
Discrete Optimization

One-dimensional cutting stock problem to minimize
the number of different patterns

Shunji Umetani *, Mutsunori Yagiura, Toshihide Ibaraki

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8301, Japan

Received 18 April 2001; accepted 2 November 2002

Abstract

As the cost associated with the change of cutting patterns become more important in recent industry, we consider

1D-CSP in which the number of different cutting patterns is constrained within a given bound. The proposed approach

is based on metaheuristics, and incorporates an adaptive pattern generation technique. According to our computational

experiments, it is observed that the proposed algorithm provides comparable solutions to other existing heuristic ap-

proaches for 1D-CSP.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cutting stock problem; Pattern minimization; Local search; Metaheuristics; Pattern generation

1. Introduction

One-dimensional cutting stock problem (1D-

CSP) is one of the representative combinatorial

optimization problems, which has many applica-

tions in, e.g., steel, paper and fiber industries. To

define an instance of 1D-CSP, we are given a

sufficient number of stock rolls which have the
same length L, and m types of products with given

lengths ðl1; l2; . . . ; lmÞ and their demands ðd1; d2;
. . . ; dmÞ. A cutting pattern is a combination of

products cut from a stock roll. A solution to 1D-

CSP consists of a set of cutting patterns and the

corresponding frequencies, i.e., the number of

times each pattern is applied.

One of the most important costs for 1D-CSP is

the amount of residual pieces of processed stock

rolls, called trim loss, which are usually treated as

waste product. Hence, the problem of minimizing
the total trim loss (or the number of processed

stock rolls) has been intensively studied. This

problem is often formulated as an integer pro-

gramming (IP) problem, and its linear program-

ming (LP) relaxation is exploited in many heuristic

algorithms; e.g., first solve the LP and then modify

the LP solution to an integer solution heuristically.

In this approach, however, it is impractical to
consider all feasible cutting patterns, which cor-

respond to the columns in LP formulation, in

European Journal of Operational Research 146 (2003) 388–402

www.elsevier.com/locate/dsw

*Corresponding author. Tel.: +81-75-753-5514; fax: +81-75-

753-4920.

E-mail addresses: umetani@amp.i.kyoto-u.ac.jp (S. Ume-

tani), yagiura@amp.i.kyoto-u.ac.jp (M. Yagiura), ibaraki@

amp.i.kyoto-u.ac.jp (T. Ibaraki).

0377-2217/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0377 -2217 (02)00239 -4

mail to: umetani@amp.i.kyoto-u.ac.jp

particular when li are much smaller than L. Gil-

more and Gomory [4,5] proposed an ingenious

procedure to find cutting patterns necessary to

improve the LP solution by solving the associated

knapsack problem.

In recent years, however, the costs of other
factors than trim loss have become more impor-

tant. Among them is the cost associated with

pattern changes. In the solutions of LP based ap-

proaches, the number of different patterns tends

to become close to the number of products, which

is often too large.

Three types of algorithms have been proposed

to minimize or reduce the number of pattern
changes in 1D-CSP. The first is a greedy type

heuristic algorithm called the sequential heuristic

procedure (SHP) proposed by Haessler [8,9]. SHP

sequentially adds new cutting patterns to the cur-

rent solution until all demands are satisfied. In

each step, it first generates candidates of cutting

patterns which satisfy some portion of remaining

demands, and then heuristically selects a cutting
pattern from the candidate list, whose trim loss is

small and frequency is high. Vahrenkamp [17]

proposed a variant of SHP, in which a new pattern

is generated by a simple randomized algorithm.

Gradisar et al. [7] applied SHP to a variant of 1D-

CSP in which stock rolls may have different

lengths. Sweeney and Hassler [16] proposed a hy-

brid algorithm based on SHP and the LP based
approach. Basic ideas of these algorithms are

summarized in [10].

The second is a heuristic method called the

pattern combination, which is proposed by John-

ston [12] and Goulimis [6]. The algorithm starts

from a solution obtained by an LP based ap-

proach, and reduce the number of different pat-

terns by combining two patterns into one pattern;
i.e., it selects two patterns in the solution and

replaces them with a new pattern such that the

amount of each product covered by the new pat-

tern is equivalent to that covered by the removed

patterns. Recently Foerster and W€aascher [2] pro-
posed an algorithm of this type, called KOMBI,

which uses many types of combinations. For ex-

ample, three patterns are replaced with two new
patterns, four patterns are replaced with three new

patterns, etc.

The third is an exact algorithm for the pattern

minimization problem (PMP) proposed by Van-

derbeck [18], where PMP minimizes the number of

different cutting patterns while using given number

of stock rolls or less. PMP is first formulated as a

quadratic integer programming problem, which
is then decomposed into multiple bounded inte-

ger knapsack problems which have strong LP

relaxations. Then a branch-and-bound algorithm

procedure is applied while utilizing the column

generation technique. According to computational

experiments, it was observed this algorithm could

solve many small problems exactly, but failed to

obtain optimal solutions for several instances of
moderate sizes in two hours.

In this paper, we propose a new heuristic al-

gorithm for reducing the number of different cut-

ting patterns. As it is not easy to minimize the

number of different cutting patterns directly, we fix

it to n (a program parameter), and search a solu-

tion whose quadratic deviation of the cut products

from the demands is sufficiently small. For this
problem, we propose an iterated local search al-

gorithm with adaptive pattern generation, and we

call the algorithm ILS-APG. The minimization of

n may then be attained by iteratively applying

ILS-APG with different values of n, e.g., by using

binary search. For simplicity, in this paper, we

explain our algorithm for a fixed n. Note that we

allow both surplus and shortage from the de-
mands. To our knowledge, handling the demand

constraint in this manner is new; however, there

are some real applications in which surplus and

shortage are equally penalized, e.g., a problem

found in a chemical fiber company as mentioned in

Section 7. In general, it becomes easier to find a

solution with a small deviation from the demands

as n becomes larger. In this sense, there is a trade-
off between the number of different cutting pat-

terns and the deviation from the demands.

The iterated local search (ILS) is based on local

search (LS). LS starts from an initial solution and

repeats replacing it with a better solution in its

neighborhood until no better solution is found in

the neighborhood, where the neighborhood is

the set of solutions obtainable from the current
solution by slight perturbations. The resulting so-

lution, for which no better solution exists in its

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 389

neighborhood, is called locally optimal. ILS re-

peats LS from the initial solutions obtained by

randomly perturbing good locally optimal solu-

tions found in the past search. In spite of its sim-

plicity, ILS is known to be quite effective [11].

Our ILS-APG tries to find a set of n cutting
patterns yielding small deviations from the de-

mands. The neighborhood used is the set of solu-

tions obtainable by deleting one cutting pattern in

the current solution and adding a different one. To

evaluate the objective value of a solution in the

neighborhood, it is necessary to compute the fre-

quencies of cutting patterns. For this purpose, we

adopt a simple heuristic algorithm based on the
nonlinear Gauss–Seidel method, which is ex-

plained in Section 3. Basic components of LS are

explained in Section 4.

In defining the neighborhood, it is not realistic

to consider all possible cutting patterns to add,

since the size of neighborhood may become ex-

ponential in m. To overcome this, we restrict the

candidate cutting patterns to those generated by
an adaptive pattern generation heuristic, which is

proposed in Section 5. Finally the whole frame-

work of the ILS-APG is described in Section 6.

Computational experiments are conducted in

Section 7 for random problem instances and real

problem instances. The random problem instances

are generated by CUTGEN1 [3] and the real

problem instances are taken from an application in
a chemical fiber company. ILS-APG is compared

with SHP, KOMBI and a heuristic algorithm used

in the chemical fiber company. According to the

computational results, ILS-APG finds good solu-

tions with smaller number of different cutting

patterns for most of the tested instances, compared

to other algorithms. Possible improvements of

ILS-APG are discussed in Section 8.

2. Formulation of 1D-CSP

In this section, we define the one-dimensional

cutting stock problem to minimize the quadratic

deviation from demands using a fixed number n of

different cutting patterns. We are given a sufficient
number of stock rolls of length L, and m types of

products M ¼ f1; 2; . . . ;mg which have given

lengths ðl1; l2; . . . ; lmÞ and demands ðd1; d2; . . . ; dmÞ.
A cutting pattern is described as pj ¼ ða1j; a2j; . . . ;
amjÞ, where aij 2 Zþ (the set of nonnegative inte-
gers) is the number of product i cut from one stock

roll. We say a cutting pattern pj satisfyingX
i2M

aijli 6 L ð1Þ

feasible. It is often necessary in practice to con-

sider additional constraints on cutting patterns.

One of the common constraints is that the trim

loss of a cutting pattern should be smaller than the

smallest product, i.e.,

L�
X
i2M

aijli < min
i2M

li: ð2Þ

A cutting pattern satisfying (2) is called a complete-

cut cutting pattern [15]. Another common con-

straint is that the number of products in a stock

roll is restricted to a given range, because the

number of knives attached to the cutting machine

is usually restricted. Our algorithm can deal with
all these constraints. Let S denote the set of all

feasible cutting patterns that satisfy all such con-

straints as well as (1).

A solution of 1D-CSP consists of a set of cut-

ting patterns P 	 S, and the frequencies of cutting
patterns x ¼ ðx1; x2; . . . ; xjPjÞ 2 Z jPjþ , where xj rep-
resents the frequency of patterns pj 2 P. Now 1D-
CSP to minimize the number of different patterns
is formulated as follows:

MIN-PAT

minimize jPj

subject to
X
i2M

X
pj2P

aijxj

� di

!2

6D;

P 	 S;

xj 2 Zþ for pj 2 P; ð3Þ
where D is a given bound for the deviation from

the demands.

If D ¼ 0, MIN-PAT is same as the pattern

minimization problem (PMP) presented by Van-
derbeck [18]. As PMP reduces to the bin packing

problem which is known to be strongly NP-com-

plete, MIN-PAT is a hard problem. McDiarmid

[13] considered the special case of PMP where any

two products fit on a stock roll (li þ lj 6 L8i; j) but

390 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

no three do (li þ lj þ lk > L8i; j; k). For this spe-
cial case of PMP, he showed that PMP is strongly

NP-hard even though the minimum number

of processed stock rolls is trivial (as exactly

d
P

i2M di=2e stock rolls are required).
As already mentioned in Section 1, we consider

in this paper the 1D-CSP in which the number of

different patterns is constrained to be constant n

and the deviation from the demands is minimized:

MIN-DEV

minimize f ðP; xÞ ¼
X
i2M

X
pj2P

aijxj

� di

!2

subject to jPj ¼ n;

P 	 S;

xj 2 Zþ for pj 2 P: ð4Þ

The above two formulations ignore the trim

loss; but, if necessary, we can control the quantity

of trim loss to some extent by adding appropriate

constraints on cutting patterns; e.g., restricting S

to be the set of complete-cut patterns. Our algo-
rithm ILS-APG indirectly reduces the trim loss by

restricting candidate cutting patterns to those

having small trim losses, in the adaptive pattern

generation procedure (Section 5).

3. Calculating the frequencies of cutting patterns

To evaluate the objective values f ðP; xÞ of (4),
it is necessary to compute the frequencies x for a
given set of cutting patterns P. In this section, we
explain our algorithm for this. If P is specified, the

problem of finding an optimal x becomes the fol-
lowing integer quadratic programming problem:

ðQðPÞÞ

minimize f ðP; xÞ ¼
X
i2M

X
pj2P

aijxj

� di

!2

subject to xj 2 Zþ for pj 2 P: ð5Þ

Since it is hard to solve QðPÞ exactly, we first solve
the relaxation �QQðPÞ of QðPÞ, in which the integer
constraints xj 2 Zþ are replaced with xj P 0. After

calculating an optimal solution �xx of �QQðPÞ, we
round �xx to its nearest integer solution x̂x,

x̂xj d�xxje if �xxj � b�xxjcP 0:5

and

x̂xj b�xxjc otherwise: ð6Þ

For convenience, we abbreviate f ðP; x̂xÞ to f̂f ðPÞ in
the following discussion. The solution x̂x obtained
fromP is denoted by x̂xðPÞ if we want to specifyP.
There may be various algorithms to solve �QQðPÞ.

We use the nonlinear Gauss–Seidel method [1]

NGSðPÞ, because it is easy to implement and is
usually efficient as the computational experiment

in Section 7 explains.

In each iteration of NGSðPÞ, one variable xl in
the current solution xðkÞ is updated as follows. Let
~xxl satisfy equation of =oxljxj¼xðkÞj ; j 6¼l ¼ 0. Such ~xxl can
be calculated by

~xxl xðkÞl �
of
oxl

���
x¼xðkÞ

2
P

i2M a2il
; ð7Þ

where

of
oxl

����
x¼xðkÞ

¼ �2
Xm
i¼1

kiail;

ki ¼ di �
X
pj2P

aijx
ðkÞ
j :

ð8Þ

Then the xl is updated by xl maxf~xxl; 0g; other
variables in xðkÞ are unchanged.
Iterations are conducted so that all variables xl

are scanned in a prespecified order and every

variable xl with pl 2 P is checked in n iterations.

The entire algorithm is described as follows, where
e is a sufficiently small positive constant.

Nonlinear Gauss–Seidel method: NGSðPÞ

Step 1. Set ki di for all i 2 M , and

xð0Þj 0;
of
oxj

����
x¼xð0Þ

 �2
X
i2M

kiaij

for all pj 2 P. Let k 0.

Step 2. If either of the conditions

ð1Þ of
oxj

����
����
x¼xðkÞ

���� < e;

or

ð2Þ of
oxj

����
x¼xðkÞ

> 0

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 391

and xj ¼ 0, is satisfied for every pj 2 P, then
output x and halt.

Step 3. Choose a variable xl that satisfies neither
(1) nor (2) in Step 2, and set

Dxl �
1

2
P

i2M a2il

of
oxl

����
x¼xðkÞ

and xðkþ1Þl maxf0; xðkÞl þ Dxlg. Let xðkþ1Þj xðkÞj

for j 6¼ l.
Step 4. Update ki ki � ailDxl for all i 2 M and

of
oxj

����
x¼xðkþ1Þ

 �2
X
i2M

kiaij

for all pj 2 P. Let k k þ 1 and return to Step 2.

4. Local search

The local search (LS) procedure is used to find a

set of cutting patterns P with a small cost

f̂f ðPÞ ¼ f ðP; x̂xðPÞÞ for the x̂xðPÞ computed as in
Section 3. A natural definition for the neighbor-

hood used in LS would be

N allðPÞ ¼
[
pj2P

N all
j ðPÞ; ð9Þ

where

N all
j ðPÞ ¼ fP [fpj0 g n fpjgj pj0 2 Sg; pj 2 P;

ð10Þ
i.e., N allðPÞ is the set of all solutions obtainable by
removing one cutting pattern from P and adding

another cutting pattern in S. However, in general,
the size jSj is roughly estimated as OðmqÞ, where q
represents the average number of products in a

cutting pattern, and can be very large. Hence, it is

necessary to introduce much smaller neighbor-

hood to make LS practical. For this purpose, we

define a small subset S0ðjÞ � S for each pj 2 P, and
use

N red
j ðPÞ ¼ fP [fpj0 g n fpjgj pj0 2 S0ðjÞg; pj 2 P;

ð11Þ
instead of (10). Then the neighborhood of P is

defined by

N redðPÞ ¼
[
pj2P

N red
j ðPÞ: ð12Þ

Here S0ðjÞ is the set of feasible cutting patterns
generated by the adaptive pattern generation al-

gorithm to be described in Section 5.

5. A heuristic algorithm to generate cutting patterns

In this section, we explain how to generate a

subset S0ðjÞ � S of cutting patterns, which have

prospect of improving the current solution P. It is
based on the residual demands r ¼ ðr1; r2; . . . ; rmÞ,
whose definition will be given later. Let p ¼
ða1; a2; . . . ; amÞ be a cutting pattern to be gener-
ated, and let x be the frequency of p. Then problem

P1ðrÞ of finding a new pattern p and its frequency x

is defined as follows:

ðP1ðrÞÞ

minimize
X
i2M

aixð � riÞ2

subject to
X
i2M

aili 6 L;

x 2 Zþ;

ai 2 Zþ; i 2 M : ð13Þ

Problem P1ðrÞ is a nonlinear integer programming
problem, and is difficult to solve exactly. Thus, we

use an approximate algorithm which is based on
the relaxation �PP1ðrÞ obtained by replacing the in-
teger constraints x 2 Zþ and a 2 Zm

þ by xP 0 and

aP 0, respectively. The relaxation �PP1ðrÞ may have
many optimal solutions, among which we use the

following solution that has no trim loss:

�aaiðrÞ ¼
LP

i2M rili

� �
ri; i 2 M ;

�xxðrÞ ¼
P

i2M rili
L

:

ð14Þ

Then, we consider how to round �aaiðrÞ to integer
values ai. This problem is described as follows:

ðP2ðrÞÞ

minimize
X
i2M
ðai � �aaiðrÞÞ2

subject to
X
i2M

aili 6 L;

ai 2 fd�aaiðrÞe; b�aaiðrÞcg; i 2 M : ð15Þ

392 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

Since each decision variable ai can take only two
values d�aaiðrÞe and b�aaiðrÞc, the problem P2ðrÞ is
equivalent to the following 0–1 knapsack problem:

ðP 02ðrÞÞ

minimize
X
i2M

1
	
� 2ð�aaiðrÞ � b�aaiðrÞcÞ

yi

subject to
X
i2M

yili 6L�
X
i2M
b�aaiðrÞcli;

yi 2 f0; 1g; i 2 M : ð16Þ

We can get an optimal solution for problem P2ðrÞ
from an optimal solution y� ¼ ðy�1 ; y�2 ; . . . ; y�mÞ for
problem P 02ðrÞ by setting ai b�aaiðrÞc if y�i ¼ 0 and
ai d�aaiðrÞe otherwise. Taking into account that

an optimal solution for problem P 02ðrÞ may not

always give a useful cutting pattern (since P 02ðrÞ is
an approximation to P1ðrÞ), we try to generate

many good solutions for problem P 02ðrÞ heuristi-
cally by using the following adaptive pattern gen-

eration algorithm APGðrÞ.
Algorithm APGðrÞ is based on Sahni’s heuristic

algorithm [14] for the 0–1 knapsack problem. It

first applies a simple greedy method and outputs a

solution ð~yy1; ~yy2; . . . ; ~yymÞ. The greedy method starts
from y ¼ 0, and repeats the following steps: in

each step, choose an i with the smallest ð1�
2ð�aaiðrÞ � b�aaiðrÞcÞÞ=li among those satisfying

yi ¼ 0 and
X
k2M

yklk þ li 6L�
X
k2M
b�aakðrÞclk;

ð17Þ

and then set yi 1. The algorithm stops if no i

satisfies condition (17) and outputs the resulting y
as ~yy. After this, the greedy method is repeatedly
applied to m problem instances, each of which is

obtained by fixing one variable yq to 1� ~yyq,
q 2 M . Thus we generate mþ 1 candidate cutting
patterns. The whole procedure is described as
follows.

Algorithm APGðrÞ

Step 1. Let ð~yy1; ~yy2; . . . ; ~yymÞ GREEDYðr; 0; 0Þ and
output the pattern obtained from ð~yy1; ~yy2; . . . ;
~yymÞ.

Step 2. For each q 2 M , let ðy1; y2; . . . ; ymÞ
GREEDYðr; q; yqÞ for yq 1� ~yyq, and output
the pattern obtained from ðy1; y2; . . . ; ymÞ.

Here GREEDYðr; q; mÞ is a subroutine that

applies the greedy method to instance (16) in

which the variable yq is fixed to m. For convenience,
we used GREEDYðr; 0; 0Þ to denote the greedy

method applied to the original instance (16).

Algorithm GREEDY ðr; q; yqÞ

Step 1. Set yi 0 for all i 2 M n fqg.
Step 2. Sort all products i 2 M n fqg in the as-

cending order of ð1� 2ð�aaiðrÞ � b�aaiðrÞcÞÞ=li,
and let rðkÞ denote the kth product in this

order.

Step 3. For k ¼ 1; 2; . . . ;m� 1, let yrðkÞ 1 ifP
i2M ;i 6¼k yrðiÞlrðiÞ þ lrðkÞ6 L�

P
i2M b�aaiðrÞcli, and

yrðkÞ 0 otherwise.

Step 4. Output ðy1; y2; . . . ; ymÞ and halt.

Finally let P0 	 S and x denote the frequencies
of patterns in P0. We define the residual demand ri
of each product i when a cutting pattern pj is re-
moved from P0 as follows:

riðP0; xÞ ¼ max 0; di

0
@ �

X
pj2P0

aijxj

1
A; i 2 M ;

ð18Þ
where if P0 ¼ ; we define that riðP0; xÞ ¼ di. Then
the residual demand of the current pattern set P
with frequencies x̂xðPÞ is defined by riðP n fpjg;
x̂xðPÞÞ. For convenience, we abbreviate riðP n fpjg;
x̂xðPÞÞ to r̂riðjÞ, when the current solution P is ob-

vious. Let r̂r ¼ ðr̂r1ðjÞ; r̂r2ðjÞ; . . . ; r̂rmðjÞÞ.
To see how many of the cutting patterns gen-

erated by APGðr̂rðjÞÞ are useful, we conducted

computational experiment. We took instances

from real applications provided by a chemical fiber

company. The details of these instances are ex-

plained in Section 7, but their sizes are small en-

ough to enumerate all the feasible cutting patterns.

In this experiment, we chose a solution P and a

pattern pj 2 P. Fig. 1 represents the differences in
the objective values Df̂f ðP0Þ ¼ f̂f ðP0Þ � f̂f ðPÞ (ver-
tical axis) between the current solution P and all

P0 2 N all
j ðPÞ against the deviation from the con-

tinuous pattern
P

i2M ðai � �aaiðr̂rðjÞÞÞ2 (horizontal

axis). If Df̂f ðP0Þ < 0, the solution P0 is better than
the current solution P. From Fig. 1, we can ob-

serve that the number of cutting patterns P0 with

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 393

Df̂f ðP0Þ < 0 is quite small among all the feasible

cutting patterns, and that there is a strong corre-

lation between the horizontal and vertical axes in

Fig. 1, i.e., cutting patterns with small deviations
from �aaðr̂rðjÞÞ are likely to improve the current so-
lution.

Next, in Fig. 2, we show the objective values of

solutions in N red
j ðPÞ, where the horizontal and

vertical axes are the same as in Fig. 1, and there

are mþ 1 solutions in N red
j ðPÞ, which is generated

by APGðrÞ of this section. Fig. 2 tells that all

cutting patterns in N red
j ðPÞ are close to �aaðr̂rðjÞÞ, and

in this case, all cutting patterns P0 in N red
j ðPÞ

satisfy Df̂f ðP0Þ < 0. Thus APGðrÞ appears to be

very effective to generate good solutions P0 from
the current P.

6. Searching cutting patterns by ILS-APG

In this section, we explain our iterated local

search algorithm ILS-APG; first a framework of

ILS-APG, and then its subroutines INIT and
LSðPÞ. ILS-APG first applies local search LSðPÞ
to the initial solution P constructed by INIT, and

then repeats local search LSðPÞ, each time gener-
ating an initial solution Pinit by randomly per-

turbing the best solution obtained by then. Here,

trial denotes the current number of iterations of

local search, and MAXTRIALS (program pa-

rameter) gives the upper bound of trial.P� denotes
the best solution obtained by then.

Algorithm ILS-APG

Step 1. Set trial 1. Set Pinit by executing INIT,

and then set P� Pinit and P Pinit (P de-

notes the current solution).

Step 2. Let P0 LSðPÞ, and let P� P0 if
f̂f ðP0Þ6 f̂f ðP�Þ.

Step 3. If trialPMAXTRIALS, then output P�

and halt. Otherwise choose a P 2 N redðP�Þ
randomly, let trial trialþ 1, and return to

Step 2.

We now explain how to construct an initial

solution Pinit by INIT. We use the adaptive pat-

tern generation method APGðrÞ in Section 5 also
for this purpose. The algorithm starts from P ¼ ;
and repeat adding the cutting pattern p with the

minimum f̂f ðP [fpgÞ among the candidate pat-

terns generated by APGðrÞ. The residual demand r
here is given by r ¼ rðP; x̂xðPÞÞ of (18), where x̂xðPÞ
is obtained by (5) and (6) (for convenience we set

ri ¼ di for all i if P ¼ ;). Algorithm INIT is for-

mally described as follows. Recall that n is the
number of different cutting patterns.

Algorithm INIT

Step 1. Set Pinit ; and k 0.

Step 2. Let S0 be the set of patterns generated by
APGðrðPinit; x̂xðPinitÞÞÞ.

Step 3. Choose a pattern p 2 S0 with the minimum
f̂f ðPinit [fpgÞ, and set Pinit Pinit [fpg and
k k þ 1.

Step 4. If k ¼ n, then output solution Pinit and

halt; otherwise return to Step 2.Fig. 2. Patterns in N red
j ðPÞ for the current solution P.

Fig. 1. All patterns in N all
j ðPÞ for the current solution P.

394 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

We now explain the details of local search

LSðPÞ. As explained in Section 4, LSðPÞ is based
on the neighborhood N redðPÞ constructed by

calling APGðr̂rðjÞÞ of Section 5. Furthermore, to

reduce the number of candidate patterns jS0ðjÞj,
we select only c candidate patterns by preferring
smaller

P
i2M ðai � �aaiðr̂rðjÞÞÞ2, where c is a program

parameter.

LSðPÞ uses the first admissible move strategy,
implemented by using a queue that maintains the

cutting patterns in P. For the cutting pattern pj on
top of the queue, we find the pattern pj0 that
minimizes f̂f ðP [fpj0 g n fpjgÞ among those in

S0ðjÞ. If P0 ¼ P [fpj0 g n fpjg is better than P (i.e.,
f̂f ðP0Þ < f̂f ðPÞ), then we move to P0 immediately
and put pj0 to the tail of the queue; otherwise we
remove pj from the queue and add it to its tail.

Algorithm LSðPÞ is formally described as fol-
lows. Recall that c is a parameter which sets the
number of candidate patterns. In the algorithm, Q

denotes the queue that maintains the cutting pat-

terns in P. Procedure ENQUEUEðQ; pkÞ adds a
pattern pk at the end of Q, and TOPðQÞ returns the
top pattern of Q, and DEQUEUEðQÞ deletes
TOPðQÞ from Q.

Algorithm LSðPÞ

Step 1. Set Q be an empty queue, and then

ENQUEUEðQ; pjÞ for all pj 2 P in an arbitrary

order. Set k 0.
Step 2. Set pj TOPðQÞ, and then DEQU

EUEðQÞ.
Step 3. Let S0ðjÞ be the set of patterns which c
smallest deviations

P
i2M ðai � �aaiðr̂rðjÞÞÞ2.

Step 4. Choose pj0 2 S0ðjÞ with the minimum

f̂f ðP [fpj0 g n fpjgÞ, and set P0 P[fpj0 gn
fpjg.

Step 5. If f̂f ðP0Þ < f̂f ðPÞ, then set P P0 and
k 0, ENQUEUEðQ; pj0 Þ and return to Step

2; otherwise ENQUEUEðQ; pjÞ.
Step 6. Set k k þ 1. If k < jPj then return to

Step 2; otherwise output P and halt.

7. Computational experiments

We conducted computational experiment for

random instances generated by CUTGEN1 [3] and

for some instances taken from real applications in

a chemical fiber company. We compared ILS-APG

with the following three algorithms: SHP [8,9],

KOMBI [2] and a heuristic algorithm called the

generation and test method (GT), which is used in

the chemical fiber company in Japan. GT se-
quentially generates a set of candidate patterns by

repeatedly adding a new cutting pattern to the

current set, and is similar to SHP. We coded ILS-

APG and SHP in C language and executed on

an IBM-compatible personal computer (PentiumII

450 MHz, 128 MB memory). The results of

GT were provided by the chemical fiber com-

pany, where GT was run on an IBM-compatible
personal computer (Pentium 133 MHz, 32 MB

memory). The results of KOMBI were taken from

[2], as we could not get the source code of KO-

MBI. KOMBI was run on an IBM-compatible

486/66 personal computer using MODULA-2 as

the programming language under MS-DOS 6.0.

SHP has a program parameter MAXTL to control

the quantity of trim loss of the output solution,
which is set to 0.03 in our experiment. The pro-

gram parameter MAXTRIAL of ILS-APG is set

to 100, and c is set to dðmþ 1Þ=10e.
Before presenting computational results, it is

necessary to emphasize that the problem solved by

SHP and KOMBI is different from that solved by

ILS-APG and GT, because demand constraints

are treated differently. ILS-APG and GT allow the
shortage and/or overproduction of the products,

where ILS-APG minimizes their total squared de-

viation and GT reduces the deviation heuristi-

cally. SHP and KOMBI do not allow shortage,

and SHP allows neither shortage nor overpro-

duction. Therefore precise comparison of algo-

rithm performance is not possible. But we may be

able to capture their general tendency from the
computational results.

To evaluate the quality of squared deviation

f ðP; xÞ, it may be convenient to introduce a simple
criterion of goodness. Let us consider f be ac-

ceptable if f 6 bacpt holds, where

bacpt ¼
X
i2M

maxfð0:01diÞ2; 1g; ð19Þ

i.e., 1% of the demand or a single deviation

for each product i. In the following results, the

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 395

number of acceptable instances nacpt is always

given for ILS-APG.

We first conducted computational experiment

for the random instances generated by CUTGEN1

[3], and compared ILS-APG with SHP and KO-
MBI [2]. We generated 18 classes of random in-

stances, which are defined by combining different

values of the parameters L, m, m1, m2, �dd. The
lengths li were treated as random variables taken

from interval ½m1L; m2L�. �dd is the average of de-

mands ðd1; d2; . . . ; dmÞ. In our experiments, L was

set to 1000, m was set to 10, 20 and 40, ðm1; m2Þ was
set to (0.01, 0.2), (0.01, 0.8) and (0.2, 0.8), and �dd
was set to 10 and 100. The parameter seed was set

to 1994. For each class, 10 problem instances were

generated and solved. These classes of problem

instances were also solved by KOMBI in [2], where

100 instances are tested for each class.

Table 1 shows the results of SHP, KOMBI and

ILS-APG, where �bbacpt is the average of bacpt defined
in (19) and tloss is the ratio (percentage) of the
total trim loss to the length of stock rolls:

tloss ¼
100

P
pj2P L�

P
i2M aijli

� �
L
P

pj2P xj
: ð20Þ

Note that jPj and tloss (trim loss) are averages of

10 instances for SHP and ILS-APG, where they
are averages of 100 instances for KOMBI (the data

are taken from [2]). KOMBI obtained solutions

with smaller average sizes jPj than those of SHP
for 14 classes out of 18. This suggests that KOMBI

performs better than SHP for random instances.

Note that the number of cutting patterns n ¼ jPj is
a parameter which can be chosen by the user of

ILS-APG, while it is the output of SHP, KOMBI
and GT. As the primal purpose of this experiment

was to test the performance of ILS-APG with

small n, we ran ILS-APG for five cases n ¼ a;
a� 1; a� 2 and n ¼ b; b� 1, where parameters a
and b are defined as follows:

a ¼ jPSHPj;

b ¼ min jPSHPj; jPSHPj
n

� jPSHPj
l

� jPKOMBIj
mo

:

ð21Þ
Here jPSHPj denotes the size of jPj obtained by

SHP, jPSHPj denotes the average size of jPSHPj for
the corresponding type of instances and jPKOMBIj

denotes the average size of jPj obtained by KO-
MBI. b is intended to represent the smaller of

jPSHPj and jPKOMBIj approximately (recall that

jPKOMBIj for individual instance is not given in [2]).
From Table 1, we observe that ILS-APG ob-

tains acceptable solutions in many cases, while

using smaller numbers of different patterns than

SHP and KOMBI. This may indicate that the

primal goal of ILS-APG is achieved. Table 1 also

shows that tloss of ILS-APG is smaller than that

of SHP in almost all instances. Although the trim

loss of KOMBI is considered to be very close to

the optimal value, it is larger than that of ILS-
APG for some instances. (KOMBI is based on the

solutions of Stadtler’s algorithm [15] which is able

to minimize the trim loss for almost all instances.)

As noted in the beginning of this section, this is

partially because ILS-APG has weaker constraint

than KOMBI, as it allows shortage of demands.

Table 2 shows the CPU time of SHP, KOMBI

and ILS-APG (with jPj ¼ a), respectively, for
random instances in Table 1. For these classes of

problem instances, SHP and KOMBI are faster

than ILS-APG except for some instances (recall

that KOMBI was run on a slower personal com-

puter). In summary, for randomized instances, we

may conclude that, ILS-APG tends to produce

solutions of better quality in the sense of smaller

jPj and smaller trim loss, at the cost of consuming
more computation time.

We next conducted computational experiments

for real-world problem instances provided by a

chemical fiber company. The data of these prob-

lems are available at our WWW site. 1 There are

40 instances with m ranging from 6 to 29, L ¼
9080; 5180, di ranging from 2 to 264, and li ranging
from 500 to 2000.
Table 3 (resp., Table 4) shows the results of

SHP, GT and ILS-APG for the problem instances

with L ¼ 9080 (resp., 5180). The results of ILS-
APG are shown for three cases n ¼ a; a� 1; a� 2,
where

a ¼ minfjPSHPj; jPGTjg: ð22Þ

1 http://www-or.amp.i.kyoto-u.ac.jp/members/umetani/prob-

lems/benchmark.html.

396 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

http://www-or.amp.i.kyoto-u.ac.jp/members/umetani/problems/benchmark.html

Table 1

Computational results of SHP, KOMBI234 and ILS-APG for the random instances generated by CUTGEN1

Class m1 m2 m �dd �bbacpt SHP KOMBI ILS-APG

jPj tloss jPj tloss jPj ¼ a jPj ¼ a� 1 jPj ¼ a� 2 jPj ¼ b jPj ¼ b� 1

nacpt tloss nacpt tloss nacpt tloss nacpt tloss nacpt tloss

1 0.01 0.2 10 10 9.70 3.9 5.09 3.40 4.47 10 2.79 9 2.81 4 2.74 9 2.81 4 2.74

2 0.01 0.2 10 100 16.93 5.5 1.83 7.81 0.47 9 2.67 7 2.90 2 2.73 9 2.67 7 2.90

3 0.01 0.2 20 10 19.20 6.1 3.42 5.89 2.52 10 1.24 9 0.96 9 0.96 9 0.96 9 0.96

4 0.01 0.2 20 100 34.02 8.4 1.20 14.26 0.25 7 1.37 5 1.17 2 1.14 7 1.37 5 1.17

5 0.01 0.2 40 10 36.80 9.3 3.04 10.75 1.10 10 0.71 10 0.61 10 0.67 10 0.71 10 0.61

6 0.01 0.2 40 100 69.88 13.1 1.57 25.44 0.12 6 0.72 6 0.70 4 0.69 6 0.72 6 0.70

Average – – – – 31.09 7.72 2.69 11.26 1.49 8.7 1.58 7.7 1.53 5.2 1.49 8.3 1.70 6.8 1.51

7 0.01 0.8 10 10 10.00 10.3 16.78 7.90 15.41 10 16.97 10 16.35 10 16.86 9 15.01 7 14.06

8 0.01 0.8 10 100 16.97 11.9 16.58 9.96 15.00 10 16.01 10 15.70 9 16.09 9 16.09 8 17.11

9 0.01 0.8 20 10 19.90 18.9 15.12 15.03 11.00 9 12.15 10 13.24 9 12.81 9 11.45 9 12.06

10 0.01 0.8 20 100 33.54 21.7 15.61 19.28 10.72 10 11.99 10 11.78 9 11.46 10 11.86 9 11.72

11 0.01 0.8 40 10 39.5 37.6 11.93 28.74 7.33 8 5.27 8 5.49 8 5.10 8 4.97 8 4.88

12 0.01 0.8 40 100 64.51 41.2 11.15 37.31 7.29 8 6.37 10 6.89 8 6.21 7 6.37 7 6.00

Average – – – – 30.74 23.60 14.53 19.70 11.13 9.2 11.46 9.7 11.58 8.8 11.42 8.7 10.96 8.0 10.97

13 0.2 0.8 10 10 10.00 10.8 18.66 8.97 19.17 10 19.27 10 17.86 9 18.23 9 18.23 8 17.08

14 0.2 0.8 10 100 16.97 11.2 18.48 10.32 18.55 10 19.11 9 18.16 6 18.05 9 18.16 6 18.05

15 0.2 0.8 20 10 19.90 19.5 17.48 16.88 14.76 10 17.09 10 17.23 10 17.24 10 16.69 10 16.74

16 0.2 0.8 20 100 33.54 21.3 18.00 19.91 14.67 10 17.08 10 17.37 9 17.88 9 17.88 9 16.93

17 0.2 0.8 40 10 39.6 37.7 14.33 31.46 10.30 10 10.18 9 10.42 10 10.07 10 10.10 10 10.00

18 0.2 0.8 40 100 64.39 40.7 14.45 38.28 10.22 10 10.61 10 10.67 10 10.60 10 10.32 10 10.76

Average – – – – 30.73 23.50 16.90 20.97 14.61 10.0 15.56 9.7 15.29 9.0 15.35 9.5 15.23 8.8 14.93

S
.
U
m
eta

n
i
et

a
l.
/
E
u
ro
p
ea
n
J
o
u
rn
a
l
o
f
O
p
era

tio
n
a
l
R
esea

rch
1
4
6
(
2
0
0
3
)
3
8
8
–
4
0
2

3
9
7

Table 3 (resp., Table 4) tells that 20/20 (resp., 19/
20) are acceptable for n ¼ a, 16/20 (resp., 17/20)
are acceptable for n ¼ a� 1, and 10/20 (resp., 15/
20) are acceptable for n ¼ a� 2. Note that GT also
gives acceptable solutions in 19/20 instances (it

failed to obtain a solution in one instance). SHP is

designed so that a solution with f ¼ 0 is output
(i.e., always acceptable). But SHP and GT achieve

this performance at the cost of using larger n ¼ jPj
in many cases, as observed in Tables 3 and 4. If we

compare SHP and GT from the view point of the

obtained size jPj, SHP outperforms GT in Table 3,
but the relation is reversed in Table 4. This suggests

that SHP performs well for problem instances in

which the ratio of product lengths li to the length of
stock rolls L is relatively small, but not so if the

ratio is relatively large. If we evaluate the quality of
solutions from tloss (trim loss), SHP has the

smallest tloss, than ILS-APG with n ¼ a, and GT.
The performance of SHP is remarkable in this re-

spect, but ILS-APG also performs reasonably well

(considering that the minimization of the trim loss

is not a primal target of ILS-APG). It is worth
mentioning that ILS-APG achieve almost the same

tloss even if smaller n ¼ a� 1 and a� 2 are used;
its performance is robust in the sense of tloss.

Table 5 (resp., Table 6) shows the CPU time of

SHP, GT and ILS-APG, respectively, for the

problem instances in Table 3 (resp., Table 4),

where we show the CPU time of ILS-APG with

jPj ¼ a. The CPU time of SHP becomes extremely
large for some instances, because SHP generates

many candidate patterns for such instances. Sim-

ilar tendency is observed for GT. The CPU time of

ILS-APG is comparable to other two algorithms,

and appears to be more stable.

8. Reduction of CPU time

To understand the rapid growth of CPU time of

ILS-APG with m in Table 2, we conducted addi-

tional experiment. That is, for the problem in-

stances generated by CUTGEN1 with �dd ¼ 100,

Table 2

The CPU time in seconds for the random instances generated by CUTGEN1

Class m1 m2 m �dd SHP KOMBI ILS-APG

1 0.01 0.2 10 10 0.09 0.14 0.11

2 0.01 0.2 10 100 0.11 1.14 0.57

3 0.01 0.2 20 10 2.28 1.74 0.62

4 0.01 0.2 20 100 2.71 16.00 2.89

5 0.01 0.2 40 10 180.10 38.03 3.25

6 0.01 0.2 40 100 256.58 379.17 20.85

Average – – – – 73.65 72.70 4.72

7 0.01 0.8 10 10 0.01 0.07 0.36

8 0.01 0.8 10 100 0.02 0.20 1.38

9 0.01 0.8 20 10 0.04 1.34 3.37

10 0.01 0.8 20 100 0.06 3.25 15.43

11 0.01 0.8 40 10 0.22 36.27 68.23

12 0.01 0.8 40 100 0.32 76.31 412.81

Average – – – – 0.11 19.57 83.60

13 0.2 0.8 10 10 0.01 0.08 0.20

14 0.2 0.8 10 100 0.02 0.13 0.35

15 0.2 0.8 20 10 0.03 1.81 1.15

16 0.2 0.8 20 100 0.04 2.60 2.72

17 0.2 0.8 40 10 0.16 50.93 7.16

18 0.2 0.8 40 100 0.24 70.94 43.81

Average – – – – 0.08 21.08 9.23

398 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

ðm1; m2Þ ¼ ð0:01; 0:8Þ and m ¼ 10; 15; 20; 30; 40, we
applied the local search LSðPÞ from the initial

solutions P generated by INIT. Local search was

applied to 10 problem instances for each m, in

which two cases of c ¼ mþ 1 and c ¼ 5 were tes-
ted, where n ¼ jPj is set to a� 2 (recall that

a ¼ jPSHPj). Table 7 gives the results of this ex-
periment, where

�nn the average size of P (jPj ¼ a� 2, where
a ¼ jPSHPj).

#f̂f : the average number of evaluations of f̂f ðPÞ
in one local search (i.e., the number of calls to
NGSðPÞ, the nonlinear Gauss–Seidel method).

#loops: the average number of iterations of the

loop (Steps 2–4) in one execution of NGSðPÞ.
#moves: the average number of moves in one

local search.

CPU time: the average CPU time of one local

search in seconds.

From Table 7, we see that �nn, #f̂f , #loops and
#moves are approximately proportional to m0:99,

m2:24, m0:50 and m1:56, respectively. As the time to
execute one loop of NGSðPÞ can be estimated as
OðmnÞ, this tells that the average CPU time of one

local search is roughly given by

#f̂f � #loops �Oðm�nnÞ ¼ Oðm4:74Þ; ð23Þ
which may be justified by the column of CPU time

(i.e., proportional to m4:54).
These observations suggest that, in order to

prevent the rapid growth of the CPU time with m,

it is important

(i) to reduce the size of neighborhood without

sacrificing the power of local search,

(ii) to improve the Gauss–Seidel method (or to use

other methods) so that #loops and the time for
one loop can be reduced.

Although point (ii) still remains to be a topic of

future research, we tried point (i) by controlling

the parameter c in Step 3 of LSðPÞ (recall that c
restricts the number of candidate patterns). For

Table 3

The quadratic deviation f and the trim loss tloss by three algorithms (for instances with L ¼ 9080)
m bacpt SHP GT ILS-APG

jPj f tloss jPj f tloss n ¼ a n ¼ a� 1 n ¼ a� 2

f tloss f tloss f tloss

6 6.00 5 0 2.95 3 1 3.61 1 3.67 13 3.27 236 10.62

7 7.00 4 0 5.62 3 9 1.58 1 0.99 1 0.99 15 1.00

8 13.97 4 0 1.02 6 1 0.43 4 4.71 7 4.73 34 4.73

9 9.96 5 0 2.78 6 10 0.76 2 6.75 2 6.86 21 6.39

10 10.82 5 0 1.73 6 4 1.17 4 2.18 23 2.15 97 2.19

11 11.69 5 0 2.33 7 4 1.75 8 2.24 23 3.00 10 6.31

13 13.00 6 0 2.52 7 2 1.87 2 7.52 4 6.97 4 6.17

13 13.00 4 0 2.99 6 0 2.99 2 4.14 3 3.95 30 4.14

14 14.00 5 0 5.33 5 13 3.01 5 0.63 17 1.03 105 0.83

15 16.07 5 0 1.29 7 19 2.12 7 1.81 11 0.95 40 1.78

16 16.84 6 0 2.87 8 3 7.02 2 2.88 7 2.69 19 2.44

17 17.12 12 0 1.02 8 5 6.98 0 3.08 6 3.31 3 2.94

18 18.00 6 0 2.29 10 5 10.77 8 2.73 12 2.65 43 2.14

19 21.59 8 0 2.33 10 9 4.04 3 2.52 3 2.76 17 2.69

20 20.00 9 0 4.69 – – – 2 3.35 3 3.44 4 1.72

23 25.92 8 0 2.58 11 0 6.02 18 3.14 17 3.91 15 3.64

26 38.75 9 0 1.91 13 0 14.39 23 2.78 15 2.82 16 1.73

28 28.00 8 0 3.42 14 18 6.31 8 3.52 7 3.78 25 2.77

28 29.46 12 0 2.36 14 5 7.79 1 2.15 2 2.04 1 2.15

29 29.00 13 0 2.95 10 9 11.39 2 2.38 3 2.02 4 1.75

Average 6.95 0.00 2.75 8.11a 6.16a 4.95a 5.15 3.16 8.95 3.17 36.7 3.41

aExcluding the instance with m ¼ 20.

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 399

Table 5

The CPU time in seconds (for instances with L ¼ 9080)

m SHP GT ILS-APG

6 0.02 0.22 0.03

7 0.01 0.82 0.28

8 0.02 1.32 0.10

9 0.02 0.93 0.41

10 0.08 1.54 0.35

11 0.05 2.42 0.41

13 0.17 3.62 0.68

13 0.30 2.85 0.23

14 0.16 1.54 0.32

15 0.13 2.47 0.73

16 0.17 9.11 0.56

17 46.62 3.57 1.52

18 0.22 26.97 0.48

19 2.33 3.24 2.06

20 4.09 – 0.68

23 0.40 36.03 2.64

26 1.27 7.80 5.06

28 4.80 596.99 2.62

28 197.74 25.70 8.09

29 597.02 78.27 2.37

Average 42.78 42.39a 1.48

a Excluding the instance with m ¼ 20.

Table 6

The CPU time in seconds (for instances with L ¼ 5180)

m SHP GT ILS-APG

6 0.01 0.11 0.09

7 0.09 0.27 0.23

8 0.07 0.22 0.20

9 0.10 1.65 0.43

10 0.20 0.44 0.59

11 0.30 0.99 1.00

13 0.20 2.41 0.45

13 0.06 0.88 0.32

14 0.07 1.92 0.31

15 1.54 1.04 0.46

16 0.04 6.86 0.98

17 0.06 3.85 1.46

18 0.05 2.85 1.93

19 2.37 5.55 3.27

20 0.03 10.87 0.46

23 0.17 12.80 2.70

26 2.26 15.92 14.52

28 0.27 20.87 3.88

28 0.49 9.17 5.08

29 0.23 6.15 4.42

Average 0.43 5.24 2.14

Table 4

The quadratic deviation f and the trim loss of tloss by three algorithms (for instances with L ¼ 5180)
m bacpt SHP GT ILS-APG

jPj f tloss jPj f tloss n ¼ a n ¼ a� 1 n ¼ a� 2

f tloss f tloss f tloss

6 6.00 7 0 4.93 4 2 5.01 1 5.22 3 4.65 103 4.35

7 7.00 10 0 7.55 6 4 3.69 0 7.55 3 7.16 3 7.17

8 13.97 10 0 3.16 4 1 3.43 16 7.72 138 3.57 179 3.82

9 9.96 9 0 6.75 6 3 8.37 1 8.78 3 8.66 6 8.53

10 10.82 14 0 4.03 8 1 3.71 3 3.91 1 7.71 3 7.79

11 11.69 12 0 2.89 8 1 4.10 1 4.61 2 5.57 4 5.12

13 13.00 14 0 2.36 6 10 2.07 9 2.05 25 3.83 106 2.36

13 13.00 9 0 2.83 7 1 3.29 1 3.20 1 3.20 1 3.20

14 14.00 11 0 3.20 6 1 3.60 1 5.56 6 3.72 37 5.54

15 16.07 16 0 2.87 7 2 4.37 3 4.83 2 5.04 2 4.37

16 16.84 10 0 2.71 8 1 2.42 3 1.92 19 4.15 38 3.05

17 17.12 9 0 2.92 9 9 3.34 2 3.27 2 3.36 2 3.27

18 18.00 11 0 1.88 11 14 2.51 5 4.07 1 5.61 17 4.06

19 21.59 25 0 4.75 12 5 5.05 3 5.34 1 5.59 2 5.02

20 20.00 8 0 3.81 8 2 2.63 1 3.52 4 2.33 9 5.74

23 25.92 15 0 1.39 11 9 4.72 2 5.09 5 5.15 14 4.86

26 38.75 29 0 2.26 16 1 3.23 0 4.77 4 4.62 1 4.40

28 28.00 11 0 1.25 13 10 1.73 5 3.81 12 3.89 14 3.36

28 29.46 15 0 1.37 12 5 2.58 7 4.51 5 4.74 16 4.72

29 29.00 13 0 1.22 13 4 8.20 2 5.33 2 5.48 2 5.23

Average 12.90 0.00 3.21 8.75 4.30 3.90 3.30 4.75 11.95 4.90 27.95 4.80

400 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

example, in all the experiments of Section 7, we
used c ¼ dðmþ 1Þ=10e instead of c ¼ mþ 1. This
reduced the CPU time to about 1/10 of that of

Table 7, almost without sacrificing the power of

local search. Table 7 also contains the results with

c ¼ 5 (constant). In this case, #f̂f decreases to m1:29

from m2:24, the average CPU time of one local

search decreases to m3:60 from m4:54. This still does

not seem to sacrifice the power of local search much.

9. Conclusion

The cost associated with the change of cutting

patterns become more important in recent cutting

stock industry. Based on this observation, we

considered a formulation of 1D-CSP in which the

number of different cutting patterns is constrained,

and proposed a metaheuristic algorithm ILS-APG,

which incorporated an adaptive pattern generation

technique. The ILS-APG searches a solution with
small deviations from the given demands while

using the fixed number of different cutting pat-

terns. We conducted computational experiments

for random problem instances and real problem

instances, and observed that performance of ILS-

APG is comparable to two other existing algo-

rithms SHP and KOMBI (which solve a slightly

different formulation of 1D-CSP).

References

[1] D.P. Bertsekas, Nonlinear Programming, Athena Scien-

tific, Belmont, MA, 1995.

[2] H. Foerster, G. W€aascher, Pattern Reduction in One-

dimensional Cutting Stock Problems, The 15th Triennial

Conference of the International Federation of Operational

Research Societies, 1999.

[3] T. Gau, G. W€aascher, CUTGEN1: A problem generator for

the standard one-dimensional cutting stock problem,

European Journal of Operational Research 84 (1995)

572–579.

[4] P.C. Gilmore, R.E. Gomory, A linear programming

approach to the cutting-stock problem, Operations Re-

search 9 (6) (1961) 849–859.

[5] P.C. Gilmore, R.E. Gomory, A linear programming

approach to the cutting-stock problem – Part II, Opera-

tions Research 11 (6) (1963) 863–888.

[6] C. Goulimis, Optimal solutions for the cutting stock

problem, European Journal of Operational Research 44

(1990) 197–208.

[7] M. Gradisar, M. Kljaji�cc, G. Resinovic, J. Jesenko, A

sequential heuristic procedure for one-dimensional cutting,

European Journal of Operational Research 114 (1999)

557–568.

[8] R.W. Haessler, A heuristic programming solution to a

nonlinear cutting stock problem, Management Science 17

(12) (1971) 793–802.

[9] R.W. Haessler, Controlling cutting pattern changes in one-

dimensional trim problems, Operations Research 23 (3)

(1975) 483–493.

[10] R.W. Haessler, Cutting stock problems and solutions

procedures, European Journal of Operational Research 54

(1991) 141–150.

[11] D.S. Johnson, Local optimization and the traveling sales-

man problem, in: Proceedings of 17th Colloquium on

Automata, Languages and Programming, Lecture Notes in

Computer Science, 443, 1990, pp. 446–461.

[12] R.E. Johnston, Rounding algorithm for cutting stock

problems, Journal of Asian-Pacific Operations Research

Societies 3 (1986) 166–171.

[13] C. McDiarmid, Pattern minimisation in cutting stock

problems, Discrete Applied Mathematics 98 (1999) 121–

130.

Table 7

Performance of local search for instances generated by CUTGEN1

c m �nn #f̂f #Loops #Moves CPU time nacpt tloss

mþ 1 10 9.9 179.5 32.57 2.0 0.0953 8 16.13

15 14.7 352.3 38.96 2.4 0.468 7 11.24

20 19.7 974.8 34.65 7.7 1.91 6 11.17

30 28.7 2098.0 49.33 10.4 11.4 6 5.54

40 39.2 4014.9 65.54 17.4 51.4 7 5.47

5 10 9.9 92.6 29.27 2.3 0.0455 8 15.82

15 14.7 175.6 23.95 4.8 0.145 9 11.72

20 19.7 265.8 31.12 7.3 0.459 6 11.12

30 28.7 397.3 35.04 5.7 1.50 6 5.25

40 39.2 553.8 61.41 11.4 6.65 6 5.19

S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402 401

[14] S. Sahni, Approximates for the 0/1 knapsack problem,

Journal of the Association for Computing Machinery 22

(1) (1975) 115–124.

[15] H. Stadtler, A one-dimensional cutting stock problem in

the aluminium industry and its solution, European Journal

of Operational Research 44 (1990) 209–223.

[16] E. Sweeney, R.W. Haessler, One-dimensional cutting

stock decisions for rolls with multiple quality grades,

European Journal of Operational Research 44 (1990)

224–231.

[17] R. Vahrenkamp, Random search in the one-dimensional

cutting stock problem, European Journal of Operational

Research 95 (1996) 191–200.

[18] F. Vanderbeck, Exact algorithm for minimising the num-

ber of setups in the one-dimensional cutting stock problem,

Operations Research 48 (2000) 915–926.

402 S. Umetani et al. / European Journal of Operational Research 146 (2003) 388–402

	One-dimensional cutting stock problem to minimize the number of different patterns
	Introduction
	Formulation of 1D-CSP
	Calculating the frequencies of cutting patterns
	Local search
	A heuristic algorithm to generate cutting patterns
	Searching cutting patterns by ILS-APG
	Computational experiments
	Reduction of CPU time
	Conclusion
	References

