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Abstract

The objective of this short note is to review the basic ingredients of QoS in networks: traffic regu-
lation by token buckets and guaranteed delays for such regulated traffic by scheduling. The material is
from [1].

1 Overview

The Internet is a best-effort network, meaning that the routers and switches transmit packets whenever
they can but without any other explicit guarantee on delay or throughput. The success of the Internet
results from the great simplifications that are possible when implementing a best effort service and
from the clever applications that are designed to operate well with that service. Nevertheless, some
applications work much better if delays are bounded and if the throughput is sufficient. (Think of games,
voice, video streaming, etc.)

The challenge is to figure out simple modifications of the protocols that provide some form of quality
of service (QoS). After many years of research, not much has been implemented, because the slightest
modification of the best effort model seem to result in endless complications The complications have to
do mostly with management and agreement among providers.

In this note, we review two approaches to QoS: IntServ, which is probably too complicated to fly,
and DiffServ which has a better chance and is implemented in some networks. These two ideas rely
on the same basic observation: to bound delays, one needs to regulate the traffic and to guarantee some
minimum service rate to regulated flows. If the traffic enters a router faster than it can transmit it, the
delays build up. Similarly, if bursts of traffic are too large, then the time to transmit those bursts is
excessive.

In Section 2 we review the basic idea behind bounding delays by regulating flows and guaranteeing a
minimum transmission rate. In Section 3 we explain an idealized scheduling scheme (GPS) to guarantee
such a minimum rate and we discuss an implementation (WFQ) of an approximation of that scheme.
Finally, in Section 4 we explain that regulated traffic served with WFQ has bounded delays.

2 Bounding Delays

Consider the system shown in Figure 1. Packets move from a packet buffer one by one into the queue.
The queue, whenever it is not empty, sends bits at a variable rateR(t). This variable rate is a mathemat-
ical fiction that is convenient to model the sharing of a physical link among multiple queues. A token
counter controls when packets can move into the queue. A packet ofP bits at the head of line in the
buffer can move to the queue if the token counter has at leastP tokens. In that case, one removesP
tokens from the counter and the packet jumps at once into the queue. The token counter gets tokens at
the constant rate ofr tokens per second and it saturates whenever it hass tokens.
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Figure 1: A queue with regulated input.

This token mechanism limits the size of bursts that can enter the queue tos bits and also the long
term arrival rate into the queue tor bits per second. More precisely, ifA(t) is the number of bits that
enter the queue in[0, t], for t ≥ 0, then we claim that

A(t)−A(u) ≤ s + r(t− u), for all 0 ≤ u < t.

To see this, note that the token counter has at mosts tokens at timeu and that it will collectr(t − u)
more tokens during[u, t]. Since one needs one token per bit that one sends into the queue, the maximum
number of bits that can move from the packet buffer to the queue during[u, t] is bounded bys+r(t−u).

Thus, in a very short interval of time, it is possible for a burst of up tos bits to enter the queue. Also,
in the long term, the rate of arrivals into the queue cannot exceedr.

The following straightforward fact is one of the building blocks that we need for QoS. It shows that
if a router serves a regulated flow at a sufficient minimum rate, then the delays are bounded.

Fact 1 Assume thatR(t) ≥ r1 ≥ r for all t ≥ 0 andX(0) = 0. ThenX(t) ≤ s for all t ≥ 0. Moreover,
the queuing delay of every packet in the queue is at most equal tos/r1.

Proof:

Fix some timet > 0 such thatX(t) > 0. Let u be the last time before timet thatX(u) = 0. That is,
X(u) = 0 andX(v) > 0 for v ∈ (u, t). Let D(t) be the number of bits that leave the queue in[0, t],
for t ≥ 0. Note that the number of bitsD(t) −D(u) that left the queue during[u, t] is at least equal to
r1(t− u) since the service rate is at lest equal tor1 whenever the queue is nonempty. Also, the number
of bitsA(t)−A(u) that entered the queue in[u, t] is at mosts + r(t− u). SinceX(u) = 0, we see that

X(t) = A(t)−A(u)− [D(t)−D(u)] ≤ s + r(t− u)− r1(t− u) ≤ s

sincer1 ≥ r.
The queuing delay of a packet that enters the queue at timet, when the backlog isX(t), is less than
X(t)/r1 since the queue clears that backlog at least at rater1. We have seen thatX(t) ≤ s. Conse-
quently, the queuing delay is always bounded bys/r1.

3 Weighted Fair Queuing

Weighted Fair Queuing (WFQ) is a scheduling mechanism that controls the sharing of one link among
packets of different classes. We explain that this mechanism provided delay guarantees to regulated
flows. Both the definition of WFQ and its analysis are based on an idealized version of the scheme
called Generalized Processor Sharing (GPS). We start by explaining GPS.

3.1 GPS

Figure 2 illustrates a GPS system. The packets are classified intoK classes and wait in corresponding
first-in-first-out queues until the router can transmit them. Each classk has a weightwk. The scheduler
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Figure 2: Generalized Processor Sharing.

serves the head of line packets at rates proportional to weight of their class. That is, the instantaneous
service rate of classk is wkC/W whereC is the line rate out of the router andW is the sum of the
waits of the queues that are backlogged at timet. Note that this model is a mathematical fiction that
is not implementable since the scheduler mixes bits from different packets and does not respect packet
boundaries.
We draw the timing diagram on the right of the figure assuming that only two classes (1 and2) have
packets and withw1 = w2. A packetP1 of class 2 arrives at timet = 1 and is served at rate one until
time t = 2 when packetP2 of class 1 enters the queue. During the interval of time[2, 4], the scheduler
serves the residual bits ofP1 and the bits ofP2 with rate1/2 each.
From this definition of GPS, one sees that the scheduler serves classk at a rate that is always at least
equal towkC/(

∑
j wj). This minimum rate occurs when all the classes are backlogged. Combining this

observation with Fact 1, find the following result.

Fact 2 Assume that the traffic of classk is regulated with parameters(sk, rk) such thatρk := wkC/(
∑

j wj) ≥
rk. Then the backlog of classk never exceedssk and its queuing delay never exceedssk/ρk.

3.2 WFQ

As we mentioned, GPS is not implementable. Weighted Fair Queuing approximates GPS. WFQ is
defined as follows. The packets are classified and queued as in GPS. The scheduler transmits one packet
at a time, at the line rate. Whenever it completes a packet transmission, the scheduler starts transmitting
the packet that GPS would complete transmitting first among the remaining packets. For instance, in the
case of the figure, the WFQ scheduler transmits packetP1 during[1, 3.5], then starts transmitting packet
P2, the only other packet in the system. The transmission ofP2 completes at time4.5. At that time,
WFQ starts transmittingP3, and so on.
The figure shows that the completion times of the packetsP1, . . . , P4 under GPS areG1 = 4.5, G2 =
4, G3 = 8, G4 = 9, respectively. You can check that the completion times of these four packets under
WFQ areF1 = 3.5, F2 = 4.5, F3 = 7, andF4 = 9. Thus, in this example, the completion of packetP2

is delayed by0.5 under WFQ. It seems quite complicated to predict by how much a completion time is
delayed. However, we have the following simple result.

Fact 3 Let Fk andGk designate the completion times of packetPk under WFQ and GPS, respectively,
for k ≥ 1. Assume that the transmission times of all the packets are at most equal toT . Then

Fk ≤ Gk + T, k ≥ 1. (1)

Proof:

Note that GPS and WFQ are work-conserving: they serve bits at the same rate whenever they have bits
to serve. Consequently, the GPS and WFQ systems always contain the same total number of bits. It
follows that they have the same busy periods (intervals of time when they are not empty). Consequently,
it suffices to show the result for one busy period.
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Figure 3: Regulated traffic and WFQ scheduler.

AssumeF1 < F2 < · · · < Fk correspond to packets within one given busy period that starts at time0,
say.
If Gn ≤ Gk for n = 1, 2, . . . , k − 1, then during the interval[0, Gk], the GPS scheduler could serve the
packetsP1, . . . , Pk, so thatGk is larger than the sum of the transmission times of these packets under
WFQ. HenceGk ≥ Wk, so that (1) holds.
Thus assume thatGn > Gk for some1 ≤ n ≤ k − 1 and letm be the largest such value ofn, so that

Gn ≤ Gk < Gm, for m < n < k.

This implies that the packetsP := {Pm+1, Pm+2, . . . , Pk−1} must have arrived after the start of service
Sm = Fm − Tm of packetm, whereTm designates the transmission time of that packet. To see this,
assume that one such packet, sayPn, arrives beforeSm. LetG′

m andG′
n be the service times under GPS

assuming no arrivals after timeSm. SincePm andPn get served in the same proportions until one of
them leaves, it must be thatG′

n < G′
m, so thatPm could not be scheduled beforePn at timeSm.

Hence, all the packetsP arrive after timeSm and are served beforePk under GPS. Consequently, during
the interval[Sm, Gk], GPS serves the packets{Pm+1, Pm+2, . . . , Pk}. This implies that the duration of
that interval exceeds the sum of the transmission times of these packets, so that

Gk − (Fm − Tm) ≥ Tm+1 + Tm+2 + · · ·+ Tk,

and consequently,
Gk ≥ Fm + Tm+1 + · · ·+ Tk − Tm = Fk − Tm,

which implies (1).

4 Regulated Flows and WFQ

Consider a stream of packets regulated by a token bucket and that arrives at a WFQ scheduler, as shown
in Figure 3.
We have the following result.

Fact 4 Assume thatr < ρ := wC/W whereW is the sum of the scheduler weights. Then the maximum
queueing delay per packet is

s

ρ
+

L

C

whereL is the maximum number of bits in a packet/



Proof:

This result is a direct consequence of Facts 1-3.
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