaining chi-
square.

These indicate how much each item in Set
1 is weighted to create the linear
combinations used in each of the two
canonical correlations (canonical variates).

These indicate how much each item in
Set 2 is weighted to create each of the
two canonical variates for Set 2.

1 2
item01 -.9%68 -.113
item07 -.665 .169
iteml2 -.297 .943
iteml3 -.286 .641

These indicate the correlation between each
item in Set 1 and each of two canonical
variates for Set 1.

Cross Loadings for Set-1

1 2
item01 -.625 -.042
item07 -.429 .062
iteml2 -.192 .347
iteml3 -.184 .236

Canonical Loadings for Set-2

1 2
item03 -.997 -.073
item09 -.395 .919

These indicate the correlation between
each item in Set 2 and each of the two
canonical variates for Set 2.
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Cross Loadings for Set-2

1 2
item03 -.644 -.027
itemQ9 -.255 .338

Redundancy Analysis:

Proportion of Variance of Set-1 Explained by Its Own Can. Var.

Prop Var

cvi-1 .387

Ccv1l-2 .335

Proportion of Variance of Set-1 Explained by Opposite Can.Var.
Prop Var

cva-1 .161

cv2-2 .045

Proportion of Variance of Set-2 Explained by Its Own Can. Var.

Prop Var

Cv2-1 .575

cv2-2 .425

Proportion of Variance of Set-2 Explained by Opposite Can. Var.
Prop Var

Cvl-1 .240

Ccvl-2 .057

—————— END MATRIX -----

The canonical scores have been written to the active file.

Also, a file containing an SPSS Scoring program has been written

To use this file GET a system file with the SAME variables

Which were used in the present analysis. Then use an INCLUDE command
to run the scoring program.

For example

GET FILE anotherfilename

INCLUDE FILE "“CC__.INC"“.
EXECUTE.

Output 10.4b: Matrix Scatterplot of Canonical Variates

GRAPH
/SCATTERPLOT (MATRIX)=S1_CV00l s2_CV001 S1_CV002 S2_CV002
/MISSING=LISTWISE .
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The data appear to meet the assumptions of linearity,

multivariate normality, and homoscedasticity because there
does not appear to be a pattern in the scatterplots, and there
are not large differences in how spread out each scatterplot is.
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Interpretation of Output 10.4a and 10.4b

The first two matrices, Correlations for Set-1 and Correlations for Set-2, are ordinary correlation
tables. The first matrix is for the variables in Set 1, and the second matrix is for the variables in Set 2. We
can see from these tables that most variables in each set are weakly to moderately correlated with each
other.

The next matrix is the Correlations Between Set-1 and Set-2, which contains the bivariate correlations
between each variable in Set 1 and each variable in Set 2.

The Canonical Correlations are the correlations between a linear combination of the Set 1 variables and
a linear combination of the Set 2 variables (the canonical variates). Note that there are two different
correlations, corresponding to two different pairs of linear combinations. By squaring and summing all
canonical correlations, you can calculate a measure of R’ indicating how much variance in one set of
variables is explained by the other set of variables. Thus, (.645% = .416) + (3.682 = .135) = .551, so about
55% of the variance is shared.

One important part of the output to check is the Test that remaining correlations are zero. These chi-
square goodness-of-fit tests indicate whether all correlations from that point on are significant, even after
removing variance accounted for by all prior correlations.

The Standardized Canonical Coefficients can be interpreted much like regression weights, to show
which items are weighted most heavily in the linear combination of variables for each set of variables.
These weights are created so as to maximize the correlation between the two sets of variables. For
example, the first canonical variate for Set 1 is created by weighting item01 most heavily (-.838),
followed by item07 (-.259), item12 (-.047) and item13 (-.011). This canonical variate is then correlated
with the canonical variate created by weighting item03 by -.972 and item09 by -.077 (see table of
loadings in the output). The set of canonical coefficients in the second column is the set used for the
second pair of canonical variates, which are correlated to produce the second canonical correlation. Thus,
there are actually two linear combinations for each set of variables. These are derived, much like principal
components analysis, by creating the linear combination for each set of variables that maximizes the
correlation between the two sets of variables, then doing this again with what remains after the variance
associated with the first correlation is removed, and so on. These coefficients are often called pattern
coefficients.

Canonical Loadings are the correlations between each item and the linear combinations of variables for
that same set (canonical variates). They are often called structure coefficients. These loadings aid in the
interpretation of the correlations, much as the loadings in principal components analysis are interpreted to
give meaning to the different components.

Cross Loadings for each set indicate the correlation between each item in one variable set and the
canonical variate for the other variable set. In the Cross Loadings for Set-2, we can see that both items
for Set 2 are negatively correlated with the Set 1 canonical variate for the first canonical correlation.

Example of How to Write About Problems 10.4
Results
Canonical correlation analysis was performed to assess the pattern of relationships between the
motivation items and the competence items. The first canonical correlation was .65 (42% overlapping
variance); the second was .37 (14% overlapping variance). With both canonical correlations included,
x2(8) = 46.18, p <.001, and with the first removed, x2(3) = 9.81, p = .02. The correlations and canonical
coefficients are included in Table 10.3. Examination of the loadings suggests that first canonical
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correlation seems to involve a relation between practicing math a lot, independently, and becoming
efficient (quick) at math; whereas, the second seems to capture a relation between persistence and
thoroughness and being very competent at math.

Table 10.3
Correlation and Standardized Canonical Coefficients Between Motivation and Competence Variables
First Canonical Second Canonical
Correlation Correlation
Item Content Loading Coefficient Loading Coefficient
Motivation
Practice till do well -97 -.84 -11 -28
Figure out math without help -.67 -.26 A7 -.09
Complete math even if it takes a long time -30 -.05 .94 91
Explore all solutions -29 -.01 .64 .19
Competence
Solve math quickly -1.00 =97 -.07 -42
Very competent in math -.40 -.08 .92 1.06
Interpretation Questions
10.1  In Output 10.1b: a) Are the multivariate tests statistically significant? b) What does this mean? c)

10.2

10.3

10.4

10.1

Which individual dependent variables are significant in the ANOVAs? d) How are the results
similar and different from what we would have found if we had done three univariate one-way
ANOVAs?

In Output 10.2: a) Are the multivariate tests statistically significant? What does this mean? b) If
the interaction effect had been significant, what would that mean? c¢) For which
individual/univariate dependent variables are the genders significantly different? d) Write up
sentences summarizing the multivariate results, being sure to include the F values and degrees of
freedom as these would be reported in a journal article.

In Output 10.3: a) What makes this a “doubly multivariate” design? b) What information is
provided by the multivariate tests of significance that is not provided by the univariate tests? c)
State in your own words what the interaction between time and group tells you. What
implications does this have for understanding the success of the intervention?

In Output 10.4: a) What is the difference between canonical coefficients (pattern coefficients) and
canonical loadings (structure coefficients)? What information do each of these sets of
coefficients tell you? b) Give an example of a research problem that could be addressed using
canonical correlation. ¢) What do the canonical correlations tell you? d) Why is there more than
one canonical correlation?

Extra SPSS Problems

A company is interested in how consumers of different age groups like their DVD players. Open
the dvdplayer.sav dataset and conduct a MANOVA using Age group and sex (male or female) as
fixed factors and price, ease, support, and func as dependent variables. Request that descriptives,
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measures of effect size, parameters, and tests of homogeneity are printed, and specify that you
want a polynomial contrast on agegroup.

a. How many participants of each gender are in each group? How might this affect
results?

b. Which results are significant, using Wilk’s lambda?

c. What are the eta squared values for each effect using Wilk’s lambda? What do these
mean?

d. Were homogeneity assumptions met?

€. What do the B values listed under Parameter Estimates (and their significance levels)
tell you? What are the parameters?

f. Which polynomial contrast(s) are significant for each dependent variable? Interpret
these results.

Now, conduct the same analysis as in problem 1, but omit sex as an independent variable?

a. Why might you choose to omit sex as a factor?

b. Was the effect of agegroup significant (using Wilk’d lambda)? What does this mean?

c. Were the homogeneity assumptions met?

d. Which univariate effect(s) were significant? Interpret this.

e. Which group differences were significant, for which variable(s)?

f. Which polynomial contrast(s) were significant, for which variable(s)? Describe the
results of this MANOVA, making sure to include information about the significance
tests.

Open the World95.sav dataset, and conduct a canonical correlation, using literacy, fertility,
gdp_cap, and calories as set 1 and birth_rt, lifeexpf, death_rt, and aids_rt as set 2. Be sure to
check your syntax carefully!

a. Which of the canonical correlations were significant? How do you know?

b. Which variables in set 1 were weighted most heavily for function 1? Which set 2
variables were weighted most heavily for function 1? Which set 1 and set 2 variables
were weighted most for function 2?

c. Interpret the meaning of functions 1 and 2, based on the canonical loadings
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Quick Reference Guide to SPSS Procedures
Joan Naden Clay

Introduction

The Quick Reference Guide is intended as a supplemental resource to use while the SPSS
program is open. It provides a brief overview of commonly utilized procedures in SPSS as well
as the statistical procedures covered in Morgan, Leech, Gloeckner, and Barrett (2004). This guide
presents one basic method for accomplishing each command; however, there are often multiple
ways to accomplish any given task in SPSS. The intent of this guide is to provide a brief
description of each subject area in addition to giving step-by-step directions for performing
specific actions for each subject.

Throughout the Quick Reference Guide, each subject area (e.g., variable, cell, file) is organized
alphabetically and written in ALL CAPITAL, BOLD ITALICS. Common actions (e.g., cut,
paste, insert) are itemized for each subject and are indicated with an arrow. Stepwise instructions
for functions are designated with a round bullet. Items within the stepwise directions that are
bolded either represent window items that require you to make a selection or indicate that the user
should select the item with the click of the mouse. Each step of a function is sequentially
represented with arrows. For example, the instructions to Open a File would be: File (select the
word “file” in the header) => Open (select the word “open” in the drop down window) => Data
(select the word “data” in the subsequent drop-down menu) =>using the Files of Type pull-down
menu (click the arrow on the “Files of Type” window to get the drop-down menu), choose the
type of data file to bring into SPSS=>locate the file=>double click on the file name.

SPSS Commands

ANALYSIS OF VARIANCE (ANOVA) is used to compare two or more independent groups on
the dependent variable. Sample means are compared in order to infer whether the means of the
corresponding population distributions also differ. ANOVA allows for several means to be
compared.

» One-Way ANOVA (single factor analysis of variance) is used when you have one
independent variable with a few nominal levels and one normally distributed dependent
variable.

¢ Analyze => Compare Means => One-Way ANOVA => select one or more dependent
variables with a left click and move them into the Dependent List box by clicking the
top arrow in the middle of the dialog box => select the independent variable with a left
click and move it into the Factor (independent variable) box by clicking the bottom
arrow in the middle of the dialog box => Options => choose Descriptives and
Homogeneity of variance test => Continue => OK.

» Two-Way (Factorial) ANOVA is used when there are two different independent variables

with a few nominal levels, a between groups design, and one normally distributed dependent
variable.
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¢ Analyze => General Linear Model => Univariate => select the dependent variable
with a left click and move it into the Dependent Variable box by clicking the top arrow
in the middle of the dialog box => select the independent variables with a left click and
move them into the Fixed Factor(s) box by clicking the arrow in the middle of the dialog
box => Options => select Descriptive statistics, Estimates of effect size, and
Homogeneity tests => Continue => Plots => select one of the factors (independent
variable) with a left click and move it to the Horizontal Axis box by clicking the top
arrow in the middle of the dialog box => select the remaining factor (independent
variable) with a left click and move it to the Separate Lines box by clicking on the
middle arrow in the center of the dialog box => Continue => OK.

BAR CHARTS Bar charts are useful for displaying frequency information for categorical data,
and SPSS allows several options for creating them. Types of bar charts available include: simple
(presents a single bar for each category, case, or variable); clustered (presents a group of bars on
the category axis, and bars within a cluster can represent groups of cases, separate variables, or
individual cases); and stacked (there is one bar stack for each category, case, or variable on the
category axis and segments of each stack can represent groups of cases, separate variables, or
individual cases).

¢ Graphs => Bar => select type of chart (simple, clustered, or stacked) => choose if the
Data in Chart are either summaries for groups of cases, summaries of separate variables,
or values of individual cases => Define => at this point, the dialog box varies based on
the type of chart and type of data to be displayed. Highlight variables and move them to
the appropriate boxes (bars represent, category axis, define clusters by, define stacks
by, etc.) by clicking the arrows. For summaries of groups of cases, choose if each Bar
Represents the number of cases, cumulative cases, percent of cases, cumulative percent
of cases, or other summary function => Titles => type in title, subtitles, and footnotes =>
Continue => OK.

BOX PLOTS This type of graphic provides a visual display of the distribution of data by presenting
the median, quartiles, and extreme values for the category or variable. Box plots can be simple
(with a single box plot for each category or variable) or clustered [with 2 or more plots for each
category or variable on the category axis, and each plot within a cluster being defined by another
definition (grouping) variable]. Box plots are automatically generated by the Explore command or
can be custom generated with the Graphs command.

¢  Graphs => Boxplot => select type of plot (simple or clustered) => choose if the Data in
Chart Are either summaries for groups of cases or summaries of separate variables =>
Define => at this point, the dialog box varies based on the type of chart and type of data to
be presented. Highlight variables and move them to the appropriate boxes (variable,
category axis, define clusters by, label cases by, or boxes represent) => OK.

CASES are the individual records for each subject and are organized by rows for each record/case.
SPSS numbers each case down the left side of the Data View window. All of the data for each
participant should be entered as one row of information.

» Insert Cases This command allows data to be added for new subjects or cases anywhere in the
data set.
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e Click on the case number below where the case is to be inserted => Data => Insert Cases
=> enter data for the new case.

> List Cases (Case Summaries) This command allows the user to list either an entire dataset or a
subset of the data. Case summaries are especially helpful for ensuring that data are computed or
entered correctly. Various options allow the user to select one or all variables, create an order
for listing the cases using a grouping variable, limit the number of cases shown, and conduct
basic descriptive statistics on the cases selected.

e Analyze => Reports => Case Summaries => select variables to be summarized with a left
click => click the top arrow in the middle of the dialog box to move the selected variable to
the Variables box => if desired, select categorical variables with a left click => click the
bottom arrow in the middle of the dialog box to move the selected variable to the Grouping
Variables box => utilize check boxes in lower left corner to display individual cases, limit
number of cases shown, show valid cases or show case numbers => Statistics => highlight
desired statistic with a left click => click the arrow in the middle of the dialog to move the
selected statistic to the Cell Statistics box => Continue => OK.

» Select Cases The select cases command permits the analysis of a specific subset of the data.
Once a subset is selected, the user can either revert back to the entire dataset or delete the
unselected cases to create a subset data file. Users can Select data in a variety of ways
including: If condition is satisfied (a conditional expression is used to select cases); Random
sample of cases (cases are selected randomly based upon a percent or number of cases); Based
on time or case range (case selection is based upon a range of case numbers or a range of
dates/time); or, Use filter variable (a numeric variable can be used as the filter — any cases with
a value other than 0 or missing are selected). Unselected cases may be Filtered (remain in data
file, but excluded in the analysis) or Deleted (removed from the working data file and cannot be
recovered if the data file is saved after the deletion). If you want to do the same analysis
separately on all subsets of data, then Split File should be used instead of Select Cases (see
below)

o Data => Select Cases => Select (choose method: all cases, if condition is satisfied, random
sample of cases, range, filter variable) => Unselected cases are (choose either filtered or
deleted) => OK (Save your work before deleting cases, just in case you change your mind!).

» Sort Cases This procedure allows the user to rearrange the order in which data are displayed
using one or more variables of interest. Data can be sorted in ascending (small to large
numbers or alphabetical) or descending (large to small numbers or reverse alphabetical) order.

e Data => Sort Cases => select a variable with a left click => click the arrow in the middle of
the dialog box to move the variable to the Sort By list => choose either the Ascending or
Descending display => OK.

CELLS A cell is a single data point where a row and column intersect within the dataset. Cells can
be manipulated individually or in blocks. Data can be edited using Copy (puts a duplicate of the
cell value(s) on the clipboard, but leaves original cells in place), Cut (puts the cell value(s) on the
clipboard and deletes the original cell values), or Paste (inserts cell value(s) from the clipboard into
cell(s) at a new location).
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» Copy and Paste Cells This command makes a copy of data in a cell while leaving the
original cell in place. The copy can be inserted in another location.

e Highlight the data (cell, row, column, etc.) to copy => Edit => Copy => click on the
individual cell or the upper left cell of the group of cells to paste to (If data are pasted
over already existing cells, the data in those cells will be erased! It may be necessary to
create space by inserting variables or cases. Pay close attention to cell alignment.) =>
Edit => Paste (Save your work or experiment on a copy of your data—just in case the
unexpected happens!).

» Cut and Paste Cells This command removes the data from a cell so you can insert itina
different location.

o Highlight data (cell, row, column, etc.) that you want to cut => Edit => Cut => click on
the individual cell or the upper left cell of the group of cells you want to paste to (If you
paste data over already existing cells, the data in those cells will be erased! You may
need to create space by inserting variables or cases. Pay close attention to your
alignment.) => Edit => Paste.

CHART EDITOR Existing charts may be edited using the SPSS chart editor. Common actions
include adding titles, changing labels, altering color and fill patterns, and adjusting axis intervals.

e Double click on a chart in the output (chart appears in the Chart Editor window) =>
double click on the element of the chart to edit (Palettes window opens) => select
appropriate tab of the palettes window => utilize various dialog boxes, check boxes, etc.
to edit the element of interest => Apply (repeat process on all the various elements of the
chart to edit).

CHI-SQUARE allows the user to determine whether there is a statistically significant
relationship between two nominal variables. This test compares the observed and expected
frequencies in each category to test whether all the categories contain the same proportion of
values. The chi-square test does not indicate the strength (effect size) of a statistically significant
relationship. The optional Phi and Cramer’s V tests can be used as a measure of effect size.

¢ Analyze => Descriptive Statistics => Crosstabs => select the first nominal variable
with a left click and move it to the Row(8) box by clicking the top arrow in the middle of
the dialog box => select the second nominal variable with a left click and move it to the
Column(s) box by clicking the arrow in the middle of the dialog box => Statistics =>
check Chi-square and Phi and Cramer’s V => Continue => Cells => check Observed,
Expected and Total = Continue => OK.

CODEBOOK This feature allows information for all of the variables in the dataset to be printed
including: variable names, measurement level, column width, number of decimal places, values,
and value labels.

¢ Utilities => File Info (the codebook is printed into the output).

COHEN'’S KAPPA is used to assess interobserver reliability (the agreement between the
evaluations of two raters when both are rating the same object). Kappa is used for situations
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where both variables use the same category values and both variables have the same number of
categories.

* Analyze => Descriptive Statistics => Crosstabs => select the variable representing the
first rater’s observation with a left click and move it to the Row(s) box by clicking the
top arrow in the middle of the dialog box => select the variable representing the second
rater’s observation with a left click and move it to the Column(s) box by clicking the
center arrow in the middle of the dialog box => Statistics => check box for Kappa =>
Continue => Cells => check Observed in the Counts box => check Total in the
Percentages box => Continue => OK.

COPY DATA PROPERTIES WIZARD provides the ability to use an external SPSS data file as a
template for defining file and variable properties for a working data file. This process replaces
the Apply Data Dictionary function, which was formerly located on the File menu.

¢ Data => Copy Data Properties => identify the source file for the data properties =>
Next => choose source and target variables => Next =>choose variable properties to
copy => Next => choose dataset properties to copy => Next => Finish.

COUNT creates a new variable that counts the occurrences of a given value in a list of variables
for each case. This is often used to devise a variable indicating how many responses a participant
checked (e.g., when asked to check which of the following were reasons, the person selected a
particular brand or product) or how many times a person said, “yes” to a series of related
questions (e.g., questions asking if the participant experienced particular risk factors in
development).

* Transform => Count => type the new variable name in the Target Variable box =>
type a description for the variable in the Target Label box => select the variables you
want to be included in the count with a left click and move to the Variables box by
clicking the arrow in the middle of the dialog box => Define Values => determine the
value or range of values to be counted using the radio buttons and dialog boxes in the
Value box => Add => Continue => OK.

CORRELATIONS are inferential statistics that are used to assess the association or relationship
between two variables.

» Pearson Product Moment Correlation (r) is a bivariate parametric statistic, also known as
Pearson correlation coefficient, used when both variables are approximately normally
distributed.

¢ Analyze => Correlate => Bivariate => select the scale variables to be correlated with a
left click and move them to the Variables box by clicking the arrow in the middle of the
dialog box => check the Pearson box => select the two-tailed radio button => check the
Flag significant correlations box => Options => check Means and standard
deviations box => select the Exclude cases listwise radio button => Continue => OK.

> Spearman Rho (r) is the nonparametric equivalent of the Pearson correlation coefficient.

This statistic should be selected when the data are ordinal or when the assumptions for the
Pearson correlation coefficient are markedly violated.
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e Analyze => Correlate => Bivariate => select the variables to be correlated with a left
click and move them to the Variables box by clicking the arrow in the middle of the
dialog box => check the Spearman box => select the two-tailed radio button => check
the Flag significant correlations box => Options => check Means and standard
deviations box => select the Exclude cases listwise radio button => Continue => OK.

CRONBACH’S ALPHA is a commonly used procedure to assess the internal consistency
reliability of several items or scores that are going to be used to create a summated scale score.

e Analyze => Scale => Reliability Analysis => select variables (items) to be included in
the summated scale with a left click and move to the Items box by clicking the arrow in
the middle of the dialog box => use the drop-down arrow to designate the Model as
Alpha => Statistics => check the Correlations box => Continue => OK.

CROSSTABULATION see CHI-SQUARE.

DATA are the values entered into the cells that are created by the intersection of the rows (cases)
and columns (variables).

>

>

Copy Data (see CELLS — copy and paste or cut and paste).
Enter (Edit) Data Values can be entered into blank cells, or existing values may be changed.
o Left click the cell of interest => type (or edit) value => Enter.

Export Data Datasets can be saved in other file formats for use in other applications (e.g.

other versions of SPSS, Excel, dBASE, SAS).

¢ File => Save As => click the drop-down arrow in the Save as type dialog box => select
the file type => type the file name in the File name dialog box => click the drop down
arrow in the Save in dialog box => select a drive or folder for the file => Save.

Import Data This command copies data from a word document and pastes it into SPSS.

¢ In the word document, highlight the data to be pasted into SPSS => in the Data View of
SPSS, set the mouse on the first cell to receive the incoming data => Edit => Paste.

¢ Alternatively, in the word document, highlight the data to be pasted into SPSS => in the
Data View of SPSS, set the mouse on the first cell to receive the incoming data => right

click on Paste to import data from an excel, dbase, or other file, use Open Data file
(below).

Open Data See FILES (Open Data File).

Print Data This command allows some or all of the data to be printed.

e  Print All Data With the database open go to Data View => File => Print => in the Print
Range dialog box use the radio button to select All => OK.

¢ Print Selected Data With the database open go to Data View => highlight the cells to

print => File => Print => in the Print Range dialog box use the radio button to select
Selection => OK.
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» Save Data This command should be used often to avoid losing work!

o Initially Saving a New Data Set File => Save => (Save Data As dialog box appears)
select the appropriate drive and folder using the Save in drop down menu => type the file
name in the File Name dialog box => select SPSS (*.sav) in the Save as type dialog box
=> Save,

® Resaving an Existing Data Set Under the Same File Name File => Save (SPSS
automatically resaves the data using the existing file name).

o Saving Existing Data Set Under a Different File Name File => Save As => select the
appropriate drive and folder using the Save in drop-down menu => type the file name in
the File Name dialog box => select SPSS (*.sav) in the Save as type dialog box =>
Save.

DATABASE INFORMATION DISPLAY provides dictionary information about the selected
data file, including variable names, variable formats, and descriptive variable and value labels.

¢ File => Display Data Info => use the drop-down arrow for the Look in box to select the
appropriate drive => left click on the file name => Open.

DESCRIPTIVE STATISTICS displays summary statistics for several variables in a single table
and can also calculate standardized values (z scores).

¢ Analyze => Descriptive Statistics => Descriptives => select variables with a left click
and move them to the Variable(s) box by clicking the arrow in the middle of the dialog
box => Options => check boxes for desired descriptives => select preference for Display
Order => Continue => OK.

EXPLORE DATA This command produces summary statistics and graphical displays for entire
datasets or selected subsets of data. This command is useful for screening data, generating
descriptive information, checking assumptions and looking for differences among groups of
cases.

e Analyze => Descriptive Statistics => Explore => highlight one or more dependent
variables to explore and move them to the Dependent List box by clicking the arrow =>
if desired, move one or more categorical variables to the Factor List box in order to
obtain separate analyses for groups of cases based upon the factor => Statistics => check
desired statistics => Continue => Plots => select types of plots desired (box plots, stem-
and-leaf, histogram, normality plots) => Continue => OK.

FILES There are three different common file types in SPSS (data, output, and syntax) that are
differentiated with unique file extensions (data = .sav; output = .spo; syntax = .sps). Script is a
fourth type of SPSS file and is designated with a .sbs extension; however, discussion of script
files is beyond the scope of this appendix. Each of the different file types will open in its own
type of window. Data files are presented in the SPSS Data Editor window, output files are
displayed in the SPSS Viewer, and syntax is viewed in the SPSS Syntax Editor. (Only one data
file can be open in any one session.)
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» Create a New File This command will open a blank file. Remember to save files frequently
as you generate data, output, and syntax!

e New Data File (sav) File => New => Data => see chapter 2 for information about
entering data. (Remember to save your work frequently!)

o  New Output File (.spo) File=>New => Output => this provides a blank SPSS Viewer.
(SPSS will automatically open the SPSS Viewer when the first analysis is run; however,
more than one SPSS viewer/output file can be open at any given time.)

e New Syntax File (.sps) File => New => Syntax => this provides a blank syntax editor.
Syntax can be typed directly into the editor or pasted in from a word processing program
(e.g., Word). Information about writing syntax can be found in the SPSS Syntax
Reference Guide in the Help Menu — Help => Syntax Guide => Base => this opens an
Adobe portable document format (PDF) file that can be printed or viewed online (Adobe
Reader software is required to open this file and is available free online at

www.adobe.com).

» Merge Files allows the working data file to be combined with a second data file that contains
the same variables but different cases or the same cases but different variables. Before you
add yariables to a file using this method, you should first make sure that each participant is
identified by the same ID number in both files. Then, you should use Sort Cases to sort each
file (by itself), sequentially in ascending order, saving each file once it is sorted. Then, you
should make sure that you open the data file first that has the correct values of any variables
that exist in both data sets. SPSS will save only one copy of each variable, and that will be
the one that is in the first (working data) file. Now, you are ready to merge files.

e Open the first data file => Data => Merge Files => Add Cases (or Add Variables)=>
use the drop-down arrow for the Look in box to select the appropriate drive => select the
data file to merge with the open file with a left click = Open => remove any variables
you do not want from the Variables in the New Working Data File list. If you are
adding variables, you should make sure that they are being added to the correct
participants by checking Match cases on key variables in sorted files. (In order to do
this, both files must have data that are arranged sequentially by the key variable, usually
ID, as indicated above) move ID or other key variable to key variables box => OK.

» Open File This command helps locate and open existing files (data, output, syntax). The
dialog box provides a pull-down menu that allows for the selection of the type of data file to
import/open.

¢ Open Data File File => Open => Data => use the Look In drop-down menu to select
the appropriate directory/folder => using the Files of Type pull-down menu, choose the
type of data file to bring into SPSS. Common file types and file name extensions include
SPSS (.sav), Excel (.xls), and dBase Files (.dbf). In searching for the data file to open,
only those files of the specified type will be shown in the dialog box => locate the desired
file, select the file name with a left click => Open. (Only one data file can be open in any
given session.)

o  Open Output File File => Open => Output => use the Look In drop-down menu to
select the appropriate directory/folder => using the Files of Type pull-down menu,
choose .spo => when you locate the file you want, select the file name with a left click
=> Open.
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e Open Syntax File File => Open => Syntax => use the Look In drop-down menu to
select the appropriate directory/folder => using the Files of Type pull-down menu,
choose .sps => locate the desired file, select the file name with a left click => Open.

» Save File This command should be performed frequently to prevent unwanted loss of work!
The first time a file is saved, the Save As dialog box will appear to allow the selection of a
directory/folder and allow the user to name the file. If a file is saved that is already named,
the program copies over the existing file. The directions presented below represent saving a
file for the first time.

Save Data File See Save Data (above)

Save Output File In the Output - SPSS Viewer => File => Save => use the Save in
drop-down menu to select the appropriate directory/folder => using the Save as type
drop-down menu, choose Viewer Files (*.spo) => type in a name in the File name dialog
box => Save.

e Save Syntax File In the Syntax — SPSS Syntax Editor => File => Save => use the Save
in drop-down menu to select the appropriate directory/folder => using the Save as type
drop-down menu, choose SPSS Syntax Files (*.sps) => type in a name in the File name
dialog box => Save.

» Split File splits the data file into separate groups for analysis based upon the values of one or
more grouping variables. Data can be displayed for group comparisons, or data can be
displayed separately for each group. This is a very useful tool, but be sure to reset Split File
after doing the analyses you want split, or all further analyses will be split in the same way.

¢ Data => Split File => select appropriate radio button for desired display option
(Compare groups or Organize output by groups) => select grouping variable(s) by left
clicking and move to them to the Groups Based on box by clicking the arrow in the
center of the dialog box => OK.

FISHER’S EXACT TEST This test is included in the chi-square output and should be used to
interpret results for small (2x2) crosstabulations (see CHI-SQUARE).

FREQUENCIES provides statistics and graphical displays that are useful for obtaining
summaries of individual variables. The frequencies command can be used to determine typical
values of the variables, check assumptions for statistical procedures and check the quality of the
data.

e Analyze => Descriptive Statistics => Frequencies => select variables with a left click
and move to the Variable(s) box by clicking the arrow in the middle of the dialog box =>
check box for Display frequency tables as desired => Statistics => check boxes for
desired statistics => Continue => Charts => select Chart Type as desired => select type
of Chart Values desired => Continue => OK.

HELP SPSS provides online help in a variety of ways including the help menu, dialog box help,
and tutorials. Every window has a Help menu on the menu bar.

» Help Menu This command is accessed from the menu bar in any window.
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s Help => Topics => click the Index tab => type in a keyword or simply scroll down
through the topic list => double click on the topic of interest => information and links to
related topics will be displayed.

o Help => Topics => click the Search tab => type in a word or phrase to search for =>
click List Topics => browse results using the scroll bar => double click on the topic of
interest => information and links to related topics will be displayed.

> Dialog Box Help Button Dialog boxes offer a context-sensitive help button that brings up a
standard help window that contains information on the current dialog box.

> Dialog Box Quick Help Right click on any control in a dialog box and a brief description of
the item will appear.

HISTOGRAM displays the distribution of a quantitative variable in a graphical format. A normal
curve can be displayed on the histogram.

¢ Graphs => Histogram => select the variable with a left click => move it to the Variable
box by clicking the arrow in the middle of the dialog box => check box for Display
normal curve if desired => Titles => type in titles, subtitles, and footnotes if desired =>
Continue => OK.

INTERACTIVE CHARTS/GRAPHS provide special editing features that are not available in
charts generated from statistical procedures. The chart editor allows customization of charts for
displaying data. Some of the features of the chart editor include: direct text editing, moving and
resizing chart frames, changing styles of chart elements, and adding chart elements.

e Graphs => Interactive => select type of chart/graph desired => create chart by working
through the dialog boxes under the various tabs for creating the chart.

KENDALL’S TAU-B is a crosstabs strength of association statistic that can be selected if the
variables are ordinal (see CHI-SQUARE).

KRUSKAL-WALLIS H TEST is the nonparametric equivalent of a one-way analysis of variance
and tests whether several independent samples are from the same population. This test should be
selected instead of a one-way ANOVA if the data are ordinal or if the homogeneity of variance
assumption is seriously violated and group sizes differ.

o Analyze => Nonparametric Tests => K Independent Samples => select the dependent
variable(s) with a left click and move them to the Test Variable List box by clicking the
top arrow in the middle of the dialog box => select the independent variable with a left
click and move it to the Grouping Variable box by clicking the bottom arrow in the
middle of the dialog box = Define Range => type in the Minimum and Maximum
values of the independent variable => Continue => check Kruskal-Wallis H in the Test
Type box == OK.

LAYERS can be used to add depth to tables by creating three-dimensional cubes. Layers nest or
stack information; however, only one layer for a given category is visible at a time. A single
variable can be used to create stacked layers (one layer per category of the variable). A
combination of variables can create nested (crosstabulated) layers. The total number of layers is
the product of the number of categories for each layer variable.
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e Analyze => Tables => Custom Tables => highlight variables with a left click and drag
them to the row or column areas of the canvas pane => utilize dialog boxes under the
various tabs to customize the table => OK.

LINE CHARTS allows the user to make selections to create a variety of line charts. Line charts
can be created to summarize one or more separate variables, individual cases, or groups of cases.

e Graphs => Line => select the type of chart desired ( simple, multiple, drop-line) =>
make a selection in the Data in Chart Are dialog box (Summaries for groups of cases,
Summaries of separate variables, Values of individual cases) => Define => the
Define dialog boxes vary based upon the type of chart and type of data, make selections
for dialog boxes => Titles => type in Title, Subtitle, and Footnote text as desired =>
Continue => OK.

LINEAR REGRESSION estimates the coefficients of the linear equation by using one or more
independent variables to predict the value of the dependent variable.

> Bivariate (Simple Linear) Regression is used to predict scores of a normal/scale dependent
variable from one normal/scale independent variable.

e Analyze => Regression => Linear => select the dependent variable with a left click and
move to the Dependent box by clicking the top arrow in the middle of the dialog box =>
select the independent variable with a left click and move to the Independent(s) box =>
use the drop-down arrow to select Enter as the Method => OK.

» Multiple Regression is used to predict scores of a normal/scale dependent variable from a
combination of several interval, scale, and/or dichotomous independent (predictor) variables.

e Analyze => Regression => Linear => select the dependent variable with a left click and
move to the Dependent box by clicking the top arrow in the middle of the dialog box =>
select the independent variables with a left click and move to the Independent(s) box =>
use the drop-down arrow to select Enter as the Method => Statistics => check
Estimates in the Regression Coefficients box => check Model fit and Descriptives =>
Continue => OK.

MANN-WHITNEY U TEST is a nonparametric test similar to the independent samples ¢ test, that
tests whether or not two sampled populations are equivalent. This test should be used if the
dependent variable is ordinal or if the assumptions for the independent samples ¢ test are
markedly violated.

¢ Analyze => Nonparametric Tests => 2 Independent Samples => select dependent
variable(s) with a left click and move to the Test Variable List box by clicking the top
arrow in the middle of the dialog box => select the independent variable with a left click
and move it to the Grouping Variable box by clicking the bottom arrow in the middle of
the dialog box => check the Mann-Whitney U box in the Test Type box = OK.

MEANS This procedure calculates subgroup means and other descriptive statistics for dependent

variables within categories of one or more independent variables. Options within the means
procedure include running a one-way analysis of variance as well as tests for linearity.
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e Analyze => Compare Means => Means => select one or more dependent variables with
a left click and move them to the Dependent List box by clicking the top arrow in the
middle of the dialog box => select one or more independent variables with a left click
and move them to the Independent List box by clicking the bottom arrow in the middle
of the dialog box => Options => select desired statistics with a left click and move to the
Cell Statistics box by clicking the arrow in the middle of the dialog box => if desired,
check boxes for Anova table and eta or Test for linearity in the Statistics for First
Layer box => Continue => OK,

MISSING VALUES SPSS defines missing values as “system-missing” versus “user-missing.”
System-missing values are omissions in the dataset and are designated with a period in the cell.
A user-missing value is an actual value that the user defines to indicate that a value is known to
be missing. Up to three different discrete values or a range of values can be coded to define
reasons for missing data.

» Define User-Missing Values This procedure allows the user to specify data values that
indicate why information is missing.

¢ Select the Data Editor as the active window => click the Variable View tab => click on
the cell in the Missing column that corresponds to the variable of interest => click on the
shaded box that appears in the right of the cell to get the Missing Values dialog box =>
use the radio buttons to select either discrete missing values or range plus one optional

discrete missing value => type in the values to be assigned in the appropriate boxes =>
OK.

> Replace Missing Values Missing values may make datasets difficult to work with and may
hinder certain types of analyses. For these reasons, it may be appropriate to replace missing
values using techniques such as interpolation, multiple imputation, inserting a mean or
median of nearby values, etc.

¢ Transform => Replace Missing Values => highlight the variable(s) of interest and
move them to the New Variable(s) box by clicking the arrow in the center of the dialog
box => highlight one of the variables in the New Variable(s) box => the variable name
will appear in the Name box => click on the down arrow for the Method box to display
the techniques for replacing the missing value => if either mean of nearby points or

median of nearby points is chosen, the span of points to be used must be designated =>
OK.

OUTPUT This term refers to the display of results of analyses, as well as of commands if
display of these was requested. Output is generated into its own window and can be saved as a
separate file that has a .spo filename extension.

» Copy and Paste Output This allows the user to move output to another place while leaving
the original where it is.

e Left click on the output item of interest (or highlight the item in the outline view) to

select the item => right click to get the drop-down menu => Copy => left click to place
the cursor over the area to copy to => right click => Paste.
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» Delete Output
e Left click on the output to select => right click to Delete.

> Display Syntax (Command Log) in the Output This procedure will write the syntax for
everything a user does in SPSS and will post the syntax in the output window. The user can
then paste that syntax into a new syntax file enabling the user to repeat procedures without
having to use a point-and-click approach. This can help to ensure consistency across analyses
and eliminate errors. It is also useful because it shows which file is used for each analysis so
that results in the output can be easily identified.

e Edit => Options => Viewer => check the box to Display Commands in the Log =>
Apply => OK.

> Edit Output Charts, tables, and text can all be edited in a variety of ways. Double clicking
on any item will activate chart editors, pivot tables, and text boxes to allow editing.

» Export Output ( to Word, HTML, etc)

e File =>Export => click the drop-down arrow under file type to indicate format => type
in new file name => click on OK

e Oryou can Save as, as in the instructions above for data files, if you want to save as
other versions of SPSS, etc.

e Tosave a portion of the output to an existing Word file, left click to highlight table or
graphic to copy => right click to Copy (NOT copy object) => proceed to the word
document => Edit => Paste => OK.

» Format Output SPSS users may adjust the size, shape, color, or other features of any
displayed output.

e Double click on the portion of the output to format => double click on the specific output
cell to format => right click and select the appropriate formatting option. To edit the text
of an output cell, instead of right clicking just double click again to begin typing.

» Hide Results Within an Output File Results in the output can be hidden if the user does not
want them displayed or printed but still wants them in the file. Conversely, results previously
hidden can be shown again.

e Inthe SPSS Viewer, go to the outline view on the left side of the screen => scroll down
to the output item to hide => click on the minus sign (-) to the left of the output name to
hide the item (a plus sign will appear to indicate the item has been collapsed and is
hidden) => click on the plus sign (+) to unhide the output.

» Insert Text/Title to Output This command allows the user to insert descriptive titles or
detailed notes directly into the output.

¢ In the output or in the output outline, click where the text will be inserted => Insert =>
NewText (or NewTitle) => type desired text => right click.
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» Open Output See FILES (Open Output File).
» Print Output

e File => Print => choose to print All Visible Qutput or just a Selection (when printing a
selection, one or more output items in the outline must be highlighted before accessing
the print command).

» Resize/Rescale Output This allows larger tables to be fit onto a single printed page.

e Double click on the table to be resized to enter editing mode => right click => Table
Properties => select the Printing tab=> check to Rescale Wide Table to Fit Page
and/or Rescale Long Table to Fit Page = OK.

» Save Output See FILES (Save Output File).

PIVOT TABLES When using the SPSS viewer, this feature can be used to quickly rearrange
rows, columns, and layers in output tables in order to present results more clearly.

e Double click on the table to be formatted to enter editing mode=> right click => Pivoting
Trays => left click on the icon of the row, column, or layer to be moved => drag the icon
to the desired row, column, or layer and release.

PRINT PREVIEW This feature allows the user to see what will print on each page of output.
Items that may not be visible in the viewer, but can be seen in print preview, include: page
breaks, hidden layers of pivot tables, breaks in wide tables, headers, and footers.

¢ Highlight all or some of the output in the output outline => File => Print Preview => use
buttons at the top of the print preview window to navigate the document, print, close, etc.

RESTRUCTURE DATA WIZARD helps the user restructure or transpose all or some cases into
variables or vice versa.

e Data => Restructure => follow the steps in the wizard to complete the desired
restructuring tasks.

RESULTS COACH explains how to interpret specific output.

¢ Double click on the output table or graphic => right click and select Results Coach =>
use arrows at the bottom right of the screen to page through the explanation of the output.

SCATTERPLOT graphs the correspondence between two variables to determine how
individuals’ scores on one variable are associated with their scores on another variable. The
scatterplot graph results in a visual picture of the correlation between the two variables and
provides information about bivariate outliers.

e  Graphs => Scatter => click on Simple => Define => select the first variable with a left

click and move it to the Y axis box by clicking the top arrow in the middle of the dialog
box => select the second variable with a left click and move it to the X Axis box by
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clicking the second arrow in the middle of the dialog box => Titles => type text for the
Title, Subtitle, and Footnote as desired => Continue => OK.

SPEARMAN RHO See CORRELATIONS.

STATISTICS COACH This feature prompts the novice user with questions and examples to
help in the selection of basic statistical and charting features that are most appropriate for the
data. The Statistics Coach only covers the basic, most commonly used statistical procedures.

¢ Help => Statistics Coach => complete the wizard to step through the coaching process.

STEM AND LEAF PLOT gives a visual impression of the distribution of scores for a variable.
This type of plot looks somewhat like a histogram or frequency distribution turned on its side, but
it includes the individual numbers comprising the data. It enables one to display the distribution
of scores for each of the levels of a grouping variable, if desired.

e Analyze => Descriptive Statistics => Explore => select a dependent variable with a left
click and move it to the Dependent List box by clicking the top arrow in the middle of
the dialog box => if desired, select a categorical independent variable with a left click
and move it to the Factor List box by clicking the center arrow in the middle of the
dialog box => use the radio button to select Both in the Display box => OK.

SUMMARIZE This procedure produces report tables containing summary statistics and/or
individual case listings for one or more scale variables. A wide variety of statistics are available
to describe the data. Statistics and case displays can be calculated within levels of a categorical
variable and may include all observations or a limited number of cases.

¢ Analyze => Reports => Case Summaries => select variables to summarize with a left
click and move to the Variables box by clicking the top arrow in the middle of the dialog
box => if desired, select a grouping variable with a left click and move it to the
Grouping Variable(s) box by clicking the bottom arrow in the middle of the dialog box
=> select Display cases if individual case listings are desired => Statistics => select
statistics desired with a left click and move them to the Cell Statistics box by clicking on
the arrow in the middle of the dialog box => Continue => Options => type in a Title and
a Caption => Continue => OK.

SYNTAX SPSS provides a command language that can be used instead of the point-and-click
(windows) method to run SPSS. A syntax file is simply a text file that contains commands that
can be used to repeat an analysis at a later time. Use of syntax files can help to ensure consistency
across analyses and eliminate errors.

» Create syntax See FILES (Create a New File — New Syntax File). One can also click on
Paste within any statistics program to produce a file containing the syntax for that procedure.

» Run syntax The user can choose to run some or all of the commands in the syntax file.
e All Syntax With the appropriate syntax file as the active window => Run => All.

o Selected Syntax With the appropriate syntax file as the active window => highlight the
portion of syntax to be run => Run => Selection.
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» Print Syntax

With the appropriate syntax file as the active window => File => Print => select printing
options => OK.

» Save Syntax See FILES (Save File — Save Syntax File).

TABLES SPSS allows the user to build a variety of tables using the custom, basic, and general
tables commands. Only the basic tables command will be presented.

Analyze => Tables => Basic Tables => select one or more variables to be summarized
within the cells and move to the Summaries dialog box using the arrow => select
categorical variables to create row subgroups and move to the Subgroups — Down dialog
box using the arrow => select categorical variables to create column subgroups and move
to the Subgroups — Across dialog box using the arrow => select categorical variables
whose values create separate tables and move to the Subgroups — Separate Tables
dialog box using the arrow => Statistics => choose options for presentation of statistics
=> Continue => Layout => select layout options => Totals => select totals options =>
Continue => Titles => type in titles as desired => Continue => OK.

T TEST The t test is a procedure that is used to compare sample means to determine if there is
evidence that the corresponding population distributions differ.

>

Independent Samples t test is used to compare two independent or unrelated groups (between
groups design) on an approximately normal dependent variable.

Analyze => Compare Means => Independent Samples T Test => select one or more
dependent variables with a left click and move them to the Test Variable(s) box by
clicking the top arrow in the middle of the dialog box => select a dichotomous
independent variable with a left click and move it to the Grouping Variable box by
clicking the bottom arrow in the middle of the dialog box => Define Groups => select
Use specified values => type the values of the independent variable that will designate
Group 1 and Group 2 => Continue => OK.

One-Sample t test allows the mean of a sample to be compared to a hypothesized population
mean.

Analyze => Compare Means => One-Sample T Test => select the dependent variable
with a left click and move it to the Test Variable(s) box by clicking the arrow in the
middle of the dialog box => type the hypothesized population mean in the Test Value
box => OK.

Paired Sample t test is used when the two scores being compared are paired or matched in
some way (not independent of one another) or if the two scores are repeated measures.

Analyze => Compare Means => Paired Samples T Test => select the two variables
that make up the pair and move them simultaneously to the Paired Variable box by
clicking the arrow in the middle of the dialog box => OK.
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VARIABLES These are characteristics of the cases (e.g., participants) in the study that are able
to vary or have different values.

> Compute Variable This procedure allows the user to create new variables from existing
variables by either using numeric expressions to mathematically generate the new values or
by using an “If” statement to conditionally select values to compute into a new variable.

o  Numeric Expression Procedure: Transform => Compute => type name of the new
variable in the Target Variable box => click on Type & Label => type in label to
describe the new variable in the Label box => choose whether the variable is numeric or
string in the Type section => Continue => create a numeric expression by highlighting
variables and moving them to the Numeric Expression box with the arrow in
conjunction with the calculator pad to create mathematical expressions (or alternatively
highlight a preset mathematical function from the Functions box and move it up to the
Numeric Expression box with the arrow) = OK.

o  “IF” Procedure: Transform => Compute => type name of the new variable in the
Target Variable box => click on Type & Label => type in label to describe the new
variable in the Label box => choose whether the variable is numeric or string in the Type
section => Continue => click If... => select whether the condition should “include all
cases” versus “include if case satisfies condition:” => create a numeric expression by
highlighting variables and moving them to the computation box with the arrow in
conjunction with the calculator pad to create mathematical expressions (or alternatively
highlight a preset mathematical function from the Functions box and move it up to the
Numeric Expression box with the arrow) => Continue => enter a value or computation
in the Numeric Expression box that creates the value of the new variable when the
conditional statement is met => OK.

> Copy/Paste Variable To avoid pasting over an already defined variable, space for the new
variable first must be inserted.

e [n Variable View, set the mouse where the new variable will be => Data => Insert
Variable. Then, highlight with a left click the variable to copy => right click to Copy
Variable => highlight with a left click to paste the variable => right click to Paste
Variable.

» Cut/Paste Variable To avoid pasting over an already defined variable, space for the new
variable must be created (see Insert Variable).

e Highlight with a left click the variable to cut => right click to Cut Variable => highlight
with a left click to paste the variable => right click to Paste Variable.

» Information on Variables This function presents a dialog box that displays a variety of
information about the selected variable including: data format, variable label, user-missing
values, and value labels.

o Utilities => Variables => highlight the variable of interest in the Variables dialog box
=> Variable Information is listed on the right side of the dialog box.
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» Insert Variable A new variable can be added to the dataset either in Data View or Variable
View.

e Select any cell in the variable to the right of (Data View) or below (Variable View) the
position where the new variable will be inserted => Data => Insert Variable.

» Move Variable This process allows you to relocate a variable.

e Click the variable name in Data View once and release (this highlights the variable
column) => click and drag the variable or case to a new location => drop the variable in
the new location (to place the variable between two existing variables, drop the variable
on the variable column to the right of where the variable will be placed).

» Recode Into Different Variable This process reassigns the values of an existing variable into
a new set of values for a new variable.

e Transform => Recode => Into Different Variables => select the variable to recode and
move it to the Numeric Variable — Output Variable dialog box using the arrow => type
in the new variable name and label in the Output Variable dialog box => Change =>
Old and New Values => select and define the Old Value to change => define the New
Value it will become => Add => Continue => OK.

» Recode Into Same Variables This process assigns new values in place of the old values of an
existing variable. (Be very cautious when using this procedure to collapse data because the
original data will be lost unless an original copy of the dataset is saved.)

¢ Transform => Recode => Into Same Variables => select the variable to recode and
move it to the Variables dialog box using the arrow => Old and New Values => select
and define the Old Value to change => define the New Value it will become => Add =>
Continue => OK.

WILCOXON SIGNED-RANKS TEST is a nonparametric test that is similar to the paired
samples ¢ test and tests that two sample populations are equivalent. This test should be used for a
repeated measures design when the dependent variable is ordinal or if the assumptions for the
paired samples 7 test are markedly violated.

e Analyze => Nonparametric Tests => 2 Related Samples => select the two variables
that make up the pair with left clicks and move them simultaneously to the Test Pair(s)
List box by clicking the arrow in the middle of the dialog box => check the Wilcoxon
box in the Test Type box => OK.

Z SCORES This procedure standardizes data to a standard score that has a mean of zero and a
standard deviation of one.

¢ Analyze => Descriptive Statistics => Descriptives => select a variable with a left click

=> click the arrow in the middle of the dialog box to move the variable to the Variables
box => check the box to Save Standardized Values as Variables => OK.
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Getting Started With SPSS

This section includes step-by-step instructions for five procedures related to getting started with
SPSS: a) a list of data files included on the compact disc, (b) opening and starting SPSS and
getting familiar with the SPSS Data Editor, (c) setting your computer so that SPSS will print the
syntax or log along with each output, (d) defining and labeling variables and their values, and ()
printing a dictionary or codebook.

The Data Files on the Compact Disk

The files included on the compact disk (CD) provided with this book are listed below. It is wise
to make a working copy of the files.

hsbdataB.sav

college student data.sav
product data.sav
mixedMANOVAdata.sav
Anxiety 2.sav

bids.sav

dvdplayer.sav
judges.sav

Mall rentals.sav
Satisf.sav

site.sav

World95.sav

Note: You may not see the file extension (.sav) depending on your computer setup.

Open and Start the SPSS Application

e Begin at the Start button (bottom left of the Windows Desktop).
e Click Start => Programs => SPSS for Windows (See Fig. B.1).

Alternatively, if an SPSS icon is available on the desktop, double click on it (see Fig. B.1). If
SPSS for Windows is not listed in the Programs menu, it will need to be installed on your
computer; it is not part of the Microsoft Windows package or the CD that accompanies this book
and must be loaded separately.
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This is the icon
(picture) that might
be on your
desktop.

Fig. B.1. Start menu and
SPSS icon.

After you start SPSS, you will see the SPSS Startup screen shown in Fig. B.2. In the Startup
screen there is a list of all SPSS files that have recently been used on your computer.

¢ Click on the SPSS file you wish to use or click on OK to browse to find other SPSS files. If
no files are listed, click OK to bring up the Open File dialogue box to search for the file you
want to open. In any one session, only one data file can be open at time. If you want to
create a new data file, click the Cancel button shown in Fig. B.2, which will bring up a new
SPSS Data Editor as shown in Figs. B.4 and B.5.

Fig. B.2. SPSS startup screen.

Click cancel to get the
SPSS Data Editor.

Existing files as well as new data files are opened in the SPSS Data Editor screen. In this
screen, there are two tabs at the bottom left side of the screen: the Data View tab and the
Variable View tab (see Fig. B.3).
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When you first open the

SPSS data editor, you will . .

have the Variable View or Fig. B.3. View tabs.
the Data View highlighted.

If you have SPSS 9.0 or a lower version, you will not have the Variable View screen option and
will have to define and label variables differently. Please refer to your SPSS Help menu for
further information on how to do this in earlier versions.

Although the toolbar at the top of the data editor screen is the same for both the Variable and
Data View screens, it is important to notice the differences between these two screens found
within the data editor in features and functions (compare Fig. B.4 and Fig. B.5).

e Click on the Variable View tab in the data editor screen to produce Fig. B.4.

Notice the column names in Fig. B.4. You define and label new variables using the Variable
View.

L2k

end Numeric 1 0 gender {0, male}... |None 8 Right Nominal
faed Numeric 2 0 father's educati{2, < h.s. grad}iNone 8 Right Ordinal
maed Numeric 2 0 mother's educ |{2, <h.s.}.. |[None 8 Right Ordinal
algl Numeric 1 0 |algebra 1 in h. |{0, not taken}..|None 8 Right Nominal
alg2 Numeric 1 0 algebra 2 in h. |{0, not taken)..|None 8 Right Nominal
aeo Numeric 1 0 qeometry in h. {0, not takenl..iNone 8 Riaht Nominal

Fig. B.4. SPSS Data Editor: Variable view,

e Click on the Data View tab in the data editor to produce Fig. B.5.

Notice the columns change to var or to the names of your variables if you have already entered
them. (See Fig. B.5.) You enter (input) the data using the Data View.

o|-|o|ol=lo|o)

Fig. B.S. SPSS Data Editor: Data view.
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Set Your Computer to Print the SPSS Syntax (Log)

In order to have your computer print the SPSS commands on your output, as shown throughout
the book, you will need to set your computer using the following;:

e Click on Edit => Options.

¢ Click on the Viewer tab window to get Fig. B.6.

Figure B.6. Options.

Check Display commands in the log near the lower left of the window.

Leave the other defaults as is.

Click on OK. Doing this will always print the syntax on your output until this box is
unchecked.

Define the Variables

The following section will help you name and label variables. To do this, we need to use the
Variable View screen. If you are in Data View, there are two ways to get to Variable View:

e Click on the Variable View tab at the bottom left of your screen (see Fig. B.3). In SPSS 10-
12, this will bring up a screen similar to Fig. B.7. OR double click on var above the blank
column to the far left side of the data matrix.

Fig. B.7. Blank variable view screen.

In this window, you will see ten sections that will allow you to input the variable name, type,
width, decimals, label, values, missing (data), columns (width), align (data left or right), and
measurement type.
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Important: This is new to SPSS version 10. If you have SPSS 9 or a lower version, you will not
have the Variable View screen option and will have to enter the variable information differently.
Please refer to your SPSS Help menu for further information in lower versions.

To label a variable, follow these commands:

Click in the blank box directly under Name.

Type the name of the variable in the box directly beneath Name (see Fig. B.7.). Notice the
number 1 to the left of this box. This indicates that you are entering your first variable. SPSS
11.5 and earlier versions allow only eight letters for the name. SPSS 12 allows as many as
you wish, although we recommend keeping the name fairly short in order to make the outputs
easier to read.

Press enter. This will move your cursor to the next box, under Type, and pop up the
information for Type, Width, etc.

The Type indicates whether the variable levels are numbers or are letters. Usually, you will
use numeric.

Width indicates how wide the columns should be based on the number of characters allowed
in the column.

Decimals are the number of decimals that will be shown in the data view window.

Labels gives a longer name for the variable.

Values indicate labels for the levels of the variable.

Missing indicates any special values for missing data. The SPSS system missing uses a
blank. If only blanks are used for missing, this column will say “none” for no missing values.
Columns defines the number of spaces for the variable in the data view window.

Align indicates how you want the data aligned in the data view window.

Measure shows the type of variable: nominal, ordinal, or scale.

Label the Levels for the Variables

For variables that are nominal or dichotomous it is important to label the levels so that you will
know the group referred to by each number. For example, with the variable of gender, the levels
are male and female, so you might label males as “1” and females as “2”. To do this, follow these
commands:

Under Values, click on the small gray box with ... (three dots) to get Fig. B.8.

In the Value Labels window, type 1 in the Value box, male in the Value Label box, and then
click Add. Do the same for 2 = female. The Value Labels window should resemble Fig. B.8
just before you click Add for the second time.

Fig. B.8. Value labels window.
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Print a Dictionary or Codebook

Now that you have defined and labeled your variables, you can print a codebook or dictionary of
your variables. It is a very useful record of what you have done. Notice that the information in the
codebook is essentially the same as that in the variable view (Fig. B.4) so you do not really have
to have both, but the codebook makes a more complete printed record of your labels and values.

¢ Select File => Display Data File Information => Working File. Your Dictionary or
Codebook should look like Output B.1, without the callout boxes.

Output B.1: Codebook

DISPLAY DICTIONARY.

List of variables on the working file

Short variable name

Name

RECOMMEN I recommend course
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F8.2
Write Format: F8.2

Value Label

1.00 strongly disagree
5.00 strongly agree

WORKHARD [ worked hard
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F8.2
Write Format: F8.2

Value Label

1.00 strongly disagree
5.00 strongly agree

COLLEGE college
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8
Missing Values: 98, 99

e Long variable label
1

Position

The
variable
number

This means the data for this
\ variable can be up to eight
digits including two decimal

places.

values, so it is called nominal.

This variable has three unordered

Value Label

1 arts & science

2 business

3 engineering
98 M other, multiple ans.
99 M brank——

we used two missing value codes.

These are missing values for this variable.
Most variables use blanks, which are the
SPSS system-missing value. However, here

The M after 98 and 99 shows

that SPSS considers these
numbers to be missing data.
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GENDER gender 4
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label These are the values or

/ levels of the gender
0 male variable and their labels.

1 female

GPA  grade point average 5

Measurement Level: Scale
Column Width: 8 AlignmenM . .
Print Format: F8.2 This variable has many ordered

Write Format; F8.2

Value Label

values; the possible values are equally
spaced and probably normally

distributed so we called it scale.

00 ANF's
400 AllA's

READING 1 did the reading 6
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F§

Write Format; F8

We call dichotomous (two
level) variables nominal, but
they are a special case, as

Value Label discussed in chapter 1.

0 not checked/blank
1 check

HOMEWORK I did the homework 7
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label

0 not check/blank
1 check

EXTRACRD 1 did the extra credit 8
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label

0 not checked
1 checked
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APPENDIX C
Making Tables and Figures

Don Quick

Tables and figures are used in most fields of study to provide a visual presentation of important
information to the reader. They are used to organize the statistical results of a study, to list
important tabulated information, and to allow the reader a visual method of comparing related
items. Tables offer a way to detail information that would be difficult to describe in the text.

A figure may be just about anything that is not a table, such as a chart, graph, photograph, or line
drawing. These figures may include pie charts, line charts, bar charts, organizational charts, flow
charts, diagrams, blueprints, or maps. Unless the figure can dramatically illustrate a comparison
that a table cannot, use a table. A good rule is to use a table for numbers and text and to use
figures for visual presentations.

The meaning and major focus of the table or figure should be evident to the readers without them
having to make a thorough study of it. A glance should be all it takes for the idea of what the
table or figure represents to be conveyed to the reader. By reading only the text itself, the reader
may have difficulty understanding the data; by constructing tables and figures that are well
presented, the readers will be able to understand the study results more easily.

The purpose of this appendix is to provide guidelines that will enhance the presentation of
research findings and other information by using tables and figures. It will highlight the
important aspects of constructing tables and figures using the Publication Manual of the
American Psychological Association, Fifth Edition (2001) as the guide for formatting.

General Considerations Concerning Tables

Be selective as to how many tables are included in the total document. Determine how much data
the reader needs to comprehend the material, and then decide if the information would be better
presented in the text or as a table. A table containing only a few numbers is unnecessary; whereas
a table containing too much information may not be understandable. Tables should be easy to
read and interpret. If at all possible, combine tables that repeat data.

Keep a consistency to all of your tables throughout your document. All tables and figures in your
document should use a similar format, with the results organized in a comparable fashion. Use
the same designation measure or scale in all tables, figures, and the text.

In a final manuscript such as a thesis or dissertation, adjust the column headings or spacing
between columns so the width of the table fits appropriately between the margins. Fit all of one
table on one page. Reduce the data, change the type size, or decrease line spacing to make it fit.
A short table may be on a page with text, as long as it follows the first mention of it. Each long
table is on a separate page immediately after it is mentioned in the text. If the fit and appearance
would be improved, turn the table sideways (landscape orientation, with the top of table toward
the spine) on the page.
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Each table and figure must be discussed in the text. An informative table will supplement but not
duplicate the text. In the text, discuss only the most important parts of the table. Make sure the
table can be understood by itself without the accompanying text; however, it is never
independent of the text. There must be a reference in the text to the table.

Construction of the Table

Table C.1 is an example of an APA table for displaying simple descriptive data collected in a
study. It also appears in correct relation to the text of the document. (Fig. C.1 shows the same
table with the table parts identified.) The major parts of a table are: the number, the title, the
headings, the body, and the notes.

Table C.1. An Example of a Table in APA Format for Displaying Simple Descriptive Data
Table 1

Meams and Standard Deviations on the Measure of Self-Direction in Learning as a Function of
Age in Adult Students

Self-directed learning inventory score

Age group n M SD
20-34 15 65 35
35-40 22 88 6.3
50-64 14 79 5.6
65-79 7 56 7.1
80+ -4 - -

Note. The maximum score is 100.
* No participants were found for the over 80 group.

Table Numbering

Arabic numerals are used to number tables in the order in which they appear in the text. Do NOT
write in the text “the table on page 17” or “the table above or below.” The correct method would
be to refer to the table number like this: (see Table 1) or “Table 1 shows...” Left-justify the table
number (see Table C.1). In an article, each table should be numbered sequentially in the order of
appearance. Do not use suffix letters with the table numbers in articles. However, in a book table
numbers may be numbered within chapters; e.g. Table 7.1. If the table appears in an appendix,
identify it with the letter of the appendix capitalized, followed by the table number; for instance
Table C.3 is the third table in Appendix C.
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Table Titles

Include the variables, the groups on whom the data were collected, the subgroups, and the nature
of the statistic reported. The table title and headings should concisely describe what is contained
in the table. Abbreviations that appear in the body of the table can sometimes be explained in the
title, however, it may be more appropriate to use a general note (see also comments below on
Table Headings). The title must be italicized. Standard APA format for journal submission
requires double spacing throughout. However, tables in student papers may be partially single
spaced for better presentation.

—

Table 1
;4:::’_;::; S}:d;rj dl,),;:js'at:;:: 1.:" the Measure of Self-Direction in Learning as a IC olumn Spanner I
—\ Inventory szre
Age group n M SD et

}_Jse horizontal | 20-34 15 65 35
éﬁf tl:::;i;tghse 3540 2 88 EDa—mm
and the boc?y; 50-64 14 19 5.6
})l:l; ;o vertical -

65%9 7 56 7.1

80+ -2 - -

Note. The maximum score is 100. —

® No participants were found for the over 80 group.

Fig. C.1. The major parts of an APA table.

Table Headings

Headings are used to explain the organization of the table. You may use abbreviations in the
headings; however, include a note as to their meaning if you use mnemonics, variable names, and
scale acronyms. Standard abbreviations and symbols for non technical terms can be used without
explanation (e.g., no. for number or % for percent). Have precise title, column headings, and row
labels that are accurate and brief. Each column must have a heading, including the stub column,
or leftmost column. Its heading is referred to as the stubhead. The stub column usually lists the
significant independent variables or the levels of the variable, as in Table C.1.

The column heads cover one column, and the column spanners cover two or more columns --

each with its own column head (see Table C.1 and Fig. C.1). Headings stacked in this manner are
called decked heads. This is a good way to eliminate repetition in column headings but try to
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avoid using more than two levels of decked heads. Column heads, column spanners, and
stubheads should all be singular, unless referring to a group (e.g., children). Table spanners,
which cover the entire table, may be plural. Use sentence capitalization in all headings.

Notice that there are no vertical lines in an APA style table. The horizontal lines can be added by
using a “draw” feature or a “borders” feature for tables in the computer word processor, or they
could be drawn in by hand if typed. If translating from an SPSS Table or box, the vertical lines
must be removed.

The Body of the Table

The body contains the actual data being displayed. Round numbers improve the readability and
clarity more than precise numbers with several decimal places. A good guideline is to report two
digits more than the raw data. A reader can compare numbers down a column more easily than
across a row. Column and row averages can provide a visual focus that allows the reader to
inspect the data easily without cluttering the table. If a cell cannot be filled because the
information is not applicable, then leave it blank. If it cannot be filled because the information

could not be obtained, or was not reported, then insert a dash and explain the dash with a note to
the table.

Notes to a Table

Notes are often used with tables. There are three different forms of notes used with tables: a) to
eliminate repetition in the body of the table, b) to elaborate on the information contained in a
particular cell, or ¢) to indicate statistical significance:

¢ A general note provides information relating to the table as a whole, including
explanations of abbreviations used:

Note. This could be used to indicate if the table came from another source.

e A specific note makes a reference to a specific row or column or cell of the table and is
given superscript lowercase letters, beginning with the letter “a™:

°n = 50. Specific notes are identified in the body with superscript.

e A probability note is to be included when one or more inferential statistic has been
computed and there isn’t a column showing the probability, p. Asterisk(s) indicate the
statistical significance of findings presented within the table. Try to be consistent across
all tables in a paper. The important thing is to use the fewest asterisks for the largest p
value. It is common to use one asterisk for .05 and two for .01. For example:

*p<.05. **p<0l

Notes should be listed with general notes first, then specific notes, and concluded with
probability notes, without indentation. They may be single spaced for better presentation.
Explain all uses of dashes and parentheses. Abbreviations for technical terms, group names, and
those of a similar nature must be explained in a note to the table.
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Constructing a Table in Microsoft Word XP or 2000

For this step-by-step example the ANOVA was chosen from previous examples in the book. See
Fig. C.2. The data are transferred from the standard SPSS output to an APA table.

ANOVA
rades in h.s.
Sum of
Squares df Mean Square F Sig.
Between Groups 18.143 2 9.071 4.091 .021
Within Groups 155.227 70 2.218
Total 173.370 72

Fig. C.2. An example of the type of default table generated from a SPSS ANOVA output.

The finished table should look like Table D.2. This explanation is accomplished using MS Word
XP but using MS Word 2000 will be similar. Any earlier version will have some problems with
line spacing. You will also need to adjust the number of columns and rows for the type and
amount of data that you need to present.

Table C.2. An Example of an ANOVA Table in APA Format

P The Table Number is double spaced but
Table2 < the Table Title is single spaced. The Title
is in italics but the Table Number is not.

One-Way Analysis of Variance of Grades in High School by Father's Education

Source df S§ MS F )/
Between groups 2 18.14 9.07 4.09 .02
Within groups 70 155.23 222
Total 72 173.37

The Headings and Body of the table are actually built using Word’s table function. Type your
Table Number and Title. Then on the next line after the title, insert a 6x4 table:

¢ Table => Insert => Table... (See Fig. C.3).

® For our example of the ANOVA set it to 6 columns and 4 rows. Leave everything else as is.
See Fig. C 4.

¢ Click OK.

Fig. C.3. Using MS Word to make a table.

4 I"i Columns to the Left
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Fig. C.4. Inserting a 6x4 table.

This is for the single ANOVA table. You will need to adjust
the number of columns and rows for the type and amount of
data that you need to present.

Compare your table to Table C.3.

Table C.3.

APA uses no vertical and just a few horizontal lines so it is best to remove them all and then put
back the ones that are needed:

Select the table by clicking anywhere inside the table, then: Table => Select => Table.
Format => Borders and Shading... to get Fig. C.5.

Select the Borders tab, if it’s not already selected.

Under Settings click the box to the left of None to remove them.

Click OK.

Fig. C.5. Clearing the borders.

To add the correct lines in for an APA table:

¢ Clicking anywhere in the top row and Table => Select => Row.
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Format => Borders and Shading... to get Fig. C.6.

Make sure the solid line Style is selected and the Width is 1/2 pt.

In the Preview picture click the Upper and Lower bar buttons. This inserts the top two lines
in the table.

Click OK.

Select the last row in your table.

Click the Lower bar button only. This inserts the bottom line in the table.

Click OK.

Ly / Upper and Lower bar buttons

Fig. C.6. Setting the horizontal lines.

Note: the Apply to is set to Cell
but since you have selected the
entire row it will look like a solid
line across the table.

Note: If you can’t see the gridlines, turn them on
Compare your table to Table C.4. to better see where the rows and cells are. They
won’t show when printed. Click Table => Show
Gridlines
Table C.4.

/

N

The text in the body of an APA table is equal distance between the top and bottom of the cell:

Select the table by clicking anywhere inside the table, then: Table => Select => Table.
Click Format => Paragraph...

Set Line spacing to Single (see note on Fig. C.7).

Set Spacing to Before and After to 6pt (see Fig. C.7).

Click OK.

Enter the headings and data into each cell; the SPSS printout will have all of the information to
accomplish this. Don’t worry about wrapping and aligning at this time. That is easier to do after
the data are entered.

Compare your table to Table C.5.
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Note: With normal SPSS tables with numerical
data and short heads, Single and the 6pt before
and after sets the text equal distant in the cell.
Wrapped text will come out single spaced which
is better presentation for student papers and
dissertations. However, if you have text that
wraps and the journal requires that all text be
double spaced then you will need to Double
space only those cells that wrap.

r mmmwmwnrhmm &

v muwumwhw

Fig. C.7. Setting line spacing within the cell.

Table C.5.

Source df S§ MS F p
Between 2 18.14 9.07 4.09 02
groups

Within groups | 70 155.23 222

Total 72 173.37

In an APA table the Heads should be center aligned in the cell and the Stubs are left aligned.
The numbers in the Cell are decimal aligned and centered under the Heads. Notice also that
“Between groups” wrapped. Let’s first align the Heads and Stubs, then fix that wrap and finally
align the data off of the Heads. To center align the Heads:

® Select the Header Row of your table by clicking anywhere in the top row and Table =>
Select => Row.
Click the Center align button in the Formatting Toolbar, see Fig. C.8.
The stub column should already be left aligned; if not, then select the cells and click the
Align Left button.

Note: If the Align Buttons aren’t showing on the
Formatting Toolbar then you can select the proper
alignment from the menu: Format => Paragraph...

(@ ] ‘“‘"““ Fig. C.8. Center aligning the Heads.
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When MS Word creates a table it will generally make all of the columns the same width. To fix
the wrap on the “Between groups™ cell, that column will need to be widened slightly and then to
keep the table within the margins the data columns will need to be decreased slightly. This may
be a trail and error process to get the right spacing for your text.

e Click anywhere on the Stubs column.
¢ Table => Table Properties... to get Fig. C.9. - ;
e Click the Column Tab. Note: Th_ls can also t_)e accomplished
. " by dragging the vertical column
. Se.t the Preferred width to 1.4”. - separator lines until the “Between
¢ Click the Next Column button and set it to 1.0”. groups” is not wrapped and then
e Repeat for all of the columns, setting them to 1.0”. dragging the other column separator
o C(Click OK. lines so that they are within the
margins. However this produces
Al uneven column spaces. We
| recommend the method outlined.

Jiocres 3] Fig. C.9. Adjusting the column widths.

Compare your table to Table C.6.

Table C.6.

Source daf A MS F )4
Between groups 2 18.14 9.07 4.09 .02
Within groups 70 155.23 222
Total 72 173.37

To set the Cell columns so that they are all centered under its Head, you will need to set the
Tabs for each column of data cells to a Decimal Tab. We recommend this method of setting all
columns the same and then adjusting them separately so they look right, because it requires less
individual column adjustment:

¢ Select just the data cells by clicking in the upper left one, hold the shift key down, and then
click in the lower right cell.

Format => Tabs... to get Fig. C.10.

Clear all of the Tabs in the selected cells first by clicking the Clear All button.

Click Alignment Decimal.

Type .35” in the Tab stop position box.

Click the Set button.

Click OK.
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_ﬂ?ﬂm{i

Fig. C.10. Setting the decimal tabs.

Compare your table to Table C.7.

Table C.7.

Source df SS MS F P
Between groups 2 18.14 9.07 4.09 02
Within groups 70 155.23 222
Total 72 173.37

The df column looks like it could be adjusted slightly to the right and the p column slightly to the
left. We show you this so that you will know how to get a perfect decimal alignment of the data
under the column head text. This may be trail and error depending on your data.

¢ Select the cells of the df column by clicking first on the top data cell, “2,” hold the Shift key
down, and the click on the bottom data cell, “72.”

Format => Tabs...

Clear all of the Tabs in the selected cells first by clicking the Clear All button.

Click Alignment Decimal.

Type .45” in the Tab stop position box, to set decimal tap .45” from the left edge of the cell.
Click the Set button.

Click OK.

Repeat for the p column but set it to .25” to set decimal tap .25” from the left edge of the
cell.

Compare your finished table to Table C.8.
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Table C.8.

Table 2

One-Way Analysis of Variance of Grades in High School by Father's Education

Source dar SS MS F P
Between groups 2 18.14 9.07 4.09 02
Within groups 70 155.23 222
Total 72 173.37

Adjusting the SPSS Output to Approximate the APA Format

The preceding example shows how the standard SPSS output can be used to create a table in
APA format. However, this does require some knowledge of your word processing program's
table creation capabilities in order to accomplish this task. It also requires retyping the data into
the table. You can adjust SPSS so that the output will approximate the APA format. We would
not recommend submitting this to an APA journal, but it may be acceptable for student papers
and some graduate program committees.

In SPSS follow these commands BEFORE running your SPSS analysis of your data:

¢ Click Edit => Options.
¢ Under the Pivot Tables tab select Academic 2.tlo (see Fig. C.11).
e Press OK.

Fig. C.11. Setting SPSS for an
approximate APA format output.

e Run the SPSS statistical analysis.
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Your outputs will look similar to Table C.9, which approximates an APA table. In order to
transfer it to MS Word:

e On the SPSS output, right click on the table that you want to transfer.
e Select Copy objects from the short menu presented, see Fig. C.12.

ANOVA
Eﬂh.l.
5 Sum of Squares df Mean Square F Sig.
Voompe e Fig. C.12. Copying tables from SPSS.
Total 173310 72 b e
Qs

grades visual mathach BY fasdRevis SELTE e
/STATISTICS DESCRIPTIVES HONOGENEITY mm
/RISSING ANALYSIS .

SET TLook None TFit Labels. Case Studes
ONEWAY 3
orades visual mathach BY faedRevis

e Place the curser in the MS Word file where you want to put the table.
¢ Select Paste in MS Word.

You can then move it and format it like any other image in MS Word, but it can not be edited.
Table C.9. An Example of the SPSS "Academic"” Output
Table 2

One-Way Analysis of Variance of Grades in High School by Father's Education

ANOVA
gades in h.s.
Sum of Squares df Mean Square F Sig.
Between Groups 18.143 2 9.071 4.091 021
Within Groups 155.227 70 2.218
Total 173.370 72
Using Figures

Generally, the same concepts apply to figures as have been previously stated concerning tables:
they should be easy to read and interpret, be consistent throughout the document when presenting
the same type of figure, kept on one page if possible, and it should supplement the accompanying
text or table. Considering the numerous types of figures, I will not attempt to detail their
construction in this document. However, one thing is consistent with all figures. The figure
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number and caption description are located below the figure and the description is detailed,
similar to that of the title of a table. See Fig. C.12.
Some cautions in using figures:
1) Make it simple. Complex diagrams that require lengthy explanation should be avoided
unless it is an integral part of the research.
2) Use a minimum number of figures for just your important points. If too many figures are
used, your important points may be lost.

3) Integrate text and figure. Make sure your figure compliments and enhances the
accompanying text.

Correlation of math achievement with

mosalc pattern test
25.00-
g 2000~ Fig. C.12. An example of using a
E sm- figure in APA with caption.
§
a 10.00 ~
§ 500~ Note: The figure number is italicized
§ but the caption itself is not. Also, the
0.00~1 . o
E caption text is sentence case (only
-5.00~ the first word is capitalized).
400 0O o 200 00 400 500

mosaic, pattarn test

Fig. 1. Correlation of math achievement with mosaic pattern test.
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Answers to Odd Interpretation Questions

1.1 What is the difference between the independent variable and the dependent variable?

1.3

Independent variables are predictors, antecedents, or presumed causes or influences being
studied. Differences in the Independent variable are hypothesized to affect, predict, or
explain differences in the dependent or outcome variable. So, independent variables are
predictor variables; whereas dependent variables are the variables being predicted, or
outcome variables.

What kind of independent variable is necessary to infer cause? Can one always infer
cause from this type of independent variable? If so, why? If not, when can one clearly
infer cause and when might causal inferences be more questionable? A variable must be
an active independent variable in order for the possibility to exist of one’s inferring that it
caused the observed changes in the dependent variable. However, even if the independent
variable is active, one can not attribute cause to it in many cases. The strongest inferences
about causality can be made when one randomly assigns participants to experimentally
manipulated conditions and there are no pre-existing differences between the groups that
could explain the results. Causal inferences are much more questionable when manipulations
are given to pre-existing groups, especially when there is not pretest of the dependent variable
prior to the manipulation, and/or the control group receives no intervention at all, and/or there
is no control group.

1.5 Write three research questions and a corresponding hypothesis regarding variables of

interest to you, but not in the HSB data set (one associational, one difference, and one
descriptive question). Associational research question: What is the relation between guilt
and shame in 10-year-old children? Associational hypothesis: Guilt and shame are
moderately to highly related in 10 year-old children. Difference question: Are there
differences between Asian-Americans and European-Americans in reported self-esteem?
Difference hypothesis: Asian-Americans, on the average, report lower self-esteem than do
European-Americans. Descriptive question: What is the incidence of themes of violence in
popular songs, folk songs, and children’s songs? Descriptive hypothesis: There will be more
violent themes in popular songs than in folk songs.

1.7 If you have categorical, ordered data (such as low income, middle income, high income),

what type of measurement would you have? Why? Categorical, ordered data would
typically be considered ordinal data because one can not assume equal intervals between
levels of the variable, there are few levels of the variable, and data are unlikely to be normally
distributed, but there is a meaningful order to the levels of the variable.

1.9 What percent of the area under the standard normal curve is between the mean and one

standard deviation above the mean? Thirty-four percent of the normal distribution is within
one standard deviation above the mean. Sixty-eight percent is within one standard deviation
above or below the mean.

2.1 Using Output 2.1a and 2.1b: a) What is the mean visualization test score? 5.24 b) What is

the range for grades in h.s.? 6 c¢) What is the minimum score for mosaic pattern test? -4
How does this compare to the values for that variable as indicated in chapter 1? It is the
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lowest possible score. Why would this score be the minimum? It would be the minimum if
at least one person scored this, and this is the lowest score anyone made.

2.3 Using Output 2.4: a) Can you interpret the means? Explain. Yes, the means indicate the
percentage of participants who scored “1” on the measure. b) How many participants are
there all together? 75 ¢) How many have complete data (nothing missing)? 75 d) What
percent are male (if male=0)? 45 ¢) What percent took algebra 1? 79

2.5 In Output 2.8a: a) Why are matrix scatterplots useful? What assumption(s) are tested
by them? They help you check the assumption of linearity and check for possible difficulties
with multicollinearity.

3.1 a) Is there only one appropriate statistic to use for each research design? No.
b) Explain your answer. There may be more than one appropriate statistical analysis to use
with each design. Interval data can always use statistics used with nominal or ordinal data,
but you lose some power by doing this.

3.3 Interpret the following related to effect size:
a)d=.25 small ¢)R=.53 large e)d=1.15 very large
b)r=.35 medium d)r=.13 small ) =38 large

3.5. What statistic would you use if you had two independent variables, income group
(<$10,000, $10,000-$30,000, >$30,000) and ethnic group (Hispanic, Caucasian, African-
American), and one normally distributed dependent variable (self-efficacy at work).
Explain. Factorial ANOVA, because there are two or more between groups independent
variables and one normally distributed dependent variable. According to Table 3.3, column
2, first cell, I should use Factorial ANOVA or ANCOVA. In this case, both independent
variables are nominal, so I’d use Factorial ANOVA (see p. 49).

3.7 What statistic would you use if you had three normally distributed (scale) independent
variables and one dichotomous independent variable (weight of participants, age of
participants, height of participants and gender) and one dependent variable (positive
self-image), which is normally distributed. Explain. I’d use multiple regression, because
all predictors are either scale or dichotomous and the dependent variable is normally
distributed. I found this information in Table 3.4 (third column).

3.9 What statistic would you use if you had one, repeated measures, independent variable
with two levels and one nominal dependent variable? McNemar because the independent
variable is repeated and the dependent is nominal. I found this in the fourth column of Table
3.1.

3.11 What statistic would you use if you had three normally distributed and one
dichotomous independent variable, and one dichotomous dependent variable?
I would use logistic regression, according to Table 3.4, third column.

4.1 Using Output 4.1 to 4.3, make a table indicating the mean interitem correlation and the

alpha coefficient for each of the scales. Discuss the relationship between mean interitem
correlation and alpha, and how this is affected by the number of items.

227



SPSS for Intermediate Statistics

Scale Mean inter-item correlation Alpha
Motivation 386 791
Competence 488 796
Pleasure 373 .688

The alpha is based on the inter-item correlations, but the number of items is important as
well. If there are a large number of items, alpha will be higher, and if there are only a few
items, then alpha will be lower, even given the same average inter-item correlation. In this
table, the fact that both number of items and magnitude of inter-item correlations are
important is apparent. Motivation, which has the largest number of items (six), has an alpha
of .791, even though the average inter-item correlation is only .386. Even though the average
inter-item correlation of Competence is much higher (.488), the alpha is quite similar to that
for Motivation because there are only 4 items instead of 6. Pleasure has the lowest alpha
because it has a relatively low average inter-item correlation (.373) and a relatively small
number of items (4).

4.3 For the pleasure scale (Output 4.3), what item has the highest item-total correlation?
Comment on how alpha would change if that item were deleted. Item 14 (.649). The alpha
would decline markedly if Item 14 were deleted, because it is the item that is most highly
correlated with the other items.

4.5 Using Output 4.5: What is the interrater reliability of the ethnicity codes? What does
this mean? The interrater reliability is .858. This is a high kappa, indicating that the school
records seem to be reasonably accurate with respect to their information about students’
ethnicity, assuming that students accurately report their ethnicity (i.e., the school records are
in high agreement with students’ reports). Kappa is not perfect, however (1.0 would be
perfect), indicating that there are some discrepancies between school records and students’
own reports of their ethnicity.

5.1 Using Output 5.1: a) Are the factors in Output 5.1 close to the conceptual composites
(motivation, pleasure, competence) indicated in Chapter 1 ? Yes, they are close to the
conceptual composites. The first factor seems to be a competence factor, the second factor a
motivation factor, and the third a (low) pleasure factor. However, Item01 (I practice math
skills until I can do them well) was originally conceptualized as a motivation question, but it
had its strongest loading from the first factor (the competence factor), and there was a strong
cross-loading for item02 (I feel happy after solving a hard problem) on the competence
factor. b) How might you name the three factors in Output 5.1? Competence, motivation,
and (low) mastery pleasure ¢) Why did we use Factor Analysis, rather than Principal
Components Analysis for this exercise? We used Factor Analysis because we had beliefs
about underlying constructs that the items represented, and we wished to determine whether
these constructs were the best way of understanding the manifest variables (observed
questionnaire items). Factor analysis is suited to determining which latent variables seem to
explain the observed variables. In contrast, Principal Components Analysis is designed
simply to determine which linear combinations of variables best explain the variance and
covariation of the variables so that a relatively large set of variables can be summarized by a
smaller set of variables.

5.3 What does the plot in Qutput 5.2 tell us about the relation of mosaic to the other

variables and to component 1? Mosaic seems not to be related highly to the other variables
nor to component 1. How does this plot relate to the rotated component matrix? The plot
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illustrates how the items are located in space in relation to the components in the rotated
component matrix.

In Output 6.1: a) What information suggests that we might have a problem of
collinearity? High intercorrelations among some predictor variables and some low tolerances
(< 1-R% b) How does multicollinearity affect results? It can make it so that a predictor that
has a high zero-order correlation with the dependent variable is found to have little or no
relation to the dependent variable when the other predictors are included. This can be
misleading, in that it appears that one of the highly correlated predictors is a strong predictor
of the dependent variable and the other is not a predictor of the dependent variable. ¢) What
is the adjusted R’ and what does it mean? The adjusted R? indicates the percentage of
variance in the dependent variable explained by the independent variables, after taking into
account such factors as the number of predictors, the sample size, and the effect size.

In Output 6.3. a) Compare the adjusted R’ for model 1 and model 2. What does this tell
you? It is much larger for Model 2 than for Model 1, indicating that grades in high school,
motivation, and parent education explain additional variance, over and above that explained
by gender. b) Why would one enter gender first? One might enter gender first because it
was known that there were gender differences in math achievement, and one wanted to
determine whether or not the other variables contributed to prediction of math achievement
scores, over and above the “effect” of gender.

Using Output 7.1: a) Which variables make significant contributions to predicting who
took algebra 2? Parent’s education and visualization b) How accurate is the overall
prediction? 77.3% of participants are correctly classified, overall ¢) How well do the
significant variables predict who 700k algebra 2? 71.4% of those who took algebra 2 were
correctly classified by this equation. d) How about the prediction of who didn’t take it?
82.5% of those who didn’t take algebra 2 were correctly classified.

In Output 7.3: a) What do the discriminant function coefficients and the structure
coefficients tell us about how the predictor variables combine to predict who took
algebra 2? The function coefficients tell us how the variables are weighted to create the
discriminant function. In this case, parent’s education and visual are weighted most highly.
The structure coefficients indicate the correlation between the variable and the discriminant
function. In this case, parent’s education and visual are correlated most highly; however,
gender also has a substantial correlation with the discriminant function. b) How accurate is
the prediction/classification overall and for who would not take algebra 2? 76% were
correctly classified, overall. 80% of those who did not take algebra 2 were correctly
classified; whereas 71.4% of those who took algebra 2 were correctly classified. ¢) How do
the results in Output 7.3 compare to those in Output 7.1, in terms of success at
classifying and contribution of different variables to the equation?For those who took
algebra 2, the discriminant function and the logistic regression yield identical rates of
success; however, the rate of success is slightly lower for the discriminative function than the
logistic regression for those who did not take algebra 2 (and, therefore, for the overall
successful classification rate).

In Output 7.2: why might one want to do a hierarchical logistic regression?

One might want to do a hierarchical logistic regression if one wished to see how well one
predictor successfully distinguishes groups, over and above the effectiveness of other
predictors,
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In Output 8.1: a) Is the interaction significant? Yes b) Examine the profile plot of the
cell means that illustrates the interaction, Describe it in words. The profile plot indicates
that the “effect” of math grades on math achievement is different for students whose fathers
have relatively little education, as compared to those with more education. Specifically, for
students whose fathers have only a high school education (or less), there is virtually no
difference in math achievement between those who had high and low math grades; whereas
for those whose fathers have a bachelor’s degree or more, those with higher math grades
obtain higher math achievement scores, and those with lower math grades obtain lower math
achievement scores. c) Is the main effect of father’s education significant? Yes. Interpret
the eta squared. The eta squared of .243 (eta = .496) for father’s education indicates that this
is, according to Cohen’s criteria, a large effect. This indicates that the “effect” of the level of
fathers’ education is larger than average for behavioral science research. However, it is
important to realize that this main effect is qualified by the interaction between father s
education and math grades d) How about the “effect” of math grades? The “effect” of math
grades also is significant. Eta squared is .139 for this effect (eta = .37), which is also a large
effect, again indicating an effect that is larger than average in behavioral research. ¢) Why
did we put the word effect in quotes? The word, “effect,” is in quotes because since this is
not a true experiment, but rather is a comparative design that relies on attribute independent
variables, one can not impute causality to the independent variable. f) How might focusing
on the main effects be misleading? Focusing on the main effects is misleading because of
the significant interaction. In actuality , for students whose fathers have less education, math
grades do not seem to “affect” math achievement; whereas students whose fathers are highly
educated have higher achievement if they made better math grades. Thus, to say that math
grades do or do not “affect” math achievement is only partially true. Similarly, fathers’
education really seems to make a difference only for students with high math grades.

In Output 8.3: a) Are the adjusted main effects of gender significant? No. b) What are
the adjusted math achievement means (marginal means) for males and females? They are
12.89 for males and 12.29 for females c) Is the effect of the covariate (mathcrs)
significant? Yes d) What do a) and c) tell us about gender differences in math
achievement scores? Once one takes into account differences between the genders in math
courses taken, the differences between genders in math achievement disappear.

In Qutput 9.2: a) Explain the results in nontechnical terms Output 9.2a indicates that the
ratings that participants made of one or more products were higher than the ratings they made
of one or more other products. Output 9.2b indicates that most participants rated product 1
more highly than product 2 and product 3 more highly than product 4, but there was no clear
