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High plasma concentrations of lipoprotein (a) [Lp(a)] are now considered a major risk fac-
tor for atherosclerosis and cardiovascular disease. This effect of Lp(a) may be related to its
composite structure, a plasminogen-like inactive serine-proteinase, apoprotein (a) [apo(a)],
which is disulfide-linked to the apoprotein B100 of an atherogenic low-density lipoprotein
(LDL) particle. Apo(a) contains, in addition to the protease region and a copy of kringle 5
of plasminogen, a variable number of copies of plasminogen-like kringle 4, giving rise to a
series of isoforms. This structural homology endows Lp(a) with the capacity to bind to fi-
brin and to membrane proteins of endothelial cells and monocytes, and thereby inhibits
binding of plasminogen and plasmin formation. This mechanism favors fibrin and choles-
terol deposition at sites of vascular injury and impairs activation of transforming growth
factor-beta (TGF-

 

b

 

) that may result in migration and proliferation of smooth muscle cells
into the vascular intima. It is currently accepted that this effect of Lp(a) is linked to its con-
centration in plasma, and an inverse relationship between apo(a) isoform size and Lp(a)
concentrations that is under genetic control has been documented. Recently, it has been
shown that inhibition of plasminogen binding to fibrin by apo(a) from homozygous sub-
jects is also inversely associated with isoform size. These findings suggest that the struc-
tural polymorphism of apo(a) is not only inversely related to the plasma concentration of
Lp(a), but also to a functional heterogeneity of apo(a) isoforms. Based on these pathophys-
iological findings, it can be proposed that the predictive value of Lp(a) as a risk factor for
vascular occlusive disease in heterozygous subjects would depend on the relative concen-
tration of the isoform with the highest affinity for fibrin. © 2000 IMSS. Published by
Elsevier Science Inc.
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Introduction

 

In 1963, Kâre Berg identified the presence of lipoprotein(a)
[Lp(a)] in plasma (1); nevertheless, it was not until 1987
when Eaton et al. (2) partially identified the apoprotein(a)
[apo(a)] glycoprotein sequence. The protein was later
cloned (3) and showed a strong structural similarity be-
tween one of the Lp(a) components, apo(a) glycoprotein,
and the plasmin precursor, plasminogen. This finding stim-
ulated the interest of different research groups who found a
common point between atherosclerosis and thrombosis (4–
11). Different epidemiological studies were performed from

this perspective and identified a positive correlation be-
tween high Lp(a) plasma concentration and an increase in
cerebrovascular (12) and cardiovascular diseases, as well as
coronary restenosis, postangioplasty reocclusion, and pre-
mature development of atherosclerosis related to high low-
density lipoprotein (LDL) concentrations and/or low high-
density lipoprotein (HDL) concentrations (13,14). Most
prospective studies have confirmed these results (15–21).
Even when a normal value for plasma concentration has not
been agreed upon, some investigators considered this to be
20 mg/dL (20) and others suggested 30 mg/dL (15), pointing
out that the use of different antibodies, monoclonal or poly-
clonal, generates differences in results (5).

Nevertheless, other studies do not find a relationship be-
tween Lp(a) and coronary arterial disease (22,23). This dis-
crepancy may be a reflection of the large structural hetero-
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geneity of the apo(a) molecule, which is conducive to a
functional heterogeneity as a plasminogen competitive in-
hibitor of fibrin because it lowers the formation of plasmin
(7,24).

Not all organisms synthesize apo(a). Its presence has
been identified in humans, in some Asian, European, and
American primates (25), and in hedgehogs (26).

 

Function

 

The function of apo(a) in the organism is unknown. It pro-
vides cholesterol from the liver to organs that synthesize
steroidal hormones (28) and to tissues for cell repair (29).
Furthermore, the function of apo(a) found in testicles and
brain is unknown and is independent from Lp(a); that is, it
functions without being part of the Lp(a) molecule (30).

 

Concentration

 

Lp(a) plasma concentration, which depends on its hepatic
synthesis (31,32), varies from one individual to another
within an approximate range of 

 

,

 

10 mg/dL to 

 

.

 

100 mg/
dL; it is independent on other factors such as diet, choles-
terol, obesity, and smoking, and is maintained within small
variations throughout the lifespan (33,34). In general, an in-
dividual inherits, in a codominant autosomic fashion, two
apo(a) isoforms that may be identified by sodium dodecyl-
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and, subsequently, by immunotransference, making use of
monoclonal or polyclonal antibodies against apo(a). By
means of this method, almost 37 isoforms have been identi-
fied, which, according to the Utermann classification are: F
(faster); B (i.e., apoB-100); S1 (slow), and S2, S3, or S4, de-
pending on their migration velocity, in comparison with that
of apoB-100 (35). The method does not allow for distinction
of differences between isoforms of close molecular weight.
Nevertheless, it has recently become possible to visualize
the isoforms with the help of a reference, accounting for
apo(a) recombinant isoforms with different molecular
weights, correlating (

 

r

 

 

 

5

 

 0.97) with the technique of
pulsed-field electrophoresis (36). With the use of this refer-
ence it has been possible to obtain a linear relationship be-
tween the log r-apo(a) kringle number and the relative mi-
gration using SDS-PAGE, successfully identifying apo(a)
isoforms over a wide range of molecular sizes. Pulsed-field
electrophoresis has been employed to identify different geno-
types codified for apo(a) (37). With the aforementioned
technique, 19 different alleles have been described in a U.S.
study of a population of whites (38).

Apo(a) isoform size accounts for an inverse correlation
with Lp(a) plasma concentration (39), probably because, as
apo(a) size increases, less protein is secreted from the cell,
as occurs in the case of the human hepatocarcinoma cell line
HepG2 (40).

Some hormones can modify Lp(a) plasma concentration,
such as estrogens (41–44); anabolic steroids might reduce it
(45) and growth hormone can increase it (46), but it cannot
be modified by lipid-lowering medication or by diet
(33,47). The plasma concentration of Lp(a) increases in dis-
eases such as diabetes mellitus, nephrotic syndrome, rheu-
matoid arthritis, and in a transitory fashion after myocardial
infarction or surgical intervention (5,33,34,48–50).

There are variations both in its average concentration and
in the abundance of isoforms in genetically different popu-
lations (51–54). Lp(a) plasma concentration in blacks is at
least three times greater than in whites (55–58).

 

Chemical Structure

 

Lp(a) composition is similar to that of LDLs. Both of these
lipoproteins contain cholesterol, triglycerides, and phospho-
lipids that may be dissolved and transported by plasma, due
to the presence of a protein, apoB-100, which surrounds the
lipid group and cholesterol (Figure 1).

The difference between them is that Lp(a) contains an-
other glycoprotein, apo(a), which is bound to apoB-100 by a
disulfide bridge between Cys in the 69 position for KIV-9
of apo(a) and Cys 3734 for apoB-100; the union is stabi-
lized by hydrogen bonds and van der Waals interactions in
other areas of both proteins (59–61). ApoB-100 (62) has the
same structure and conformation in Lp(a) and the LDL mol-
ecule. The ratio apo(a):apoB-100 is 1:1 (63), and in consid-
ering their physicochemical variables there may be entities
in a 2:1 ratio (64).

As usually occurs with some plasma proteins, Lp(a) may
have different sizes with weights, ranging between 800 and
1300 kDa, and thus different densities. These differences are
a reflection, although to a lesser extent, of lipid core composi-
tion, and especially of apo(a) structural polymorphism (65).

There are technical difficulties involved in obtaining
apo(a) in its native form, and predictions of its secondary
structure suggest an absence of an 

 

a

 

-helix (66). Neverthe-
less, after reducing sulfhydryl binding, and by means of the
circular dichroism technique, 8% 

 

a

 

-helix, 21% 

 

b

 

-sheet, and
71% random arrangements have been observed (67). Apo(a)
belongs to the serine protease family, together with plasmin-
ogen, prothrombin, tissue plasminogen activator, urokinase-
type plasminogen activator, and factor XII. These proteins
derive from an ancestral gene common to all of them.
Apo(a) is very similar to plasminogen. Genes codifying both
proteins are very close, in chromosome 6, band q26-27 (35).
The genes are a 50-kb distance apart in a head-to-head posi-
tion (68,69) in the terminal region 5

 

9

 

. In the case of apo(a),
the gene presents a polymorphism, which can be expressed
by modifying the efficiency of the transcription. This, in
turn, originates differences in Lp(a) plasma concentration,
not only between individuals but between different ethnic
groups (68). The apo(a) gene may have different sizes, each
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corresponding to the number of times in which a 5.5-kb se-
quence is present, with its number varying between 12 and
51 (3). The gene-promoting region of apo(a) possesses, in a
distal position, a 1-kb fragment with a sequence showing
sites with a different interaction potential. For interleukin-6
(IL-6), it shows seven sites; this conformation could explain
the increase in Lp(a) plasma concentration during acute in-
flammation states and the three sites with specific elements
(HNF-1, CEBP, and LF-A1) for hepatic transcription (69).

Apo(a) and plasminogen contain a protease region with a
94% similarity, but in the case of apo(a) it lacks the ability to
become active and perform its enzymatic function due to the
presence of arginine instead of serine at the activation site (3).

Plasminogen and apo(a) also include a different number
of modules, called kringles. Through kringles they bind and
recognize other macromolecules and/or specific sites in the
cell membrane (73,74).

Kringles connect with each other by interkringle regions
that are segments of 26–36 serine-, proline-, and/or threo-
nine-rich amino acids (3); each interkringle region contains
six potential O-glycosylation sites.

The kringle recognizance function includes the participa-
tion of a structure generated in the inner loop surrounding a
hydrophobic region formed by different aromatic amino ac-
ids that are stabilized by means of hydrogen bonds and sepa-
rate a cationic from an anionic group (73). This region is
known as the lysine-binding site (LBS). Its structural charac-
teristics generate a relatively rigid geometry that allows se-
lective access and binding of 6.8-Å aliphatic or aromatic
ligands of 

 

v

 

-amino-carboxylic acid type, such as 

 

v

 

-amino-
hexanoic acid or similar compounds (74). Plasminogen com-
prises five very similar kringle types, but with small differ-
ences at the lysine-binding site, which modify the degree of

affinity for different ligands. Plasminogen K I has a high-
affinity LBS; the cationic pole has Arg-35 and Arg-71, and
the anionic pole has Asp-55 and Asp-57 (74,75). The LBS in
plasminogen K IV has an intermediate affinity; its V-shaped
hydrophobic region generates a topography in which the aro-
matic rings of Phe-64, Trp-62, and Trp-72 separate the an-
ionic group, which is formed by Asp-55 and Asp-57, and
from the cationic group by Lys-35 and Arg-71 (76).

 

Apolipoprotein (a) Polymorphism

 

Apo(a) shares kringle V and a variable number of kringle
IVs with plasminogen (35). Not all kringles IV of apo(a) are
alike; they are classified into 10 different subtypes (77). In
the apo(a) molecule, each is present only once, except for
kringle IV-2, which appears on multiple copies, originating
structural heterogeneity and different size isoforms that ac-
count for molecular weights of between 280 and 800 kDa.

Kringle IV-10 is most similar to the kringle IV of plasmin-
ogen, with the high-affinity, lysine-binding site being
formed by Asp-55 and Asp-57 in the anionic pole, and
by Arg-71 and Arg-35 in the cationic pole. Between the
two poles there is a hydrophobic microenvironment that is
formed by three aromatic amino acids: Trp-62, Phe-64, and
Trp-72. KIV-10 of apo(a) differs from K-IV of plasminogen
due to the presence of Arg instead of Lys in position 35.
This kringle has a very important role in the Lp(a) union
with lysine (78), preventing plasminogen access to the fi-
brin clot, thus blocking the action of the tissue plasminogen
activator (79–82). This generates fibrinolytic insufficiency
that, in turn, promotes atherosclerosis and thrombosis.

Another apo(a) polymorphism source is glycosylation;

Figure 1. Chemical structure of lipoprotein(a) and plasminogen.
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each apo(a) KIV has a potential site for N-glycosylation. If
interkringle glycosylation is considered, 30% of each mole
of apo(a) corresponds to carbohydrates as follows: man-
nose; galactose; galactosamine; glucosamine, and sialic acid
in ratios of close to 3:7:5:4:7, respectively (83).

 

Lp(a) Plasminogen Competitive Inhibitor

 

The fibrinolytic system destroys fibrin deposits in blood
vessels, either those remaining from hemostatic activity or
those formed and accumulated during the development of
the atherosclerotic plaque. Because there is a balance be-
tween plasminogen activators and different types of inhibi-
tors of these activators, its response varies either toward a
static condition or a fibrinolytic activity.

As a result of fibrinolytic activation, plasmin is gener-
ated, a proteolytic enzyme that may have effects on differ-
ent plasma substrates. In the present case, however, this
does not occur, because fibrin itself locates and signals the
fibrinolytic activation sites. Within the fibrin mesh, plasmin-
ogen is bound precisely at the lysine-binding site and per-
mits and properly directs the binding of its tissue activator
(i.e., tissue plasminogen activator). Therefore, plasmin is
generated in the inner section of the fibrin deposit, breaking
up and exposing other affinity sites such as terminal carboxy-
lysine residues, to amplify its response. Once fibrin is disin-
tegrated, the mechanism stops, and the vascular endothe-
lium does not release additional activator; the remaining
circulating plasmin and tissue activator find their corre-
sponding inhibitors, 

 

a

 

2-antiplasmin and type 1 tissue plas-
minogen activator inhibitor (PAI-1).

The similarity between plasminogen and apolipoprotein(a)
allows different apo(a) isoforms to compete with plasminogen
for fibrin affinity sites. The affinity of each isoform depends on
its size and its plasma concentration (7,84,85); in addition, the
plasmin formed at the surface of fibrin may vary with modifi-
cations of the concentration of Lp(a) 

 

in vivo

 

 (94).
Plasminogen and the different Lp(a) isoforms (86) also

compete for lysine residues on the surface receptors of en-
dothelial cells (81,87), U937 monocytes (87,88), platelets
(89), mononuclear cells (86), and on matrices for 

 

in vitro

 

models simulating the extracellular membrane (90).
Another mechanism that alters the fibrinolytic system bal-

ance is either the decrease or increase in synthesis of the tis-
sue plasminogen activator (t-PA) or of the tissue plasminogen
activator inhibitor (PAI-1), respectively (33,91), which is ob-
served in cultures of endothelial cells exposed to Lp(a).

 

Lp(a) and Atherogenesis

 

Lp(a) favors atherogenesis through different mechanisms;
macrophages phagocytize Lp(a) (92), migrate, and settle in
the subendothelium, becoming transformed into foam cells,
generating deformities that decrease the lumen of the blood

vessels. It has been observed that, in cultures of endothelial
cells from the coronary artery, Lp(a) stimulates the expres-
sion of vascular adhesion molecule-1 (VCAM-1) and selec-
tin E, a process that triggers attraction to macrophages (93).
Another proposed mechanism is related to a decrease in
plasmin generation that accounts for: (a) prolonged perma-
nence of fibrin deposits (74), with the consequent increase
of cholesterol deposits and formation of atherosclerotic
plaque, and (b) decrease of activation, by partial hydrolysis
with plasmin, of TGF-

 

b

 

, which prevents the growth of vas-
cular smooth muscle cells.

 

Lp(a) Inhibits Fibrinolysis Depending on Apo(a) Isoforms

 

A high plasma concentration of Lp(a) does not always inter-
fere with normal fibrinolysis. Apo(a) isoforms show differ-
ent antifibrinolytic activity (84,85), hence the importance of
taking into account the antifibrinolytic activity of the iso-
forms in the prediction of cardiovascular diseases (95).

Many different strategies have been applied in 

 

in vitro

 

studies. While making use of a solid-phase fibrin model (96–
100), it has been possible to identify, with high specificity
and sensitivity, fibrinolysis inhibition by apo(a) isoforms.
These studies have permitted identification of the mecha-
nisms and different variables involved in plasminogen com-
petitive inhibition, due either to the different Lp(a) native
isoforms (84) or through apo(a) recombinant forms (24).

These studies demonstrate the following: (1) Lp(a) affin-
ity for fibrin shows an inverse relationship with the size of
the apo(a) isoform within a 

 

K

 

d

 

 range of 50–500 nM (84); (2)
both plasminogen and Lp(a) compete for the same binding
sites, which corresponds to a saturable competitive inhibi-
tion mechanism, and (3) Lp(a) antifibrinolytic potential de-
pends on the affinity and concentration of each of the two
apo(a) isoforms found in plasma (101).

 

Lp(a) and Homocysteinemia

 

Hyperhomocysteinemia is related to an increase in the inci-
dence of thrombotic and atherosclerotic diseases (102).
Thrombosis is favored because of alterations in different an-
tithrombosis-regulation mechanisms; in addition, it increases
tissue factor activity, lowers the expression and activity of
thrombomodulin necessary for protein C activation, and
lowers the anticoagulant activity of antithrombin III as well
as the binding capacity of the tissue plasminogen activator to
its receptor on cell surfaces (anexin II) (103). In addition, an
increased plasma homocysteine concentration manifests it-
self as an increase in Lp(a) binding to fibrin (104,105).

 

Conclusions

 

Most epidemiological studies point out the relationship be-
tween lipoprotein (a) plasma concentration and the risk of
suffering cardiovascular and cerebrovascular diseases, espe-
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cially when other risk factors are present, such as high levels
of low-density lipoproteins and smoking. It is also important
to point out that there are differences in the concentration
and in the presence/nonpresence of some isoforms within ge-
netically different populations. Therefore, identification of
fibrinolysis inhibition behavior of different Lp(a) isoforms
necessitates applying a strategy to the study that will allow
for the identification of individuals and ethnic groups suffer-
ing from fibrinolytic deficiency due to the presence of high
concentrations of Lp(a). This line of investigation represents
a challenge to the various disciplines in studying the role of
Lp(a) in the pathogenesis and progression of atherosclerosis.
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