
Information and Software Technology 55 (2013) 1260–1276
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Quality evaluation of floss projects: Application to ERP systems

Lerina Aversano, Maria Tortorella ⇑
Department of Engineering, University of Sannio, Via Traiano, 82100 Benevento, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 May 2012
Received in revised form 25 January 2013
Accepted 27 January 2013
Available online 16 February 2013

Keywords:
Software evaluation
Open source
Enterprise resource planning
Software metrics
0950-5849/$ - see front matter � 2013 Elsevier B.V. A
http://dx.doi.org/10.1016/j.infsof.2013.01.007

⇑ Corresponding author. Tel.: +39 0824 305554; fax
E-mail addresses: aversano@unisannio.it (L. Avers

(M. Tortorella).
Context: The selection and adoption of open source software can significantly influence the competitive-
ness of organisations. Open source software solutions offer great opportunities for cost reduction and
quality improvement, especially for small and medium enterprises that typically have to address major
difficulties due to the limited resources available for selecting and adopting a new software system.
Objective: This paper aims to provide support for selecting the open source software that is most suitable
to the specific needs of an enterprise from among the options offering equivalent or overlapping func-
tionality.
Method: This paper proposes a framework for evaluating the quality and functionality of open source
software systems. The name of the framework is EFFORT (Evaluation Framework for Free/Open souRce
projecTs). It supports the evaluation of product quality, community trustworthiness and product attrac-
tiveness. The framework needs to be customised to the analysis of software systems for a specific context.
Results: The paper presents the customisation of EFFORT for evaluating Enterprise Resource Planning
(ERP) open source software systems. The customised framework was applied to the evaluation and com-
parison of five ERP open source software systems. The results obtained permitted both the refinement of
the measurement framework and the identification of the ERP open source software system that achieved
the highest score for each chosen characteristic.
Conclusion: EFFORT is a useful tool for evaluating and selecting an open source software system. It may
significantly reduce the amount of negotiation conducted among an enterprise’s members and reduce the
time and cost required for gathering and interpreting data. The EFFORT framework also considers the
users’ opinions by introducing relevance markers associated with the metrics and questions in the data
aggregation process.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction the advantages and constraints associated with its use. It is also nec-
Open source software has achieved more and more attention in
the last few years. Many large and small enterprises are taking an
interest in this growing software area. Indeed, significant benefits
can be derived from open source software (OSS) – solutions, because
they offer great opportunities for cost reduction, quality and effi-
ciency improvement [20,21,27]. The adoption of OSS systems can
appear an easy solution, because the software systems are free
and can be downloaded from the Internet and installed or custom-
ised as needed. Organisations interested in reducing the licensing
fees of proprietary software and avoiding the penalties and legal
liabilities associated with their illegal use can consider open source
software a plausible alternative [39]. However, less obvious than
cost savings but equally important are the barriers to adopting
OSS systems, such as their adoption costs and quality. Before
adopting an OSS system, it is necessary that it and its business
opportunities are understood and knowledge is gained regarding
ll rights reserved.

: +39 0824 50552.
ano), tortorella@unisannio.it
essary to understand the real needs of enterprises and select the OSS
solutions that best satisfies those needs from among all the systems
available that provide equivalent or overlapping functionality. This
requires methods and tools to be applied to evaluation of the quality
of OSS solutions and selecting the one that is best suited to the spe-
cific needs [14].

A widely held assumption in software engineering is that the
external quality characteristics of a software system are correlated
to its internal quality characteristics and thus that source code
metrics provide useful data for assessing the quality of a software
system [9,30–32,34]. The International Organization for Standard-
ization (ISO) published for the first time in 1991 the ISO/IEC 9126
standard [30–32], which defines a quality model for software prod-
ucts to be considered as a reference for their evaluation. Neverthe-
less, the original standard ISO/IEC 9126 and its later versions are
inadequate for characterising the quality of a Free libre Open
Source Software (FlOSS) project [14,39], because a FlOSS project
is different from a closed source one in terms of production, distri-
bution and support modalities, which are more relevant than
product-related characteristics. Open source software is in most
cases developed in a very open environment, and several sources

http://dx.doi.org/10.1016/j.infsof.2013.01.007
mailto:aversano@unisannio.it
mailto:tortorella@unisannio.it
http://dx.doi.org/10.1016/j.infsof.2013.01.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1261
of information that would not be available in a proprietary soft-
ware system can be used in its evaluation [50]. Specifically, open
source software allows examination of the source code, perfor-
mance of white box testing, and analysis. In most open source pro-
jects, it is also possible to obtain access to the version control
system, mailing lists and bug management databases. This addi-
tional information allows prospective users to conduct a more
comprehensive evaluation of both the software system and the
project using it. Therefore, while traditional software evaluation
methods mostly focus on the software itself, its functionality,
usability and price, a much broader approach can be adopted for
evaluating OSS systems using additional available information.

The paper presents an advanced quality model for FlOSS pro-
jects. It extends the current methods by considering additional
characteristics unique to FlOSS projects, such as the quality of
the community and product attractiveness. Specifically, the paper
proposes the framework EFFORT—Evaluation Framework for
Free/Open souRce projecTs—that provides guidelines, procedures
and metrics for applying the defined quality model for evaluating
FlOSS projects. The aim is to support the comparison of a set of
FlOSS software projects and select the system that is best suited
to the needs of a potential adopter [1]. Among the entities that
may be interested in adopting a FlOSS system are an enterprise, a
developer that wants to enhance a FlOSS system, and a potential
sponsor that wants to distribute such a system. Each of these enti-
ties considers some of the various quality aspects that are included
in the proposed framework. In addition, the framework is paramet-
ric with respect to the evaluated characteristics and permits its
customisation for modelling the specific needs of an evaluator.

To achieve a more detailed evaluation, the EFFORT framework is
defined in a generic manner and can be instantiated for a specific
context before being applied to evaluation of a specific set of FlOSS
projects. Knowledge of the application domain and characteristics
of a software system are very important to improving and extend-
ing the quality measurement framework to be applied to evalua-
tion of a software system [2,3]. Customisation requires the
extension of EFFORT by considering additional specific aspects that
capture the special features of the application domain. This paper
describes the customisation of the framework to the context of
Enterprise Resource Planning (ERP) systems and applies the cus-
tomised framework to the evaluation of five FlOSS ERP projects. In-
deed, FlOSS ERP projects represent important examples of how an
organisation can achieve competitive advantages by exploiting the
opportunities provided by OSS solutions. In addition, the selection
and adoption of one of the options cannot be addressed in a super-
ficial manner.

The remainder of this paper is organised as follows. Section 2
analyses existing models and tools for evaluating and selecting
FlOSS projects. It also summarises related studies concerning the
evaluation of ERP software system quality. Section 3 provides a
description of the EFFORT framework. Section 4 describes the cus-
tomisation of the EFFORT framework to the evaluation of ERP FlOSS
projects and evaluates five ERP FlOSS projects. Concluding remarks
are given in the last section.
2. Related works

This section discusses the existing literature, with reference to
(i) studies aimed at evaluating the quality of OSS systems and (ii)
approaches to the selection and comparison of ERP systems.
2.1. Evaluation of software system quality

The quality evaluation of software systems is a relevant issue
for software engineers, and various models have been proposed
in the literature [6,35]. The traditional models are the McCall and
Boehm’s models [9,10,34,37], the more widely accepted ISO/IEC
9126 model [30–32], and its more recent implementation by
SQuaRE ISO 25000:2005 [32]. These models decompose the quality
concept into a hierarchy of criteria and attributes further decom-
posed into lowest-level metrics [22].

The issue of quality evaluation is frequently related to OSS
systems. However, due to the nature of OSS development,
according to which standard practices include open access to
the source code, shared artefacts, peer review of code, asynchro-
nous global development and lack of formal supports, traditional
models may not be sufficient. As a consequence, quality models
specifically focused on OSS development have been proposed in
the literature.

The Open Source Maturity Model (OSMM) assumes that the
quality of an open source project depends on its maturity [26]
and decomposes it into six elements: product software, support,
documentation, training, product integration and professional ser-
vices. Although OSMM is simple to apply, it does not take into ac-
count some important software artefacts, such as the source code
itself.

Kamseu and Habra analysed the different factors that could
influence the adoption of an OSS system [33]. They considered
three dimensions of the quality of an open source project: the
development process, including the management and support pro-
cesses; community, including developers and contributors; and
product, concerning the product after its release.

Sung et al. focused on the quality of the product by adapting the
ISO/IEC 9126 standard to FlOSS products [48]. The authors identi-
fied some problems with the evaluation of an OSS product using
this standard, such as the difficulty of collecting information when
the developers do not make it public.

Another proposed methodology for assessing FlOSS projects is
Qualification and Selection of Open Source software (QSOS) [12].
The QSOS method was developed to make reusable evaluations.
Each OSS project is evaluated by applying the evaluation criteria
and assigning an absolute score, weight and threshold to each cri-
terion. QSOS provides a tree hierarchy of evaluation criteria with
scoring for each leaf criterion. Criticisms of this methodology have
been made with reference to the small scoring range [19]. More-
over, because there is no definition regarding the first two levels
of criteria, there is ambiguity in its application.

The OpenBRR project–Business Readiness Rating for Open
Source [41]–was developed for the same purpose of QSOS. The ap-
proach includes a pre-screening phase that ends with a few viable
candidates for selection. An evaluation template is tailored by
reviewing and selecting the appropriate evaluation criteria from
a proposed hierarchy. A weight is assigned to each metric to be
used for aggregating the metric scores and obtaining the score of
each category.

QualiPSo—Quality Platform for Open Source Software—is one of
the largest initiatives of the European Union. It defines an evalua-
tion framework for the trustworthiness of FlOSS projects [15–17].
The trustworthiness is defined in terms of product quality and con-
siders as-is utility, exploitability in development, functionality,
interoperability, reliability, performance, security, cost-effective-
ness, customer satisfaction and developer quality. An assessment
model has been defined that makes use of the results of an analysis
of information about the trustworthiness characteristics available
in OSS portals and repositories using the OP2A (Open source Prod-
uct Portal Assessment).

Wheeler defined a FlOSS selection process called IRCA—Identify
Read reviews Compare and Analyse [50]. It considers in its evalua-
tion important attributes such as functionality, cost, market share,
support, maintenance, reliability, performance, scalability, usabil-
ity, security, flexibility/customisability, interoperability, and



1262 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
legal/license issues. Unfortunately, the method does not define
metrics for doing the evaluation.

The SQO-OSS—Software Quality Observatory for Open Source
Software—model was constructed to support an automated soft-
ware evaluation system [44,46]. Its variables are mainly metric-
oriented, and human intervention is minimal. The model evaluates
the main aspects of OSS development, such as source code and
community. The SQO-OSS model does not evaluate functionality;
rather it focuses on aspects of OSS quality, such as OSS project
maintainability, reliability and security.

A comparison of the models described above was conducted.
The first aim was to identify the models that were most complaint
with the ISO/IEC 9126 standard, analysing the coverage and fea-
tures they had in common. The analysis focused on the most inter-
esting characteristics of the open source software to identify the
features investigated in the models.

Fig. 1 and Table 1 show the results of the analysis. They also
show how EFFORT compares with the other quality models, but this
aspect will be discussed later. Table 1 shows the results of the first
analysis. It should be noted that a standard characteristic was con-
sidered as covered by a model if it took into account at least one of
its attributes. Table 1 shows that not all the models considered take
into account the ISO standard quality characteristics. The highest
coverage is exhibited by IRCA, but it does not provide an adequate
operational tool for its application. The table also shows that the
in-use quality is the least-considered quality characteristic. This is
due to the difficulty of objectively measuring the metrics related
to in-use quality, because they depend greatly on the user.
Fig. 1. Comparing the open source sof

Table 1
Comparison among the proposed quality models with reference to the ISO standard.

ISO/IEC 9126 Quality models

SQO-OSS Sung-Kim-
Rhew

IRCA QSOS

Functionality Functionality Functionality Functional
adequacy

Reliability Reliability Reliability Maturity, Q
Assurance

Usability Usability Usability Exploitabili
Efficiency Performance
Maintainability Maintainability Maintainability/

Longevity
Modularity
Documenta

Portability Portability Interoperability Packaging
In use quality
Fig. 1 graphically shows the overlap of the models without con-
sidering the standard characteristics. The used shapes do not have
are not related to the completeness of the approaches. Indeed, the
figure only regards the following subset of macro characteristics of
the models that are considered relevant for assessing FlOSS sys-
tems: licensing, documentation, support, adoption, community,
maturity, architecture and cost-effectiveness. The figure does not
include the SQO-OSS and QualOSS models because they do not
analyse the characteristics considered.

Table 1 and Fig. 1 show that some of the models, such as Qual-
iPSo and the Sung–Kim–Rhew model, mostly emphasise product-
intrinsic characteristics and only slightly consider the other OSS
dimensions. Such models provide major coverage of the ISO stan-
dard. Other models that consider the OSS aspects offer reduced
coverage of the ISO quality attributes. IRCA is the only exception:
it is sufficiently complete, but it is a conceptual model; it does
not provide an evaluation framework, and it is not formalised.

2.2. Evaluation of ERP software systems

Several research studies on the evaluation of ERP software sys-
tems can be found in the literature, confirming a growing interest
in this topic. They describe research undertaken to compare the
advantages and disadvantages of such systems.

Numerous approaches have been taken in evaluating ERP sys-
tems. They typically are approaches used for the evaluation of
commercial systems, and only a few of them specifically pertain
to FlOSS ERPs.
tware quality evaluation models.

OpenBRR QualOSS QualiPSo EFFORT

Functionality Functionality

uality Security Reliability, Developer
quality

Reliability

ty Usability Usability
Performance Performance Efficiency

,
tion

Documentation Maintainability

Interoperability Portability
Security As-is utility,

Customer satisfy.



L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1263
An approach to identifying and grouping the main criteria for
selecting an ERP system, based on a set of aspects of the software
system to be investigated, is proposed in [8].

Evaluation-Matrix (http://evaluation-matrix.com) is a platform
for comparing management software systems. The approach has
two main goals: to construct a list of characteristics representing
the most common needs of a user and to have at the user’s disposal
a tool for evaluating available management software systems.

In Ref. [23], Nah schematically summarises the pros and cons of
adopting an ERP system for Small and Medium Enterprises (SMEs).
Such enterprises have few resources that can be dedicated to selec-
tion, acquisition, configuration and customisation of an ERP sys-
tem. Moreover, ERPs are generally designed to fit the needs of
large companies. Adopting a FlOSS ERP could partially fill this
gap. It emerges from the literature that the adoption of FlOSS ERPs
is more advantageous for SMEs [28,50]. As an example, some of the
advantages arise from the possibility of trying the system (not just
using a demo), reduction of vendor lock-in, a low license cost and
the possibility of in-depth personalisation.

Reuther and Chattopadhyay performed a study to identify the
main critical factors for selecting and implementing an ERP system
to be adopted by an SME [42]. The factors identified were grouped
in the following categories: technical/functional requirements,
business drivers, cost drivers, flexibility, scalability, and other fac-
tors specific to the application domain. This research was extended
by considering the context of FlOSS projects [43,52].

Wei, Chien and Wang defined a framework for selecting an ERP
system based on the Analytic Hierarchy Process (AHP) technique
[51]. This is a technique for supporting multiple-criteria decision
problems that suggests how to prioritise a set of alternatives and
importance of the relative attributes.

Bernroider and Stix [7] defined an approach that combines
the merits of two prominent concepts individually applied in
decision-making: the Utility Ranking Method (URM) and the
Data Envelopment Analysis (DEA). In addition, the method calcu-
lates the distances between the desired system profile, defined
in the additive multi-attribute utility model, and the individual
alternative profiles, calculated by the DEA-derived optimisation
process.
Table 2
Comparison of the ERP evaluation models proposed in literature: common elements.

Criteria Model

Birdogan
Kemal

EvaluationMatrix Wei Chien
Whang

Functionality
p p p

Usability
p p p

Costs
p p p

Support Services
p p p

Vendor’s vision
p

System reliability
p p

Interoperability
p

Market share
p p p

Domain knowledge of
providers

p

References and reputation of
vendors

p p

Partnership
p

Integration/Modularity
p

Implementation time
p p

Software methodology
p

Consulting
p

Customization and flexibility
p p

Migration
p p

Technical quality
p p

Develop activity
p

Community
p

Business competitive
advantage
Liao et al. [36] presented a model based on linguistic informa-
tion processing for dealing with such a problem. In [24,25], a meth-
od is proposed for selecting ERP systems based on fuzzy-data
envelopment analysis. The model was used to evaluate each ERP
software solution using subjective judgments made by a group of
highly prestigious IT experts in the petrochemical industry. ERP
tool selection has also been addressed in [11], in which the authors
proposed a structured decision-making selection process for ERP
tools. They applied a fuzzy cognitive map offering an organised
and structural outline for the acquisition of an ERP tool.

Open Source ERP Guru is a platform that can support users
interested in comparing open source ERP solutions [40]. The plat-
form provides on-line demo of the most relevant open source
ERP systems to allow easy comparisons by interested users. The re-
sults of a comparison depend on the user evaluation, and the plat-
form does not provide a comparison matrix. The criteria suggested
for the evaluation are the following: customisation complexity,
functionality, user experience, development activity, knowledge,
production-readiness, integration, migration, Total Cost of Owner-
ship (TCO) [34], and community.

The models analysed are quite different, but they share a com-
mon goal of identifying critical factors for the selection of ERP sys-
tems. Table 2 includes a comparison of the models and identifies
common elements. The rows of the matrix in Table 2 contain as-
pects considered in at least one model, while the columns refer
to the models themselves. The presence of a tick in cell i, j means
that factor i is totally or partially covered by model j. The criteria
considered by the greatest number of models pertained to func-
tionality, usability and costs, followed by support services, system
reliability and customisability. One can observe from Table 2 that
the Birdogan and Kemal model is the most complete, although it
does not provide an operational approach for evaluating the char-
acteristics listed above. The quality model that more completely
considers the evaluation of the open source nature of ERP systems
is OS ERP Guru. However, it should be noted that OS ERP Guru pro-
vides a high-level list of the characteristics to consider but does not
provide any technical details concerning how to measure the char-
acteristics. OS ERP Guru also does not include evaluation of the
technical quality of ERP software products.
Reuther
Chattopadhyay

Zirawani Salihin
Habibollah

Open Source ERP
Guru

EFFORT

p p p
p p p

p p p
p

p p p
p

p p

p

p p p
p

p p p
p p

p p
p
p

p

http://evaluation-matrix.com


1264 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
Table 2 also includes the criteria that were considered in custo-
mising the EFFORT quality model. EFFORT was developed to over-
come the limitation of the existing models and propose a practical
method for gathering and aggregating metrics. This comparison of
the proposed approaches with EFFORT will be discussed later.
3. Proposed approach

The evaluation framework, EFFORT, was developed to evaluate
FlOSS systems and can be considered a base framework that can
be customised to the specific context of the open source system
to be selected. The development of EFFORT took into account a
comparative analysis of the previously described approaches and
identification of their deficiencies. Many of the approaches de-
scribed analyse quality characteristics specific to Open Source Soft-
ware systems, such as the quality of the community managing the
system, and do not take into account the quality of the software
product. On the contrary, in [18], the authors stated that the great-
er the system quality (software product) and service quality (com-
munity service support) are, the more the system is used. For this
reason, two of the quality characteristics considered address prod-
uct quality as well as community quality [4,49]. In addition, previous
studies have shown that system quality influences the information
system use and therefore its adoption [29,47]. In particular, those
aspects that reflect the characteristic of the software product’s
attractiveness play an important role in the user’s perception of
the quality of the software system . The higher the perceived qual-
ity of a software product is, the higher the software product attrac-
tiveness can be considered. Thus, the third quality characteristic
that EFFORT considers is the software product attractiveness.

In addition, according to the ISO Standard 8402 [30], quality is
the totality of characteristics of an entity that bear on its ability
to satisfy stated and implied needs. Therefore, even in the context
of OSS, a software product is said to be of a good quality if it satis-
fies stated and implied users’ needs. The users’ needs change on
the basis of the software system application domain. For this rea-
son, EFFORT has to be instantiated to the specific application do-
main before being used to conduct a complete quality evaluation
of specific open source software systems.
Fig. 2. Quality model defined by EFFORT a
EFFORT was developed on the basis of the Goals Questions Met-
rics (GQM) paradigm [5]. This paradigm guides the definition of a
metric program on the basis of three abstraction levels: the con-
ceptual level, referred to as the definition of the goals to be
achieved by the measurement activity; the operational level, con-
sisting of a set of questions concerning the way the assessment or
achievement of a specific goal is addressed; and the quantitative
level, pertaining to identification of a set of metrics to be associated
with each question.

To reiterate, the framework considers the quality of a FlOSS pro-
ject as a synergy of the following three main quality characteristics:

– Quality of the product developed within the project. This is one
of the main aspects indicating the project quality. It is unlikely
that a product of high quality is developed within a low-quality
project. Using the ISO/IEC 9126 standard, product quality is
evaluated without considering the open source nature of the
analysed software system.

– Trustworthiness of the community of developers and contribu-
tors. This indicates the degree of trust that a user has in a com-
munity with respect to the support offered. In fact, one of the
main concerns of a potential user of an open source software
system is the availability of support in case of problems. The
adoption of an open source software system does not constrain
the community to offer support. Support is provided in ways
that differ greatly from one community to another.

– Product attractiveness. This characteristic considers all the fac-
tors that influence the adoption of a product by a potential user,
who perceives convenience and usefulness in using it.

Based on the study of the literature and standards, the three
quality characteristics were decomposed into the set of quality
attributes shown in Fig. 2 and making up the EFFORT quality mod-
el. Thus, the EFFORT measurement framework includes three goals,
each one corresponding to each first-level attribute. Questions map
second-level characteristics. Considering its complexity and the
number of aspects taken into account, Goal 1 has been divided into
sub-goals. The sub-goals concern the characteristics of the soft-
ware product quality, as indicated in Fig. 2. For simplicity, the
figure does not present the third level related to the questions
nd associated quality characteristics.



L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1265
related to the software product quality sub-goals and metrics used
in answering all the questions.

The following subsections describe the three goals and provide
a formalisation of the goal itself, incidental definitions of specific
terms and the related lists of questions. The questions listed in
each subsection are answered through the evaluation of a set of
associated metrics. This paper does not present all of the metrics
Table 3
Questions in the EFFORT measurement framework pertaining to product quality.

Goal 1 – Product quality

Sub-goal 1a: Analyse the software product with the aim of evaluating it with respect to
Q 1a.1 What degree of ada
Q 1a.2 What degree of ins
Q 1a.3 What degree of rep
Q 1a.4 What degree of coe

Sub-goal 1b: Analyse the software product with the aim of evaluating it with respect to
Q 1b.1 What degree of ana
Q 1b.2 What degree of cha
Q 1b.3 What degree of tes
Q 1b.4 What degree of tec
Q 1b.5 What degree of sta

Sub-goal 1c: Analyse the software product with the aim of evaluating it with respect to
Q 1c.1 What degree of rob
Q 1c.2 What degree of rec

Sub-goal 1d: Analyse the software product with the aim of evaluating it with respect to
Q 1d.1 What degree of fun
Q 1d.2 What degree of int
Q 1d.3 What degree of fun

Sub-goal 1e: Analyse the software product with the aim of evaluating it with respect to
Q 1e.1 What degree of ple
Q 1e.2 What degree of ope
Q 1e.3 What degree of und
Q 1e.4 What degree of lea

Sub-goal 1f: Analyse the software product with the aim of evaluating it with respect to e
Q 1f.1 How the product is
Q 1f.2 How the product is

Table 4
Questions and metrics in the EFFORT measurement framework pertaining to sub-goal 1a.

SUB-GOAL 1a – Portability

Question Metric

Id Name Id Name

Q 1a.1 What degree of adaptability does
the product offer?

M 1a.1.1 Number of

Q 1a.2 What degree of installability
does the product offer?

M 1a.2.1 Time requir

M 1a.2.2 Availability

M 1a.2.3 Automation
scripts

M 1a.2.4 Dependence
M 1a.2.5 Nominal len

procedures
M 1a.2.6 Number of

M 1a.2.7 Availability
M 1a.2.8 Internationa

M 1a.2.9 Number of
M 1a.2.10 Degree of k

operating en
M 1a.2.11 Efficacy of t

Q 1a.3 What degree of replaceability does
the product offer?

– To be define

Q 1a.4 What degree of coexistence does
the product offer?

– To be define
considered, but several are presented completely. Questions and
metrics associated with the goals are summarised in Tables 3–7.
Each table includes the goal it addresses, the questions considered,
identifiers and descriptions of the metrics, and the application and
source of the data for evaluating the metrics.

Data were collected by analysing the documentation, trackers,
repositories and official web sites of the projects. In addition, for
portability from the software engineer’s point of view
ptability does the product offer?

tallability does the product offer?
laceability does the product offer?
xistence does the product offer?

maintainability from the software engineer’s point of view
lyzability does the product offer?
ngeability does the product offer?

tability does the product offer?
hnology concentration does the product offer?
bility does the product offer?

reliability from the software engineer’s point of view
ustness does the product offer?
overability does the product offer?

functionality from the software engineer’s point of view
ctional adequacy does the product offer?

eroperability does the product offer?
ctional accuracy does the product offer?

usability from the user’s point of view
asantness does the product offer?
rability does the product offer?
erstandability does the product offer?

rnability does the product offer?

fficiency from the software engineer’s point of view
characterised in terms of time behaviour?
characterised in terms of resources utilisation?

Application and data source

operating systems supported Analysis of the documentation on the
official web site

ed for installation Measurement of the required for
installation of the product

of the installation manual Analysis of the documentation on the
official web site

level and use of installation Evaluation of the percentage of steps that
can be automated during the installation

on third-party components Evaluation during the product installation
gth of the installation Analysis of the installation manual

configuration files Analysis of the documentation on the
official web site

of default options Evaluation during the product installation
lisation of the manual Analysis of the documentation on the

official web site
unforeseen issues Evaluation during the product installation
nowledge of the required

vironment
Evaluation during the product installation

he guide Evaluation during the product installation

d during the instantiation To be defined during the instantiation

d during the instantiation To be defined during the instantiation



Table 5
Questions and metrics in the EFFORT measurement framework pertaining Sub-goal 1d.

SUB-GOAL 1d - Functionality

Question Metric

Id Name Id Name Application and data source

Q 1d.1 What degree of functional adequacy
does the product offer?

– To be defined during the instantiation To be defined during the instantiation

Q 1d.2 What degree of interoperability does
the product offer?

M 1d.2.1 Level of data importability Evaluation of the number of standard
formats available for the data import

M 1d.2.2 Level of data exportability Evaluation of the number of standard
formats available for the data export

Q 1d.3 What degree of functional accuracy
does the product offer?

– To be defined during the instantiation To be defined during the instantiation

Table 6
Questions in the EFFORT measurement framework pertaining to community trustworthiness.

Goal 2 – Community trustworthiness

Question Metric

Id Name Id Name Application and data source

Q 2.1 How many developers does
the community involve?

M 2.1.1 Number of committers Analysis of the official repository and query of
the ohloh web site

Q 2.2 What degree of activity
does the community have?

M 2.2.1 Number of major releases per year Analysis of the official project web site
M 2.2.2 Average number of commits per year Analysis of the official repository and query of

the ohloh web site
M 2.2.3 Average number of commits per committer Analysis of the official repository and query of

the ohloh web site
M 2.2.4 Closed bugs index Analysis of the official project tracker
M 2.2.5 Index of satisfied requests Analysis of the official project tracker

Q 2.3 Are the support tools
available and effective?

M 2.3.1 Average number of threads per year Analysis of the official project forum
M 2.3.2 Index of unanswered threads Analysis of the official project forum
M 2.3.3 Number of forums Analysis of the official project forum
M 2.3.4 Average number of threads per forum Analysis of the official project forum
M 2.3.5 Average number of posts per year Analysis of the official project forum
M 2.3.6 Forum internationalisation level Analysis of the official project forum
M 2.3.7 Number of trackers Analysis of the official project tracker
M 2.3.8 Volume of wikis Analysis of the official project wiki
M 2.3.9 Number of faqs Analysis of the official project web site

Q 2.4 Are support services
provided?

M 2.4.1 Availability of training services Analysis of the official project web site
M 2.4.2 Temporal coverage of training services Analysis of the official project web site
M 2.4.3 Availability of e-learning services Analysis of the official project web site
M 2.4.4 Availability of phone assistance Analysis of the official project web site
M 2.4.5 Availability of certification services Analysis of the official project web site
M 2.4.6 Availability of outsourcing services Analysis of the official project web site
M 2.4.7 Availability of maintenance services Analysis of the official project web site
M 2.4.8 Availability of information and services for TCO

estimation
Analysis of the official project web site

M 2.4.9 Availability of consulting services Analysis of the official project web site

Q 2.5 Is the documentation
exhaustive and easily
consultable?

M 2.5.1 Number of topics covered in the administrator
documentation

Analysis of the official project wiki

M 2.5.2 Number of topics covered in the user
documentation

Analysis of the official project documentation

M 2.5.3 Number of topics covered in the technical
documentation

Analysis of the official project documentation

M 2.5.4 Number of topics covered in the other
documents

Analysis of the official project wiki

M 2.5.5 Number of additional documentation files Analysis of the official repository and project
wiki

M 2.5.6 Usability of the documentation Analysis of the official project documentation

1266 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
each project, the source code was analysed and the product itself
was used. Additional data sources were some useful web sites,
such as sourceforge.net, freshmeat.net and ohloh.net. The ‘‘in vitro’’
nature of the analysis did not permit a realistic evaluation of the
efficiency of GOAL1, so it has not been considered here.

The sources used for gathering data have different natures for
the three goals. In particular, they are specifically related to the ana-
lysed software system components, such as documentation, source
code, and installation process, as shown in Tables 4 and 5. Table 6
shows that the evaluation of the community requires the analysis
of sources related to the specific software system project, such as
its forum, mailing lists, bug tracker, and project wikis. Finally, the
third goal can be partially evaluated by considering the official open
source project site, such as sourceforge.net, freshmeat.net, and code.-
google.com. The last subsection discusses how the metrics can be
aggregated to answer the questions quantitatively.



Table 7
Questions in the EFFORT measurement framework pertaining to product attractiveness.

Goal 3 – Product attractiveness

Question Metric

Id Name Id Name Application and data source

Q 3.1 What degree of functional adequacy
does the product offer?

– – –

Q 3.2 What degree of diffusion does the
product achieve?

M 3.2.1 Number of downloads Data available from sourceforge project section
M 3.2.2 Freshmeat popularity index Data available from freshmeat project section
M 3.2.3 Number of rating source forge users Data available from sourceforge project section
M 3.2.4 Positive rating index Data available from sourceforge project section
M 3.2.5 Number of success stories Analysis of the success story on the official web

site
M 3.2.6 Google visibility Available from the by query on google

google.com (software name + project category)
M 3.2.7 Number of official partners Analysis of the official web site
M 3.2.8 Number of published books Available from the by query on amazon.com

(software name + project category)
M 3.2.9 Number of citations by domain

expert
Identification of the expert and article analysis

M 3.2.10 Number of academic publications Available from the query on google scholar
(software name + project category)

M 3.2.11 Sponsor availability Analysis of the official project web site

Q 3.3 What level of cost-effectiveness is
estimated?

M 3.3.1 Availability of services and
information for the estimation of the
TCO

Analysis of the official project web site

M 3.3.2 Availability of an edition without
license cost

Analysis of the official project web site

M 3.3.3 Cost of the minimal edition Analysis of the official project web site
M 3.3.4 Cost of the complete edition Analysis of the official project web site

Q 3.4 What degree of reusability and
redistribution is left by the license?

M 3.4.1 License type Analysis of the official project web site

L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1267
3.1. Product quality

Product quality is one of the main aspects that dictate the qual-
ity of a project. Thus, Goal 1 is defined as follows:

Analyse the software product with the aim of evaluating its
quality from the software engineer’s point of view.

With respect to the ISO/IEC 9126 standard, product quality is
defined on the basis of the following characteristics:

– Portability – The capability of the software product to be trans-
ferred from one environment to another.

– Maintainability – The capability of the software product to be
modified. Modifications may include corrections, improve-
ments or adaptation of the software to changes in environment
and in requirements and functional specifications.

– Reliability – The capability of the software product to maintain
a specified level of performance when used under specified
conditions.

– Functionality – The capability of the software product to pro-
vide functions that meet stated and implied needs when the
software is used under specified conditions.

– Usability – The capability of the software product to be under-
stood, learned, used and attractive to the adopter when used
under specified conditions.

– Efficiency – The capability of the software product to perform
appropriately, relative to the amount of resources used, under
stated conditions.

Table 3 includes the sub-goals defined for each characteristic of
Goal 1 except in-use quality. The table also lists all the questions
defined for each sub-goal. Tables 4 and 5 list the metrics that are
used for answering the questions of sub-goals 1.a and 1.d regarding
portability and functionality. The choice of the metrics was per-
formed by considering parts 2 and 3 of the ISO/IEC Standard
9126 [31]. In addition, Tables 4 and 5 indicate which data source
can be considered to evaluate each metric. This added information
makes the evaluation framework an operative tool that is applica-
ble in a working context.

Nevertheless, as Tables 4 and 5 show, Goal 1 cannot be com-
pletely defined without knowing some characteristics and the
application domain of the software systems to be evaluated. The
questions that need to be instantiated to a specific context are indi-
cated in Table 2 in italics. For example, with respect to portability,
some sub-characteristics, such as replaceability and adaptability,
are more strategic for some application domains than for other.
Therefore, the identification of the metrics needed to perform this
evaluation implies knowledge of the specific context of use of the
software system to be evaluated. Additional instantiation activities
have to be performed to evaluate the functionality, considering the
users’ stated and implied needs, which depend on the application
domain. Moreover, evaluating functionality requires the evaluation
of some functional aspects, such as adequacy and accuracy, that are
dependent on the application domain of the analysed software sys-
tem. Similarly, the evaluation of maintainability implies a depen-
dence of the measurement framework on the programming
paradigm used that can guide the choice of the specific metrics
to be considered. For example, the types of software systems ana-
lysed in this paper required the use of metrics related to an object-
oriented paradigm [13]. This does not represent a restriction, even
if the full definition of the metrics may require an instantiation of
the measurement framework to evaluate that specific type of soft-
ware system. For these reasons, only a few general-purpose met-
rics are included in the baseline version of EFFORT. Obviously,
additional measures can be performed alongside the indicated
ones.



1268 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
3.2. Community trustworthiness

Community trustworthiness indicates the degree of trust that a
user has in a community with respect to the support offered. Com-
munities can provide support by means of good execution of the
development activity; use of tools, such as wikis, forums, and
trackers; and provision of services, such as maintenance, certifica-
tion, consulting and outsourcing, and documentation. Goal 2 is de-
fined as follows:

Analyse the support offered with the aim of evaluating the com-
munity with respect to the trustworthiness from the (user or
organisation) adopter’s point of view.

As already explained, the motivation for this goal comes from
the fact that the main concerns of an OSS potential adopter pertain
to the support and services he can receive when installing and
using the system and the availability of new versions of the system.
This aspect was also confirmed in interviews conducted with users
and experts of Open Source Software systems. The purpose of the
goal is to evaluate whether a community offers an adequate level
of support.

Questions and metrics pertaining to Goal 2 are shown in Table 6.
The table also includes the source and modality of the evaluation of
each metric. Questions and metrics pertaining to Goal 2 were iden-
tified by analysing other open source quality models, specifically,
projects QSOS [12], OpenBRR [41] and QualiPSo [16,17] that focus
on community quality.

3.3. Product attractiveness

The third goal of EFFORT is to evaluate the attractiveness of the
product from the perspective of the user community. The term
attractiveness refers to all the factors that influence the adoption
of a product by a potential user, who perceives the convenience
and usefulness of the product in achieving his goals.

Goal 3 pertains to product attractiveness and is formalised as
follows:

Analyse the software product with the aim of evaluating it in
terms of its attractiveness from the (user or organisation) adop-
ter’s point of view.

Two elements that must be considered in the selection of a
FlOSS product are functional adequacy and diffusion. The latter
could be considered an indicator of how the product is appreciated
and recognised as useful and effective. Other factors to be consid-
ered are cost-effectiveness, the Total Cost of Ownership (TCO) [34],
and the type of license.

Questions and metrics pertaining to Goal 3 are shown in Table 7.
They were formulated by analysing the other proposed quality
models, with particular reference to the studies developed in the
QualiPSo project [17]. The results presented in [38,45] were also
considered for use in analysing the relations between attractive-
ness and source code metrics.

Goal 3 is the goal that is most dependent on the application
context, because every type of software product is developed to
satisfy different needs. For instance, the more efficient a real-time
software program is, the more attractive it is, or with respect to an
ERP system, the more configurable and customisable the system is,
the more attractive it is. Such things are not necessarily true for a
word processing program, where the user requires ease of use and
compliance to de facto standards. Therefore, Goal 3 depends
greatly on the application domain of the analysed software system
and must be customised to the specific context.

The customisation of question Q3.1 has to be addressed in the
same way as for Goal 1. Additional customisation involves the
addition of new specific context questions. The fifth column of
Table 7 indicates sources and modalities for evaluating the metrics.

3.4. Data analysis

The collected data are aggregated according to the interpreta-
tion given to them, so that one can obtain useful information for
answering the questions. Moreover, aggregation for each question
gives an indication of the achievement of the goals. In conducting
aggregation, the following issues need to be considered:

– Metrics have different types of scales, depending on their nat-
ure. Thus, it is not always possible to directly aggregate mea-
sures. To overcome this, after the measurement is performed,
each metric is mapped to a discrete score in the [1–5] range,
where 1 = inadequate, 2 = poor, 3 = sufficient, 4 = good, and
5 = excellent.

– A high value of a metric can be interpreted in a positive or neg-
ative way, according to the context of the related question; the
same metric could even contribute in two opposite ways,
depending on the context of two different questions. So, the
appropriate interpretation needs to be provided for each metric.

– Depending on the evaluator’s point of view, questions do not all
have the same relevance in the evaluation of a goal. Therefore, a
relevance marker can be associated with each metric in the
form of a numeric value in the [1–5] range. A value of 1 is asso-
ciated with questions of minimum relevance, while a value of 5
is associated with questions of maximum relevance.

The aggregation function for Goal g is defined as follows:

qðgÞ ¼
P

q2Qq
rq �mðqÞP
q2Qq

rq
ð1Þ

where rq is the relevance associated with question q (sub-goal for
Goal 1), Qg is the set of questions (sub-goals for Goal 1) related to
Goal g, and m(q) is the aggregation function of the metrics of ques-
tion q. In particular:

mðqÞ ¼
P

id2Mq
iðidÞ � vðidÞ þ ½1� iðidÞ� � ½vðidÞmod6�

n o
jMqj

ð2Þ

where v(id) is the score obtained for metric id and i(id) is used to
give a positive or negative interpretation to the metric with respect
to the q question. In particular:

iðidÞ ¼
0 if the metric has a negative interpretation
1 if the metric has a positive interpretation

�
ð3Þ

Mq is the set of metrics related to question q.
As shown above, EFFORT includes the definition of the rele-

vance, rid, associated with each question id in the evaluation of
the goals. The relevance markers refer exclusively to the Open
Source Software and do not consider the application context. Obvi-
ously, depending on the evaluator’s point of view, the relevance
attributed to a question can vary. A further instantiation task in-
volves the definition of the question relevance values.

3.5. EFFORT customisation

To achieve a more focused evaluation, the proposed EFFORT
framework can be customised, taking into account a careful char-
acterisation of the open source software application domain. For
example, it has been customised to the Customer Relationship
Management (CRM) domain for analysing FlOSS CRM systems [3].

Customisation requires the execution of the following steps:



L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1269
Analysis of the application domain – additional information
pertaining to the specific context of the open source software con-
sidered is acquired in this step. With this in mind, interviews with
the user/adopter must be conducted to better understand the spe-
cific interests, expectations and doubts arising from the adoption
of a specific Open Source Software system.

Validation of all existing questions – the information collected
in the previous step is validated in this step to determine whether
it can be supported by the EFFORT baseline version. The domains of
the possible values adopted for each metric are also checked to val-
idate their soundness in the specific context of interest.

Introduction of new questions – it could emerge from the pre-
vious steps that some questions are not considered in the baseline
framework, or if they are included, the question set does not con-
sider all the expected specific aspects. On the basis of this analysis,
new specific questions need to be introduced.

As a consequence of this customisation process, the framework
instantiation can be performed at the level of questions or goals. In
particular, it is possible to execute an integration task by better
Table 8
Integration of the measurement framework during the EFFORT instantiation.

Framework integration

Id question Question Id metric Metric

Q 1a.1 What degree of adaptability does
the product offer?

M 1a.1.2 Number of sup

M a1.1.3 Availability of

Q 1a.3 What degree of replaceability
does the product offer?

M 1a.3.1 Availability of
data backup

M 1a.3.2 Availability of
of data backup

M 1a.3.3 Availability of
M 1a.3.4 Number of file

Q 1b.1 What degree of analysability
does the product offer?

M 1b.1.7 Javadoc densit

Q 1c.2 What degree of recoverability
does the product offer?

M 1c.2.4 Availability of
transactions

Q 1d.1 What degree of functional
adequacy does the product
offer?

M 1d.1.1 Availability of
accounting ma

M 1d.1.2 Availability of
management

M 1d.1.3 Availability of
customer–sup

M 1d.1.4 Availability of

M 1d.1.5 Availability of
management

M 1d.1.6 Availability of
management

M 1d.1.7 Availability of
management

M 1d.1.8 Availability of
management

M 1d.1.9 Availability of
management

Q 1d.2 What degree of interoperability
does the product offer?

M 1d.2.3 Availability of

Q 3.1 What degree of functional
adequacy does the product
offer?

– Metrics of Que

Q 3.3 What is the estimated degree of
affordability?

M 3.3.5 Migration cost

M 3.3.6 Data populatio

M 3.3.7 System config

M 3.3.8 System custom
specifying the existing questions in terms of further metrics that
can be discovered using the additional knowledge of the stated
application context, while the intervention at the goal level, the
extension of goals, is accomplished by adding more questions.

During the instantiation of EFFORT, a relevance strictly referring
the application domain and point of view can be associated with
each metric by using a numeric value in the [1–5] range. The def-
inition of these new relevance markers depends on the experience
and knowledge of the software engineer with respect to the spe-
cific domain of the software system to be analysed. Therefore,
the new markers are combined with those defined in EFFORT. A
new aggregation function for Goal g is defined as follows:

qðgÞ ¼
½
P

q2QgðrFlOSSq þ rSCqÞ �mðqÞ�P
q2QgðrFlOSSq þ rSCqÞ

ð4Þ

where rFlOSSq represents the relevance marker in the FlOSS context
associated with question q, or sub-goal q of Goal 1; rSCq indicates
the relevance indicator in the specific context associated with ques-
tion q, or sub-goal q of Goal 1; Qg is the set of questions (sub-goals
Application and Data Source

ported DBMS Analysis of the project technical
documentation

a client WEB interface Analysis of the official project web site

functionality for the creation of Evaluation by the product use and
analysis of the documentation

functionality for the restoration Evaluation by the product use and
analysis of the documentation

backup services Analysis of the data on the official web site
formats for the reporting Evaluation by the product use and

analysis of the documentation

y Analysis of the javadoc provided

tools for the management of Software analysis and analysis of the
documentation

a module for financial and
nagement

Evaluation by product use and analysis of
the documentation

a module for document Evaluation by product use and analysis of
the documentation

a portal for the management of
plier management

Evaluation by product use and analysis of
the documentation

a module for sales management Evaluation by product use and analysis of
the documentation

a module for warehouse Evaluation by product use and analysis of
the documentation

a module for project Evaluation by product use and analysis of
the documentation

a module for purchase Evaluation by product use and analysis of
the documentation

a module for production Evaluation by product use and analysis of
the documentation

a module for human resource Evaluation by product use and analysis of
the documentation

web-services support Analysis of the official documentation

stion Q 1d.1 –

among different versions Evaluation by product use and analysis of
the documentation

n cost of the system Evaluation by product use and analysis of
the documentation

uration cost Evaluation by product use and analysis of
the documentation

isation cost Evaluation by product use and analysis of
the documentation



1270 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
of Goal 1) related to Goal g; and m(q) is the aggregation function of
the metrics of question q presented in the previous sub-section.

The definition of the relevance markers is needed to better fit
the evaluation by considering the user/adopter needs and interests.

4. EFFORT application

This section demonstrates how EFFORT can be applied to eval-
uation of Open Source Software systems. The chosen application
domain was open source ERP due to the growing interest of the re-
lated communities. This choice requires the customisation of EF-
FORT to the ERP application domain. The customised EFFORT
framework represents a complete model for evaluating the quality
of FlOSS ERP systems with respect to both product and community.
In particular, specific questions and metrics concerning the ERP
context were added to the baseline version of EFFORT.

The customisation of EFFORT was followed by the evaluation of
five FlOSS ERPs, and the results are described below.

With respect to the selection of the projects to be evaluated, the
most diffused ones among ERP FlOSS systems developed using Java
technology were identified. Java technologies were considered for
two reasons. First, for the purpose of obtaining a realistic compar-
ison of the characteristics involving static analysis of code, it was
easier to make comparisons of products that were implemented
according to the same paradigm, or even better, using the same
technology. This does not mean that it is not possible to compare
heterogeneous projects, but there are some limitations in doing
so. For example, different programming languages have different
Table 9
Extension of Goal 3 of the EFFORT measurement framework for evaluating ERP systems.

Extension of Goal 3

Id question Question Id metric Metric

Q 3.5 What degree of support for migration
between different releases is offered?

M.3.5.1 Availabili
data back

M.3.5.2 Availabili
of data ba

M.3.5.3 Availabili
M.3.5.4 Availabili

migration
M.3.5.5 Availabili

M.3.5.6 Availabili
migrating

Q 3.6 What degree of support for
population of the system is offered?

M.3.5.1 Number o
data

Q 3.7 What degree of support for
configuration of the system is
offered?

M.3.7.1 Availabili
system

M.3.7.2 Number o
M.3.7.3 Number o
M.3.7.4 Availabili

category
M.3.7.5 Multicurr

M.3.7.6 Availabili
supportin

M.3.7.7 Availabili
supportin

M.3.7.8 Availabili
supportin

M.3.7.9 Availabili
supportin
of accoun

Q 3.8 What degree of support for
customisation of the system is
offered?

M.3.8.1 Availabili
an extens

M.3.8.2 Availabili
new mod

M.3.8.3 Availabili
customisi
expressional power and different amounts of code are necessary
to implement the same functionality in different languages. The
second reason pertains to the availability of static analysis tools,
which is considerable for Java technology. The projects selected
were Compiere (www.compiere.com), Adempiere (www.adempi-
ere.org), Openbravo (www.openbravo.com), OFBiz (ofbiz.apa-
che.org) and JFire (www.jfire.org). The next subsection describes
the customisation of EFFORT, and the subsequent section discusses
the results achieved.

4.1. Customising EFFORT to the ERP context

The comparison of the existing ERP selection studies reported in
Table 2 was particularly useful during the ERP customisation pro-
cess. Indeed, the criteria listed in Table 2 synthesise the point of
view of experts in the ERP domain. Thus, in accordance with the
customisation steps described in the previous section, specific
metrics and/or questions were introduced for the criteria listed
in the table and not considered in the EFFORT baseline version.
In the customisation process, integration and extension tasks were
executed. Integration pertains to adding additional metrics for
answering some EFFORT baseline questions, while extension was
applied to some goals by adding more questions.

In particular, with respect to the integration, Table 8 shows all
the metrics that were added for answering some baseline ques-
tions. The greater part of the integration concerned Goal 1: product
quality. Particular attention was paid to the strategic role of data
and the necessity of integrating an ERP application with the exist-
Application and Data Source

ty of functionality for creation of
up

Evaluation by product use and analysis of
the documentation

ty of functionality for restoration
ckup

Evaluation by product use and analysis of
the documentation

ty of backup services Analysis of the data on the official web site
ty of documentation of

between versions
Analysis of the data on the official web site

ty of automatic migration tools Evaluation by product use and analysis of
the documentation

ty of documentation for
the database

Analysis of the data on the official web site

f standard formats for importing Evaluation by product use and analysis of
the documentation

ty of a wizard for configuring the Evaluation by product use and analysis of
the documentation

f charts of accounts Analysis of the data on the official web site
f supported languages Analysis of the data on the official web site

ty of functionality for tax
management

Evaluation by product use and analysis of
the documentation

ency coverage index Evaluation by product use and analysis of
the documentation

ty of documentation for
g the starting setup

Analysis of the data on the official web site

ty of documentation for
g language configuration

Analysis of the data on the official web site

ty of documentation for
g tax category configuration

Analysis of the data on the official web site

ty of documentation for
g the configuration of the chart
ts

Analysis of the data on the official web site

ty of functionality for installing
ion of the user interface

Evaluation by product use and analysis of
the documentation

ty of functionality for creating a
ule of the user interface

Evaluation by product use and analysis of
the documentation

ty of functionality for
ng the user interface

Evaluation by product use and analysis of
the documentation

http://www.compiere.com
http://www.adempiere.org
http://www.adempiere.org
http://www.openbravo.com
http://www.jfire.org


Fig. 3. Comparison of the product quality of the five evaluated OSS ERP systems.

Fig. 4. Detailed results pertaining to the product quality of the five evaluated OSS
ERP systems.

L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1271
ing information systems of an organisation. In particular, consider-
ing the criteria listed in Table 2, it emerged that the product quality
for ERP systems should focus specifically on functionality, usability,
system reliability, interoperability, integration/modularity, implemen-
tation time, customisation and flexibility, migration, and technical
quality. Tables 8 and 9 show the additional metrics that were con-
sidered for addressing these aspects in the framework. Specifically,
Table 8 shows that the framework sections regarded adaptability
and replaceability (and, consequentially, portability) were ex-
tended. In particular, the number of supported Data Base Manage-
ment Systems (DBMS) and availability of a web client interface
were considered for the adaptability characteristic, whereas avail-
ability of functionality for backup and restoration of data, availabil-
ity of backup services and number of reporting formats were taken
into account for the replaceability characteristic. Evaluating the
analysability required the adding of a Javadoc density metric, be-
cause all the analysed ERP systems were based on the Java technol-
ogy. In addition, because the analysed software systems were
based on an object-oriented paradigm, metrics related to this par-
adigm were considered. This required the instantiation of the mea-
surement framework with the adoption of specific object-oriented
metrics. A metric was introduced for evaluating recoverability. This
metric considered the availability of tools for transaction management
(M1.c.2.4), which is an issue of concern with ERP systems. A set of
metrics, from M1d.1.1 to M1d.1.9, were added for evaluating func-
tional adequacy. The metrics concerned the partial or total exis-
tence of specified modules. Further customisation could be
performed for analysing the functional adequacy of individual
modules in the execution of specific operations.

With respect to Goal 3, Table 8 presents the integration per-
formed for understanding the economic advantage when an ERP
FlOSS system is adopted. The integration required the addition of
metrics concerning costs in the questions of Goal 3. In fact, the EF-
FORT baseline just considered the possibility of obtaining the prod-
uct free of charge and having to pay an amount for an annual
subscription. Because this is not sufficient for ERP systems, a cus-
tomisation was considered to include costs for migration between
releases (M 3.3.5), population of the system (M 3.3.6), customisa-
tion (M 3.3.8), and configuration (M 3.3.7).

In addition, the criteria listed in Table 2 were further considered
to drive an additional customisation of Goal 3. Specifically the cri-
teria affecting Goal 3 are functionality, usability, support services,
system reliability, interoperability, references and reputation of ven-
dors, partnership, integration/modularity, implementation time, cus-
tomisation and flexibility, and migration. Goal 3 is the most
dependent on the application domain and regards the way a soft-
ware system should be used for being attractive. This aspect does
not depend only on the license costs but also on the costs of both
adapting the software system to specific user needs and maintain-
ing it by installing or updating versions or adopting new releases.
Therefore, including the criteria above in the evaluation also re-
quired an extension intervention.

Goal 3 was extended by inserting the additional questions listed
in Table 9. In particular, the following aspects were considered:

– Migration between different versions of the software, in terms of
support provided for switching from one release to another
one. In the context of ERP systems, this migration cannot be
accomplished like a new installation because it would be too
costly, considering that such a system is generally customised
and hosts a large quantity of data.

– System population, in terms of support offered for importing
large volumes of data.

– System configuration, which refers to the support provided in
terms of functionality and documentation pertaining to the
adaptation of the system to user needs, such as localisation
and internationalisation. The greater this support is, the shorter
the start-up time is.

– System customisation, which pertains to support provided with-
out direct access to the source code to make changes to the sys-
tem, such as the definition of new modules, installation of
extensions, personalisation of reports and creation of new
workflows. This characteristic is very desirable in ERP systems.

Table 9 shows the questions extending Goal 3 and their related
metrics. Each new question is related to one of the listed character-
istics. Table 9 also lists the data source of each metric.
4.2. Results

This section presents the results obtained from applying both
the baseline and customised version of EFFORT to the following
five ERP FlOSS systems: Compiere, Adempiere, Openbravo, OFBiz
and JFire. Fig. 3 summarises the comparison among the product
qualities of the selected projects. The results indicated that the
software product of the Compiere project is the best, followed by
Adempiere. The project that received the worse score was JFire.
The graph shows that the personalisation of EFFORT does not influ-
ence the trends of the comparison, even though the results were
obviously different. All projects except OFBiz yielded a lower score
when the personalised version of EFFORT was considered.

Fig. 4 shows the results obtained using the customised version
of EFFORT for the main sub-characteristics of product quality.
Additional information is provided in Table 10, where ECV stands



Table 10
Results of the evaluation of the product quality of the five analysed OSS ERP systems.

Quality characteristic Relevance Score

FlOSS ERP Compiere Adempiere Openbravo OFBiz JFire

EBV ECV EBV ECV EBV ECV EBV ECV EBV ECV

Portability 3 2 4.10 3.57 3.83 3.49 4.45 3.76 3.41 3.16 3.36 3.14
Adaptability 5.00 3.33 5.00 3.67 5.00 3.67 5.00 4.33 5.00 4.33
Installability 2.64 2.64 2.82 2.82 3.36 3.36 3.91 3.91 4.09 4.09
Replaceability 4.67 4.75 3.67 4.00 5.00 4.25 1.33 1.25 1.00 1.00
Maintainability 3 4 2.83 2.83 2.93 2.93 2.37 2.37 3.97 3.97 3.84 3.84
Analyzability 3.00 3.00 2.43 2.43 1.57 1.57 3.71 3.71 3.57 3.57
Changeability 2.80 2.80 3.40 3.40 2.40 2.40 4.40 4.40 4.40 4.40
Testability 2.50 2.50 2.88 2.88 1.50 1.50 3.75 3.75 4.38 4.38
Technology cohesion 3.00 3.00 3.00 3.00 4.00 4.00 4.00 4.00 3.00 3.00
Reliability 3 5 4.42 4.46 4.17 3.96 3.58 3.46 2.00 2.08 1.83 1.96
Robustness/Maturity 4.17 4.17 4.67 4.67 2.17 2.17 2.67 2.67 2.67 2.67
Recoverability 4.67 4.75 3.67 3.96 5.00 4.75 1.33 1.50 1.00 1.25
Functionality 5 5 4.13 3.96 3.92 3.67 3.00 3.33 3.17 3.50 1.67 1.67
Functional adequacy 3.25 3.25 3.33 3.33 3.00 3.00 3.33 3.33 2.33 2.33
Interoperability 5.00 4.67 4.50 4.00 3.00 3.67 3.00 3.67 1.00 1.00
Usability 4 4 3.28 3.28 3.72 3.72 3.46 3.46 2.59 2.59 2.76 2.76
Pleasantness 2.00 2.00 3.00 3.00 4.00 4.00 2.00 2.00 4.00 4.00
Operability 4.00 4.00 4.00 4.00 3.75 3.75 3.25 3.25 3.50 3.50
Understandability 3.89 3.89 4.11 4.11 3.33 3.33 2.88 2.88 2.56 2.56
Learnability 3.25 3.25 3.75 3.75 2.75 2.75 2.25 2.25 1.00 1.00

Product quality (EBV) 3.77 3.73 3.34 3.02 2.58
(ECV) 3.66 3.58 3.26 3.05 2.55

1272 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
for EFFORT Customised Version and EBV stands for EFFORT Base-
line Version.

Compiere had the best values for functionality and reliability
and also a very good degree of usability and portability. Its main-
tainability results are less than adequate, as were those for
Adempiere and Openbravo. The products that offer less global
quality provide better value in maintainability, mostly because
they are smaller than the others. Despite its size, OFBiz had a good
functionality value, while JFire did not. The latter also had the
worst score in portability, even though it is the easiest system to
install. This is because JFire has very poor replaceability, in terms
of backup/recovery functionalities and services and the number
of import/export standard formats for reports. Openbravo was
found to be the most portable product, while Adempiere had the
best value in usability, operability and understandability, mainly
because it offers at almost every point the possibility of undo/redo
operations, visibility of the system and operation state, good coher-
ence in presentation and a graphical environment across opera-
tions, clarity in texts and titles, a significant presence in online
help and good user documentation.

Fig. 5 shows that Compiere Community obtained one of the
worst community trustworthiness scores, just below JFire’s score.
Fig. 5. Comparison of the community trustworthiness of the five evaluated OSS ERP
systems.
This is due to its poor documentation availability and insufficient
community activity, particularly in development activities. In fact,
the average commits per year and total number of commits are low
compared to those of the other systems, even though there is quite
a good percentage of bugs fixed on the total opened ones. Looking
at Fig. 5 and Table 11, one can observe that Openbravo appears to
be supported by the most trusted community. In fact, it offers a
good amount of easily consultable documentation especially for
system administrators.

There are many developers working on the Openbravo project,
and support tools are largely used (only Adempiere gave better re-
sults for that). In particular, there are many forum posts per year
and forums are available. The Wiki is quite large, and several FAQs
are provided. Openbravo also offers comprehensive support by
means of consulting, training and outsourcing services. Activity
in development is not as intensive, taking into account the commu-
nity size. A barely sufficient trust score can be given to the Adempi-
ere community, even though its results place it second in the
comparison. JFire was rated lowest in community trustworthiness.
OFBiz almost everywhere presents medium scores. A positive note
for OFBiz comes from the community activity, for which it has the
best value. As Fig. 5 shows, the trends of the comparison are not
influenced by the use of the customised version of EFFORT instead
of the baseline one, as was found for product quality.

With respect to product attractiveness, Fig. 6 shows that Open-
bravo obtained the best score, followed by Compiere. For the EF-
FORT baseline version, the opposite was true. In this case,
different trends in the comparison were obtained using the differ-
ent versions of the framework, as can also be observed by compar-
ing Adempiere to OFBiz. Both OFBiz and JFire had worse results
when the EFFORT customised version was used, unlike what hap-
pened with the other products. Detailed results pertaining to prod-
uct attractiveness are reported in Table 12. The most customisable
and configurable product is Openbravo, which has, on the other
hand, a low value of functional adequacy. Only JFire has a lower
score of functional adequacy, and it generally was the worst in
other respects. The most diffused product is definitely Compiere,
followed by Openbravo. These two products also have the best val-
ues of legal reusability, because they offer the possibility of choos-



Fig. 6. Comparison of the product attractiveness of the five evaluated OSS ERP
systems.

Fig. 7. Comparison of the project global quality of the five evaluated OSS ERP
system.

Table 11
Results of the evaluation of the community trustworthiness of the five analysed OSS ERP systems.

Quality characteristic Relevance Score

FlOSS ERP Compiere Adempiere Openbravo OFBiz JFire

Developers number 2 1 2.00 2.00 4.00 2.00 2.00
Community Activity 4 2 2.60 2.60 2.80 3.75 2.50
Support tools 5 4 2.44 3.89 3.22 3.00 1.78
Support services 2 4 3.44 1.78 4.11 1.89 2.78
Documentation 4 4 1.67 3.00 3.00 2.33 2.17

Community trustworthiness (EBV) 2.36 2.91 3.27 2.77 2.18
(ECV) 2.43 2.85 3.33 2.67 2.22

L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1273
ing different types of license, even a commercial one. The products
with the best functional adequacy are Adempiere and OFBiz.

Fig. 7 includes a comparison among the aggregated results that
represent the global quality of the projects. According to both EF-
FORT versions, the best FlOSS ERP project is Openbravo. Compiere
and Adempiere have similar results, even if the former appears a
little better in the customised version of the framework. Table 13
shows the cumulative results for each analysed product and eval-
uated characteristic. The table shows that the results obtained for
the systems using the EFFORT Baseline Version (EBV) are compara-
ble to those obtained using the EFFORT Customised Version (ECV),
except for product attractiveness, for which higher values were ob-
tained using ECV.

The interpretation of the results is largely subjective, because
the point of view of the evaluator must be considered. Neverthe-
less, through the objectivity of the majority of the metrics, the spe-
cialisation of the EFFORT fits the framework to the users’ needs.
Different professional evaluators may obtain different results, but
this depends on their expectations as expressed through the rele-
vance markers.
Table 12
Results of the evaluation of product attractiveness of the five analysed OSS ERP systems.

Quality characteristic Relevance Score

FlOSS ERP Compiere Adempi

EBV ECV EBV

Functional adequacy 5 5 3.25 3.25 3.33
Diffusion 4 3 4.00 4.00 2.27
Cost effectiveness 3 5 2.40 3.22 4.00
Legal reusability 1 5 5.00 5.00 1.00
Migrability – 5 – 3.67 –
Data importability – 5 – 5 –
Configurability – 2 – 3.89 –
Customizability – 4 – 4.67 –

Product attractiveness (EBV) 3.42 2.98
(ECV) 3.96
4.3. Industrial discussions

To obtain feedback on the EFFORT model from the potential
adopters of OSS ERP, a preliminary survey was conducted. Specifi-
cally, a workshop was organised to disseminate the model itself
and interview potential adopters. A brief questionnaire (see
Appendix A) was submitted to the workshop participants. Sixteen
respondents successfully completed the questionnaire.

The survey considered two objectives. Other objectives could be
considered, but a complete industrial validation is beyond the
scope of this study. Thus, the primary objective was to determine
whether the EFFORT model was considered effective for an open
source selection process and how the respondents considered the
EFFORT results obtained for selecting ERP systems. The second
objective was to determine whether the respondents would con-
sider the adoption of the EFFORT model when considering open
source selection within their enterprises. Based on these two
objectives, 8 questions were designed.
ere Openbravo OFBiz JFire

ECV EBV ECV EBV ECV EBV ECV

3.33 3.00 3.00 3.33 3.33 2.33 2.33
2.27 3.45 3.45 2.36 2.36 1.64 1.64
3.88 3.50 4.00 4.00 3.38 4.00 2.88
1.00 5.00 5.00 4.00 4.00 2.00 2.00
4.00 – 4.50 – 1.17 – 1.00
5.00 – 4.00 – 5.00 – 1.00
3.33 – 4.11 – 3.22 – 1.67
4.00 – 5.00 – 2.00 – 1.67

3.41 3.24 2.48
3.27 3.98 3.11 2.00



Table 13
Aggregated results of the evaluation of the five analysed OSS ERP systems.

Quality characteristics EFFORT version Compiere Adempiere OpenBravo OFBiz JFire

Product quality (EBV) 3.77 3.73 3.34 3.02 2.58
(ECV) 3.66 3.58 3.26 3.05 2.55

Community trustworthiness (EBV) 2.36 2.91 3.27 2.77 2.18
(ECV) 2.43 2.85 3.33 2.67 2.22

Product attractiveness (EBV) 3.42 2.98 3.41 3.24 2.48
(ECV) 3.96 3.27 3.98 3.11 2.00

1274 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
The survey targeted software engineers and enterprise manag-
ers involved with technology selection. The questionnaires, includ-
ing both closed and open questions, were submitted by conducting
interviews at the end of the dissemination workshop. Confidential-
ity and privacy were assured to all individuals returning the ques-
tionnaire and the organisations that they represented.

More than two thirds (67.7%) of the 16 organisations responded
to our survey. They belonged to the local private commercial sec-
tor. The 16 organisations ranged from medium in size (18% of
organisations) to very small sizes of less than 10 employees (82%).

Despite the small sample population, the consistency of the
data obtained has increased our confidence in the applicability of
the approach. Only 3 of the 16 organisations did not consider the
EFFORT application satisfying, while 13 considered EFFORT an
effective model that could be useful in supporting their OSS selec-
tion process. Most of these 13 organisations considered the results
of ERP comparison consistent with their point of view. Finally, the
majority of the respondents (70.8%) stated that they would con-
sider adopting EFFORT adoption in their future OSS selection tasks.

Although the size of the survey sample was small, the authors
believe that these 16 organisations provided enough sample data
to support the planning of a broad survey of the applicability of
EFFORT.
5. Conclusions

This paper proposes a quality model for the evaluation of Open
Source Software systems and an operational framework to support
the model.

The quality model consists of an evaluation framework and the
guidelines for its application. The model considers both product
quality and project quality in evaluating an OSS system. A number
of characteristics were considered in relation to OSS products, such
as the community driving the open source project and the open-
ness of information that is useful for a more comprehensive evalu-
ation of this type of software. The EFFORT framework was
developed by considering these characteristics. In addition, EFFORT
was developed with the following objectives in mind: covering the
intersection among the other analysed models and overcoming
their limitations by including other characteristics considered sig-
nificant for Open Source Software. The results of this comparison
can also be used to suggest future work in OSS evaluation.

The proposed framework is compliant with the ISO/IEC 9126
standard for product quality. It considers all of the characteristics
defined by the ISO standard, except in-use quality. In addition, it
considers the major aspects related to FlOSS projects.

Table 1 shows that EFFORT offers more coverage of the ISO stan-
dard than the other models proposed in the literature. In addition,
EFFORT provides an operational framework for evaluating the
quality product of a FlOSS system.

Fig. 1 shows a comparison between EFFORT and the other mod-
els analysed in this study. The characteristics shown in the figure
concern the general aspects considered by the various OSS quality
models, even though they formalise the characteristics in different
ways.

Table 1 and Fig. 1 show that EFFORT is as complete as other OSS
quality models, such as IRCA. In addition, the definition of EFFORT
includes a proposed measurement framework that can be used to
evaluate and compare alternative OSS solutions.

This paper also discusses the customisation of EFFORT to the
evaluation of OSS software systems for specific application do-
mains. Information about the working context of the software sys-
tems to be analysed can suggest the evaluation of additional
aspects not included in the EFFORT baseline framework.

The framework is parametric with respect to the relevance that
an evaluator attributes to the metrics evaluated. The quality model
and measurement framework can accommodate different types of
users: a potential adopter of a FlOSS system, such as an enterprise,
that is mainly interested in the functionality it offers and its ease to
use; a developer that wants to enhance it, who mainly considers
aspects regarding the product quality and FlOSS project commu-
nity providing support to the potential users and developers; or a
potential sponsor who will be interested in the product’s attrac-
tiveness, diffusion and functionality. Each potential user can assign
relevance markers to the metrics on the basis of his/her evaluation
interests. Thus, for example, a developer can assign higher values
to the relevance markers of development and software engineering
metrics, while a potential adopter can increase the influence of
metrics regarding functionality, comprehension, and support
offered.

The final result of the evaluation is a direct comparison of FlOSS
systems with respect to the metrics emphasised (i.e., those with
higher relevance markers), which facilitates the selection of the
most suitable system for specific requirements.

To demonstrate the effectiveness and applicability of EFFORT, it
was customised to fit the ERP software system domain.

The customisation process was based on an analysis of the mod-
els proposed in the literature for evaluating and selecting ERP soft-
ware systems. The analysis of the criteria considered by these
models permitted the definition of a framework that improves
the quality models previously defined for selecting ERP systems.
The comparison of the customised EFFORT with other models is
shown in Table 2. The table shows that the customised EFFORT is
an improvement over the Open Source ERP Guru model, which is
the only model analysed that is focused on OSS ERP systems. Open
Source ERP Guru is a useful platform for supporting the evaluation
of ERP systems, even though it does not provide any operative tool
for driving the selection. The customised EFFORT also includes
characteristics considered by the other models that do not evaluate
open source issues. As in Open Source ERP Guru, the only criteria
included in Fig. 2 that are not considered by EFFORT are market-
oriented criteria.

Customisation of the EFFORT framework required the introduc-
tion of additional metrics and better formalisation of other charac-
teristics. Future work should consider the definition of
mechanisms to extend and customise EFFORT to better character-
ise all of the aspects dependent on the application domain.



L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276 1275
The applicability of the EFFORT framework and its customisa-
tion was investigated through the analysis of five FlOSS ERP sys-
tems. The results obtained led to the improvement of the
measurement framework and identification of the FlOSS ERP sys-
tem that offers the best quality with respect to a predefined set
of relevance markers. The results showed that Compiere is the
FlOSS ERP system that offers the best quality with respect to prod-
uct quality and product attractiveness characteristics, while the
community of OpenBravo provides the highest trustworthiness.
The application of the EFFORT measurement framework to the
evaluation and selection of an OSS system may significantly reduce
the amount of analysis that must be conducted before adopting a
system, with consequent savings in the time and cost required
for gathering and interpreting data.

Obviously, the evaluation of the adequacy of an OSS system de-
pends greatly on how the users use it. Therefore, the EFFORT
framework also considers the adopter’s point of view by defining
the relevance markers associated with each metric and question
in the data aggregation process.

Future investigation will consider the extension of the frame-
work with questionnaires and other tools for evaluating customer
satisfaction. This obviously needs to include a more complex anal-
ysis. In particular, methods and techniques customised for exploit-
ing this aspect will be explored and defined. In addition, with
reference to the ISO standard, further investigations will be per-
formed with respect to the in-use quality characteristic. Further-
more, the authors will continue to search for additional evidence
of the usefulness and applicability of EFFORT and its customisa-
tions by conducting additional studies also involving subjects
working in specific operational contexts.

Appendix A. Survey questionnaire
(1)
 To what sector does your organisation belong?

Government

Public non-commercial organisation

Local private commercial organisation

Overseas-based private commercial organisation

Joint venture between public and private sectors
(2)
 How large is your organisation?

(3)
 Overall, how satisfied are you with the EFFORT

approach?

Very dissatisfied

Dissatisfied

Somewhat satisfied

Very satisfied

Extremely satisfied
(4)
 Overall, how satisfied are you with EFFORT results?

Very dissatisfied

Dissatisfied

Somewhat satisfied

Very satisfied

Extremely satisfied
(5)
 Will you consider the use of EFFORT in your selection
process?

Definitely will

Most likely will

Might or might not

Most likely will not

Definitely will not

Never used
(6)
 EFFORT can be satisfactory in addressing an ERP selection
problem:
Strongly disagree

Somewhat disagree

Neutral

Somewhat agree

Strongly agree
(7)
 How likely are you to recommend EFFORT to others?

Definitely will recommend

Most likely will recommend

Might or might not recommend

Most likely will not recommend

Definitely will not recommend

Never used
(8)
 Please describe any particular aspect of the EFFORT that
stood out:
References

[1] L. Aversano, I. Pennino, M. Tortorella, Evaluating the quality of FREE/OPEN
source project, in: INSTICC Evaluation of Novel Approaches to Software
Engineering conferences – ENASE; INSTICC, 2010, pp. 186–191.

[2] L. Aversano, M. Tortorella, Evaluating the quality of free/open source systems:
a case study, in: Lecture Notes in Business Information Processing, Springer
Verlag, 2011, pp. 119–134. 73(2).

[3] L. Aversano, M. Tortorella, Applying EFFORT for evaluating CRM open source
systems, in: 12th International Conference on Product-Focused Software
Process Improvement, PROFES 2011, Lecture Notes in Business Information
Processing, Springer Verlag, 2011, pp. 202–216.

[4] C.P. Ayala, D.S. Cruzes, X. Franch, R. Conradi, Towards improving OSS products
selection – matching selectors and OSS communities perspectives, in: 7th
International Conference on Open Source Systems, Springer, 2011, pp. 244–
258.

[5] V.R. Basili, G. Caldiera, H.D. Rombach, Goal question metric approach, in: J.J.
Marciniak (Ed.), Encyclopedia of Software Engineering, Wiley Interscience,
1994, pp. 528–532.

[6] J. Bansiya, C.G. Davis, A hierarchical model for object-oriented design quality
assessment, IEEE Transactions on Software Engineering 28 (1) (2002) 4–17.

[7] E.W.N. Bernroider, V. Stix, Profile distance method: a multi-attribute decision
making approach for information system investments, Decision Support
Systems 42 (2) (2006) 988–998.

[8] B. Birdogan, C. Kemal, Determining the ERP package-selecting criteria: the case
of Turkish manufacturing companies, Business Process Management Journal
11 (1) (2005) 75–86.

[9] B.W. Boehm, J.R. Brown, M. Lipow, Quantitative evaluation of software quality,
in: 2nd International Conference on Software Engineering, IEEE Comp. Soc.
Press, Los Alamitos, 1976, pp. 592–605.

[10] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G. McLeod, M. Merritt,
Characteristics of Software Quality, Elsevier North Holland Pub., Co., 1978.

[11] S. Bueno, J.L. Salmeron, Fuzzy modeling enterprise resource planning tool
selection, Computer Standards & Interfaces 30 (3) (2008) 137–147.

[12] A. Cau, G. Concas, M. Marchesi, D.M. German, G. Robles, Method for
qualification and selection of open source software (QSOS) GNU free
documentation license, Mendley 42 (April) (2006) 1–6.

[13] S.R. Chidamber, C.F. Kemerer, Towards a metrics suite for object-oriented
design, in: International Conference of Object-Oriented Programming Systems,
Languages, and Applications – OOPSLA, ACM, New York, 1991, pp. 197–211.

[14] J.P. Confino, P.A. Laplante, An open source software evaluation model,
International Journal of Strategic Information Technology and Applications
(IJSITA), IGI Global 1 (1) (2010) 60–77.

[15] V. Del Bianco, L. Lavazza, S. Morasca, D. Taibi, A survey on open source
software trustworthiness, IEEE Software 28 (5) (2011) 67–75.

[16] V. Del Bianco, L. Lavazza, S. Morasca, D., Taibi, D. Tosi, The QualiSPo approach
to OSS product quality evaluation, in: 3rd International Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and
Development, ACM, New York, 2010, pp. 23–28.

[17] V. Del Bianco, L. Lavazza, S. Morasca, D. Taibi, D. Tosi, An investigation of the
users’ perception of OSS quality, in: 6th International Conference on Open
Source Systems, Springer Verlag, 2010, pp. 15–28.

[18] W.H. DeLone, E.R. McLean, The DeLone and McLean model of information
systems success: a ten-year update, Journal of Management Information
Systems 19 (4) (2003) 9–30.

[19] J.C. Deprez, S. Alexandre, Comparing assessment methodologies for free/open
source software: OpenBRR and QSOS, in: 9th International Conference on
Product-Focused Software Process Improvement (PROFES‘08), Springer Verlag,
2008, pp. 189–203.

[20] C. Ebert, Open source drives innovation, IEEE Software 24 (3) (2007) 105–109.
[21] C. Ebert, Guest Editor’s introduction: how open source tools can benefit

industry, IEEE Software Journals 26 (2) (2009) 50–51.



1276 L. Aversano, M. Tortorella / Information and Software Technology 55 (2013) 1260–1276
[22] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
PWS Publishing Co., Boston, MA, 1998.

[23] F. Fui-Hoon Nah, Enterprise Resource Planning Solutions and Management,
Idea Group Inc (IGI), 2002.

[24] A. Ghapanchi, M.H. Jafarzadeh, M.H. Khakbaz, Fuzzy-data envelopment
analysis approach to enterprise resource planning system analysis and
selection, International Journal of Information Systems and Change
Management 3 (2) (2008) 157–170.

[25] A. Ghapanchi, M.H. Jafarzadeh, M.H. Khakbaz, An application of data
envelopment analysis (dea) for erp system selection: case of a petrochemical
company, in: ICIS 2008 Proceedings, 2008.

[26] B. Golden, Making open source ready for the enterprise: the open source
maturity model, in: B. Golden (Ed.), Extracted From Succeeding with Open
Source, Addison-Wesley Publishing Company, 2005.

[27] Ø. Hauge, C.P. Ayala, R. Conradi, Adoption of open source software in software-
intensive organizations – a systematic literature review, Information &
Software Technology 52 (11) (2010) 1133–1154.

[28] K. Hyoseob, C. Boldyreff, Open source ERP for SMEs, in: 3rd International
Conference on Manufacturing Research, Cranfield University, 2005.

[29] M. Igbaria, End-user computing effectiveness: a structural equation model,
OMEGA, The International Journal of Management Science 18 (6) (1990) 637–
652.

[30] International Organization for Standardization, ISO 8402: Quality
Management and Quality Assurance – Vocabulary International Organization
for Standardization, ISO/IEC, 1994.

[31] International Organization for Standardization, ISO standard 9126: Software
Engineering – Product Quality, part 1–4. ISO/IEC, 2001–2004.

[32] International Organization for Standardization, ISO standard ISO/IEC
25000:2005, Software Engineering – Software product Quality Requirements
and Evaluation (SQuaRE), 2005.

[33] F. Kamseu, N. Habra, Adoption of open source software: Is it the matter of
quality?, in: PReCISE, Computer Science Faculty, University of Namur, 2009

[34] S.H. Kan, V.R. Basili, L.N. Shapiro, Software quality: an overview from the
perspective of total quality management, IBM Systems Journal 33 (1) (1994) 4–19.

[35] S.H. Kan, Metrics and Models in Software Quality Engineering, Addison-
Wesley Professional, 2002.

[36] X. Liao, Y. Li, B. Lu, A model for selecting an ERP system based on linguistic
information processing, Information Systems 32 (2007) 1005–1017.

[37] J.A. McCall, P.K. Richards, G.F. Walters, Factors in Software Quality, Nat’l Tech.
Information Service vols. 1–3 (1977).

[38] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, C. Chavez, A study of the
relationships between source code metrics and attractiveness in free software
projects, in: Brazilian Symposium on Software Engineering, IEEE Computer
Society Press, Los Alamitos, 2010, pp.11–20.
[39] D. Nagy, A.M. Yassin, A. Bhattacherjee, Organizational adoption of open source
software: barriers and remedies, Communications of the ACM 53 (3) (2010)
148–151.

[40] Open Source ERp Guru, Evaluation Criteria for Open Source ERP, 2008 <http://
opensourceerpguru.com/2008/01/08/10-evaluation-criteria-for-open-source-
erp/> (14.05.12).

[41] OpenBRR, Business Readiness Rating for Open Source, Intel, 2005 <http://
docencia.etsit.urjc.es/moodle/file.php/125/OpenBRR_Whitepaper.pdf>
(14.05.12).

[42] D. Reuther, G. Chattopadhyay, Critical factors for enterprise resources planning
system selection and implementation projects within small to medium
enterprises, in: IEEE International Engineering Management Conference, IEEE
Comp. Soc. Press, Los Alamitos, 2004, pp. 851–855.

[43] M. Rofi, B. Zirawani, N.M. Salihin, H. Habibollah, Critical factors in ensuring the
success of implementing open source ERP: case study in Malaysian small
medium enterprise, in: Asia Pacific Industrial Engineering & Management
Systems (APIEMS), 2008, pp. 849–857.

[44] G. Samoladas, D. Gousios, D. Spinellis, I. Stamelos, The SQO-OSS quality model:
measurement based open source software evaluation, in: IFIP 20th World
Computer Congress, Working Group 2.3 on Open Source Software, OSS 2008,
Springer Verlag, 2008, pp. 237–248.

[45] C. Santos, J.M. Pearson, F. Kon, Attractiveness of free and open source software
projects, in: 18th European Conference on Information Systems (ECIS), AIS
Electonic Library, 2010, pp. 15–27.

[46] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P.J. Adams, I. Samoladas, I.
Stamelos, Evaluating the quality of open source software, Electronic Notes in
Theoretical Computer Science 233 (2009) 5–28.

[47] A. Srinivasan, Alternative measures of system effectiveness: associations and
implications, MIS Quarterly 9 (3) (1985) 243–253.

[48] W.J. Sung, J.H. Kim, S.Y. Rhew, A quality model for open source selection, in:
6th International Conference on Advanced Language Processing and Web
Information Technology, IEEE Comp. Soc. Press, Los Alamitos, 2007, pp. 515–
519.

[49] R.T. Watson, L.F. Pitt, C.B. Kavan, Measuring information systems service
quality: lessons from two longitudinal case studies, MIS Quarterly 22 (1)
(1998) 61–79.

[50] D.A. Wheeler, How to evaluate open source software/free software (OSS/FS)
programs, 2011 <http://www.dwheeler.com/oss_fs_eval.html> (14.05.12).

[51] C.C. Wei, C.F. Chien, M.J.J. Wang, An AHP-based approach to ERP system
selection, International Journal of Production Economics (2005) 47–62 (96)1.

[52] B. Zirawani, M.N. Salihin, H. Habibollah, Critical factors to ensure the
successful of OS-ERP implementation based on technical requirement point
of view, in: 3rd Asia International Conference on Modelling & Simulation, IEEE
Comp. Soc. press, Los Alamitos, 2009, pp. 419–424.

http://opensourceerpguru.com/2008/01/08/10-evaluation-criteria-for-open-source-erp/
http://opensourceerpguru.com/2008/01/08/10-evaluation-criteria-for-open-source-erp/
http://opensourceerpguru.com/2008/01/08/10-evaluation-criteria-for-open-source-erp/
http://docencia.etsit.urjc.es/moodle/file.php/125/OpenBRR_Whitepaper.pdf
http://docencia.etsit.urjc.es/moodle/file.php/125/OpenBRR_Whitepaper.pdf
http://www.dwheeler.com/oss_fs_eval.html

	Quality evaluation of floss projects: Application to ERP systems
	1 Introduction
	2 Related works
	2.1 Evaluation of software system quality
	2.2 Evaluation of ERP software systems

	3 Proposed approach
	3.1 Product quality
	3.2 Community trustworthiness
	3.3 Product attractiveness
	3.4 Data analysis
	3.5 EFFORT customisation

	4 EFFORT application
	4.1 Customising EFFORT to the ERP context
	4.2 Results
	4.3 Industrial discussions

	5 Conclusions
	Appendix A Survey questionnaire
	References


