
Introductory notes on Martin-Löf’s Type Theory

Nikos Rigas*

Version 2024-12-17

1 Introduction
Martin-Löf’s type theory (MLTT) may be viewed as any of the following:

• A foundation and formalization of constructive mathematics, especially those
of E. Bishop.

• A theory of meaning of (constructive) mathematics.

• An archetypical functional programming language.

• (After Voevodsky) A synthetic language for homotopy theory and a foundation
of constructive-structural mathematics.

The last view is supported by recent developments involving an extended notion
of inductive type (higher inductive types) as well as an axiom (univalence) that
may be understood as a precise expression of the structuralist principle (identity of
isomorphs) in type theory. The extension of MLTT with these new ingredients is
called homotopy type theory (HoTT) and offers a number of views of its own; the
main ones are

• A synthetic language for homotopy theory: It allows the development of
homotopy theory in a way that avoids concrete topological representations.
For instance, paths are no longer represented as continuous functions from
the interval (although they can be); rather, they are defined inductively.

• The internal language of weak∞-topoi: Similarly, it offers an alternative to
categorical diagrams, which are difficult or impossible to reason with in this
context. (…)

• A foundational theory that is at once constructivist and structuralist: It realizes
the prospect of developing (at least) those branches of mathematics that study
abstract structures (e.g., algebra, geometry) while avoiding the need to resort
to an external theory (e.g., set theory) to construct or otherwise find instances
of these structures.

This suggests that HoTT may indeed function as a unifying framework for a range
of diverse aspects of mathematics.

These notes, which are meant as a prelude to HoTT, will emphasize the founda-
tional character of type theory and the main ideas underlying it.

*Email: nicolasr@di.uoa.gr

1

Remarks on the presentation

It has become established practice (after the HoTTbook, presumably) to present
(homotopy) type theory taking Σ-types, Π-types and universes as primitive. From
the point of view of the formal system, it makes little difference, as it is purely an
organizational issue, and may indeed be a shorter path to the stage of development
where homotopical ideas and results can be discussed. From a conceptual point of
view, deciding what to take as primitive is of essence, as it reflects the conceptual
precedence between the various ingredients of the theory. For a constructive theory
such as MLTT, getting the order of precedence right means, among other things,
preserving the interdependence between constructions. In these notes, we have
chosen to only accept constructors of inductive types as primitive (as they express
elementary, indecomposable and otherwise irreducible acts of construction), and
to treat everything else (including Σ-types, Π-types and universes) as defined. Con-
structors of inductive and inductive-recursive types (such as zero and successor for
the natural numbers, pairs for products and dependent sums, lambdas for func-
tion types and dependent products, false and true for the type of truth values, type
formers for universes, etc.), inductive type families (such as equality, fibers, etc.),
recursive type families (such as observational equality, heterogeneous equality, truth
predicates, etc.), as well as recursors and other constructs, are all expressed by fami-
lies of various shapes and forms. These families may depend on elements of types,
but they may also depend on families of elements of types (e.g., lambda), families
depending on families (e.g., recursors of function types), and so on. Consequently,
our language provides for an unlimited nesting of dependencies.

2 Judgmentals of MLTT
We will present MLTT as a theory of definitions. This is akin to a programming
language that is initially “empty”, and any types, functions, and similar need to
be defined from scratch before they may be used. Such a programming language
would involve concrete choices regarding the form of definitions and provide the
syntactical means necessary for stating such definitions. In MLTT, this rôle is played
by the judgmental layer of the language.

Judgmental equality A previously undefined expression 𝑒1 may be assigned the
same meaning as an already defined expression 𝑒2; this act is denoted by

𝑒1 :≡ 𝑒2.

We further write 𝑒1 ≡ 𝑒2 if expressions 𝑒1 and 𝑒2 may be syntactically identified by
expanding the definitions of sub-expressions. If this is the case, we say that 𝑒1 and
𝑒2 are judgmentally equal or definitionally equal or synonymous.

Elementhood Types have elements (more on this later). We write 𝑎 : 𝐴 to express
the judgment that 𝑎 is an element of 𝐴.

2

Families
Indexed families are denoted by prepending the indices parenthesized. For example,

(𝑥 : 𝐴) 𝑡(𝑥) : 𝐵

denotes a family of elements of type 𝐵 indexed by type 𝐴. We often refer to such a
family by saying “for (arbitrary) 𝑥 : 𝐴, 𝑡(𝑥) : 𝐵”. Similarly,

(𝑥1 : 𝐴1,… , 𝑥𝑛 : 𝐴𝑛) 𝑡(𝑥) : 𝐴

denotes a family with 𝑛 indices. (A family with zero indices is a single element of 𝐴.)
For example, for any type 𝐴 there is the identity family (𝑥 : 𝐴) 𝑥, and any element 𝑎
of 𝐴 gives rise to constant families over any and all indices.

Indices may themselves be families. This is reflected in expressions like

(𝑥 : 𝐴, (𝑦 : 𝐵) 𝑧(𝑦) : 𝐶) 𝑡(𝑥, 𝑧),

which signifies a family depending on elements of 𝐴 and families of elements of 𝐶
depending on elements of 𝐵.

3 Inductive types
The primary means of introducing new types into the system is inductive definition.
For example, the natural numbers are generated by the induction scheme

• zero is a natural number, and

• the successor of a natural number is a natural number.

In type-theoretic notation, the above inductive description takes the form

• 𝟢 : Nat, and

• (𝑛 : Nat) 𝗌(𝑛) : Nat.

𝟢 and 𝗌 are the postulated ways of constructing natural numbers; they are the
constructors of Nat. 𝟢 has zero indices and constructs a single element of Nat,
whereas 𝗌 is a family of natural numbers with one index which is itself a natural
number (hence, it is a recursive constructor).

An inductive definition of a type amounts to listing its constructors, i.e., certain
families of elements of the type being defined that signify the (canonical) ways
of constructing elements of that type. More general forms (e.g., mutual inductive
definitions, inductive-inductive definitions, inductive-recursive definitions) are
possible; they will be employed as the need arises.

Other common examples of inductively defined types are the type List(𝐴) of
lists of elements of a type 𝐴, with constructors

• 𝗇𝗂𝗅𝐴 : List(𝐴),

• (head : 𝐴, tail : List(𝐴)) 𝖼𝗈𝗇𝗌𝐴(head, tail) : List(𝐴),

and the type Bool, with constructors

• 𝖿𝖺𝗅𝗌𝖾 : Bool,

• 𝗍𝗋𝗎𝖾 : Bool.

3

4 Recursion
There are two primary uses of the inductive description of a type: Defining functions
by recursion, and proving properties of its elements by induction. We will treat
recursion now, and defer induction for when we have type families at our disposal.
In the case of Nat this is the familiar definition by primitive recursion: Given a type
𝐶, an element 𝑐𝟢 of 𝐶 and a family (𝑥 : Nat, 𝑦 : 𝐶) 𝑐𝗌(𝑥, 𝑦) of elements of 𝐶, the
assignments

𝑡(𝟢) :≡ 𝑐𝟢,
𝑡(𝗌(𝑥)) :≡ 𝑐𝗌(𝑥, 𝑡(𝑥)),

define 𝑡(𝑥) : 𝐶 for arbitrary 𝑥 : Nat. For example, we may define addition of natural
numbers by recursion in the second operand:

𝑚+ 𝟢 :≡ 𝑚,
𝑚 + 𝗌(𝑛) :≡ 𝗌(𝑚 + 𝑛).

In other words, addition (to𝑚) is defined by the instance of Nat-recursion where
𝑐𝟢 ≡ 𝑚 and 𝑐𝗌(𝑥, 𝑦) ≡ 𝗌(𝑦). Any definition by recursion over the natural numbers is
determined by these two parameters, 𝑐𝟢 and 𝑐𝗌. By turning these into indices of the
family being defined, we arrive at the recursor

(𝑧 : 𝐶, (𝑥 : Nat, 𝑦 : 𝐶) 𝑤(𝑥, 𝑦) : 𝐶, 𝑛 : Nat) 𝗋𝖾𝖼𝐶Nat(𝑧, 𝑤, 𝑛) : 𝐶

of Nat, defined by the recursion

𝗋𝖾𝖼𝐶Nat(𝑧, 𝑤, 𝟢) :≡ 𝑧,
𝗋𝖾𝖼𝐶Nat(𝑧, 𝑤, 𝗌(𝑛)) :≡ 𝑤(𝑛, 𝗋𝖾𝖼𝐶Nat(𝑧, 𝑤, 𝑛)).

The superscript 𝐶 is omitted when uninteresting or implied by the context.
Any recursive family may be explicitly defined with the help of the recursor; for

example, addition would be defined by

𝑚+ 𝑛 :≡ 𝗋𝖾𝖼Nat(𝑚, (𝑥 : Nat, 𝑦 : Nat) 𝗌(𝑦), 𝑛).

The recursion principle of any inductive type follows the same pattern; namely,
in order to define a family over an inductive type it suffices to specify its instances
on the constructors. For example, the recursion principle of Bool asserts that given
two elements 𝑐𝖿𝖺𝗅𝗌𝖾 and 𝑐𝗍𝗋𝗎𝖾 of a type 𝐶, the assignments

𝑡(𝖿𝖺𝗅𝗌𝖾) :≡ 𝑐𝖿𝖺𝗅𝗌𝖾,
𝑡(𝗍𝗋𝗎𝖾) :≡ 𝑐𝗍𝗋𝗎𝖾,

define a family (𝑥 : Bool) 𝑡(𝑥) : 𝐶.

Exercises
Exercise 4.1. Define multiplication on Nat by recursion and/or using the recursor.
Optionally, do the same with exponentiation and the factorial.

4

5 Logic
Our next task will be to add/inject logic into MLTT. The following definitions will
reconstruct intuitionistic first-order logic, by means of the propositions-as-types
paradigm. The general idea of propositions-as-types is to identify each proposition
with the type whose elements are the possible pieces of evidence for that proposition;
then, a proof of 𝐴 from assumptions 𝐴1,… , 𝐴𝑛 yields evidence for 𝐴 conditional on
evidence for 𝐴1,… , 𝐴𝑛, i.e., it is a family of elements of 𝐴 indexed by 𝐴1,… , 𝐴𝑛.

5.1 Product
The type-theoretic analogue of the conjunction of two propositions is the product
𝐴1 × 𝐴2 of two types 𝐴1 and 𝐴2, defined by the ordered pair constructor:

• For 𝑥1 : 𝐴1 and 𝑥2 : 𝐴2, 𝗉𝖺𝗂𝗋(𝑥1, 𝑥2) : 𝐴1 × 𝐴2.

By erasing the elements from the formation rule

𝑥1 : 𝐴1 𝑥2 : 𝐴2

𝗉𝖺𝗂𝗋(𝑥1, 𝑥2) : 𝐴1 × 𝐴2

of 𝗉𝖺𝗂𝗋 and switching to logical notation, we obtain the introduction rule

𝜙1 𝜙2
𝜙1 � 𝜙2

of conjunction.
Recursion principle: Given a family (𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑐𝗉𝖺𝗂𝗋(𝑥1, 𝑥2) of elements of

a type 𝐶 indexed by 𝐴1 and 𝐴2, the assignment

𝑡(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) :≡ 𝑐𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)

defines 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 × 𝐴2. Recursion over 𝐴1 × 𝐴2 may be expressed by
means of the recursor

(𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑧(𝑥1, 𝑥2) : 𝐶 𝑥 : 𝐴1 × 𝐴2

𝗋𝖾𝖼𝐴1×𝐴2(𝑧, 𝑥) : 𝐶

of 𝐴1 × 𝐴2, defined by the recursion

𝗋𝖾𝖼𝐴1×𝐴2(𝑧, 𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) :≡ 𝑧(𝑥1, 𝑥2).

Omitting the elements yields the elimination rule

(𝜙1, 𝜙2)...
𝜃 𝜙1 � 𝜙2

𝜃

of conjunction.

5

5.2 Function type
The type 𝐴 → 𝐵 of functions from 𝐴 to 𝐵 corresponds to logical implication; it is
defined by the functional abstraction constructor:

• For a family (𝑥 : 𝐴) 𝑏(𝑥) of elements of 𝐵 indexed by 𝐴, �(𝑥 : 𝐴) 𝑏(𝑥) : 𝐴→ 𝐵.

(Technically, we should be writing �((𝑥 : 𝐴) 𝑏(𝑥)), since the argument to � is the
entire family (𝑥 : 𝐴) 𝑏(𝑥), but the tradition is to omit parentheses here.) By omitting
the elements and switching to logical notation, this yields the introduction rule

(𝜙)
...
𝜓

𝜙 � 𝜓

of implication.
Recursion principle: Given a family ((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑐�(𝑦) : 𝐶, the assignment

𝑡(�(𝑥 : 𝐴) 𝑏(𝑥)) :≡ 𝑐�((𝑥 : 𝐴) 𝑏(𝑥))

defines 𝑡(𝑓) for arbitrary 𝑓 : 𝐴→ 𝐵. The recursor of 𝐴→ 𝐵 has the formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑧(𝑦) : 𝐶 𝑓 : 𝐴→ 𝐵
𝗋𝖾𝖼𝐴→𝐵(𝑧, 𝑓) : 𝐶

and is defined by the recursion

𝗋𝖾𝖼𝐴→𝐵(𝑧,�(𝑥 : 𝐴) 𝑏(𝑥)) :≡ 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝜙
𝜓
)
...
𝜃 𝜙 � 𝜓

𝜃

for implication.

5.3 Sum
Disjunction is modelled by the sum 𝐴1 + 𝐴2 of types 𝐴1 and 𝐴2, defined by the two
constructors

• For 𝑥1 : 𝐴1, 𝗂𝗇1(𝑥1) : 𝐴1 + 𝐴2.

• For 𝑥2 : 𝐴2, 𝗂𝗇2(𝑥2) : 𝐴1 + 𝐴2.

These constructors correspond to the introduction rules

𝜙1
𝜙1 � 𝜙2

𝜙2
𝜙1 � 𝜙2

6

for disjunction.
Recursion principle: Given families (𝑥1 : 𝐴1)𝑐𝗂𝗇1(𝑥1) : 𝐶 and (𝑥2 : 𝐴2)𝑐𝗂𝗇2(𝑥2) : 𝐶,

the assignments

𝑡(𝗂𝗇1(𝑥1)) :≡ 𝑐𝗂𝗇1(𝑥1),
𝑡(𝗂𝗇2(𝑥2)) :≡ 𝑐𝗂𝗇2(𝑥2),

define 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 + 𝐴2. The recursor has the form

(𝑥1 : 𝐴1) 𝑧1(𝑥1) : 𝐶 (𝑥2 : 𝐴2) 𝑧2(𝑥2) : 𝐶 𝑥 : 𝐴1 + 𝐴2 ,
𝗋𝖾𝖼𝐴1+𝐴2(𝑧1, 𝑧2, 𝑥) : 𝐶

is defined by the recursion

𝗋𝖾𝖼𝐴1+𝐴2(𝑧1, 𝑧2, 𝗂𝗇1(𝑥1)) :≡ 𝑧1(𝑥1),
𝗋𝖾𝖼𝐴1+𝐴2(𝑧1, 𝑧2, 𝗂𝗇2(𝑥2)) :≡ 𝑧2(𝑥2),

and yields the elimination rule

(𝜙1)...
𝜃

(𝜙2)...
𝜃 𝜙1 � 𝜙2
𝜃

(proof by cases) for disjunction.

5.4 𝟘
The type 𝟘 corresponds to falsum (�); it has no constructors. Hence, its recursion
principle stipulates the existence of a family (𝑥 : 𝟘) 𝑡(𝑥) : 𝐶 for any type 𝐶. Its
recursor has the form

𝑥 : 𝟘 ,
𝗋𝖾𝖼𝟘(𝑥) : 𝐶

has no defining assignments (because there is nothing it can be defined on), and
corresponds to the elimination rule

�
𝜃

(ex falso) of �.
The negation of a type 𝐴 is defined to be the type ¬𝐴 :≡ 𝐴→ 𝟘.

5.5 Dependent sum
The product may be generalized by allowing the second operand to depend on the
first: Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent sum∑(𝑥 : 𝐴) 𝐵(𝑥) is defined
by the constructor

• For 𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥), 𝗉𝖺𝗂𝗋(𝑥, 𝑦) : ∑(𝑥 : 𝐴) 𝐵(𝑥).

7

(Note that the order now becomes important: We may not declare 𝑦 : 𝐵(𝑥) before
we have declared 𝑥 : 𝐴.) We use the same name for the constructors of the product
and the dependent sum to reinforce the fact that the latter is a generalization of the
former. By erasing elements we obtain the introduction rule

𝜙(𝑎)
�(𝑥 : 𝐴) 𝜙(𝑥)

of the existential quantifier.
Recursion principle: Given an element 𝑐𝗉𝖺𝗂𝗋(𝑥, 𝑦) : 𝐶 for arbitrary 𝑥 : 𝐴 and

𝑦 : 𝐵(𝑥), the assignment

𝑡(𝗉𝖺𝗂𝗋(𝑥, 𝑦)) :≡ 𝑐𝗉𝖺𝗂𝗋(𝑥, 𝑦)

defines 𝑡(𝑤) for any 𝑤 : ∑(𝑥 : 𝐴) 𝐵(𝑥). The form of the recursor is

(𝑥 : 𝐴, 𝑦 : 𝐵(𝑥)) 𝑧(𝑥, 𝑦) : 𝐶 𝑤 : ∑(𝑥 : 𝐴) 𝐵(𝑥)
𝗋𝖾𝖼∑(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑤) : 𝐶

and yields the elimination rule

(𝑥 : 𝐴, 𝜙(𝑥))
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

𝜃

for the existential quantifier. (Notice that displaying the cancellation of 𝑥 : 𝐴 is
necessary here to avoid any undesired dependencies.)

5.6 Dependent product
As in the case of the product, we may relax the conditions for the function type:
Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent product∏(𝑥 : 𝐴) 𝐵(𝑥) is defined by
the constructor

• For a family (𝑥 : 𝐴) 𝑏(𝑥) : 𝐵(𝑥), �(𝑥 : 𝐴) 𝑏(𝑥) : ∏(𝑥 : 𝐴) 𝐵(𝑥).

Again, using the same symbol for the constructors of the function type and the
dependent product is justified by the latter being a generalization of the former.
Omitting the elements yields the introduction rule

(𝑥 : 𝐴)
...

𝜙(𝑥)
�(𝑥 : 𝐴) 𝜙(𝑥)

of the universal quantifier. (Notice, once more, the necessity of displaying the
cancellation of 𝑥 : 𝐴.)

Recursion principle: Given a family ((𝑥 : 𝐴)𝑦(𝑥) : 𝐵(𝑥))𝑐�(𝑦) : 𝐶, the assignment

𝑡(�(𝑥 : 𝐴) 𝑏(𝑥)) :≡ 𝑐�((𝑥 : 𝐴) 𝑏(𝑥))

8

defines 𝑡(𝑓) for arbitrary 𝑓 : ∏(𝑥 : 𝐴) 𝐵(𝑥). The recursor of∏(𝑥 : 𝐴) 𝐵(𝑥) has the
formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵(𝑥)) 𝑧(𝑦) : 𝐶 𝑓 : ∏(𝑥 : 𝐴) 𝐵(𝑥)
𝗋𝖾𝖼∏(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑓) : 𝐶

and is defined by the recursion

𝗋𝖾𝖼∏(𝑥:𝐴) 𝐵(𝑥)(𝑧,�(𝑥 : 𝐴) 𝑏(𝑥)) :≡ 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝑥:𝐴
𝜙(𝑥)

)
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

𝜃

of the universal quantifier.

5.7 Projections and function application
Of the types defined above, those that have a single constructor admit simpler (and
familiar) constructs equivalent to (i.e., interdefinable with) their recursors. First,
we may define, for 𝑥 : 𝐴1 × 𝐴2, the projections

𝗉𝗋𝑖(𝑥) : 𝐴𝑖, 𝑖 = 1, 2

by the recursion

𝗉𝗋𝑖(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) :≡ 𝑥𝑖.

Then, the recursor of 𝐴1 × 𝐴2 may be expressed in terms of 𝗉𝗋1 and 𝗉𝗋2 by setting

𝗋𝖾𝖼𝐴1×𝐴2(𝑧, 𝑥) :≡ 𝑧(𝗉𝗋1(𝑥), 𝗉𝗋2(𝑥)).

This definition satisfies the defining property of 𝗋𝖾𝖼𝐴1×𝐴2, namely,

𝗋𝖾𝖼𝐴1×𝐴2(𝑧, 𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) ≡ 𝑧(𝗉𝗋1(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)), 𝗉𝗋2(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)))
≡ 𝑧(𝑥1, 𝑥2).

Similarly, we define the application 𝖺𝗉𝗉𝗅𝗒𝑓(𝑎) : 𝐵 of 𝑓 : 𝐴 → 𝐵 to 𝑎 : 𝐴 by the
recursion (on 𝑓)

𝖺𝗉𝗉𝗅𝗒�(𝑥:𝐴) 𝑏(𝑥)(𝑎) :≡ 𝑏(𝑎).

The recursor of 𝐴→ 𝐵may then be defined in terms of function application:

𝗋𝖾𝖼𝐴→𝐵(𝑧, 𝑓) :≡ 𝑧((𝑥 : 𝐴) 𝖺𝗉𝗉𝗅𝗒𝑓(𝑥)).

The defining property of 𝗋𝖾𝖼𝐴→𝐵 is satisfied:

𝗋𝖾𝖼𝐴→𝐵(𝑧,�(𝑥 : 𝐴) 𝑏(𝑥)) ≡ 𝑧((𝑥 : 𝐴) 𝖺𝗉𝗉𝗅𝗒�(𝑥:𝐴) 𝑏(𝑥)(𝑥))
≡ 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

9

We will follow common practice and write 𝑓(𝑥) instead of 𝖺𝗉𝗉𝗅𝗒𝑓(𝑥). We often use
function application and projections in place of recursion over functions respectively
pairs.

The above extend,mutatismutandis, to dependent sums and products. Note, also,
that these constructs yield the familiar elimination rules for conjunction, implication,
and universal quantification (the existential quantifier does not have such special
elimination rules).

Bottom line
We have reconstructed intuitionistic first-order logic within MLTT. Consequently,
propositions of first-order logic may now be expressed by types (pending the def-
inition of useful predicates, like equality, to be discussed next). What this means,
in practice, is that formulating a theorem amounts to describing a type, and prov-
ing it amounts to exhibiting an element of that type. This may well take place in
natural language. For example, we may show (the type-theoretic analogues of) the
reflexivity and transitivity of implication:

Theorem. (i) 𝐴→𝐴.

(ii) If 𝐴→ 𝐵 then if 𝐵 → 𝐶 then 𝐴→ 𝐶.

Proof. (i) We need to exhibit a function 𝐹 : 𝐴→ 𝐴; this is served by the identity

𝗂𝖽𝐴 :≡ �(𝑥 : 𝐴) 𝑥 : 𝐴 → 𝐴.

(ii) We have to exhibit a function 𝐹 : (𝐴→𝐵)→((𝐵→𝐶)→(𝐴→𝐶)). Let 𝑓 : 𝐴→𝐵
and 𝑔 : 𝐵 → 𝐶. Then, for 𝑥 : 𝐴, 𝑔(𝑓(𝑥)) : 𝐶. Hence,

𝑔 ∘ 𝑓 :≡ �(𝑥 : 𝐴) 𝑔(𝑓(𝑥)) : 𝐴 → 𝐶.

We may now abstract 𝑔 and 𝑓 in this order to obtain the desired function

�(𝑓 : 𝐴 → 𝐵) �(𝑔 : 𝐵 → 𝐶) 𝑔 ∘ 𝑓.

Exercises
Exercise 5.1. Show the following logical facts.

(i) 𝐴→¬¬𝐴.

(ii) ¬¬(𝐴 + ¬𝐴).

(iii) (𝐴 + ¬𝐴) → (¬¬𝐴→𝐴).

Solution. 1. A function from 𝐴 to ¬¬𝐴 is

�(𝑥 : 𝐴) �(𝑓 : ¬𝐴) 𝑓(𝑥).

2. Let 𝑓 : ¬(𝐴 + ¬𝐴) ≡ (𝐴 + ¬𝐴) → 𝟘. Then, 𝑓 ∘ 𝗂𝗇1 : 𝐴 → 𝟘 ≡ ¬𝐴 and
𝑓 ∘ 𝗂𝗇2 : ¬𝐴→ 𝟘. Hence,

(𝑓 ∘ 𝗂𝗇2)(𝑓 ∘ 𝗂𝗇1) : 𝟘.

10

3. By +-recursion, it suffices to define 𝐹(𝗂𝗇1(𝑥)) : ¬¬𝐴 → 𝐴 for 𝑥 : 𝐴 and
𝐹(𝗂𝗇2(𝑓)) : ¬¬𝐴→ 𝐴 for 𝑓 : ¬𝐴.

𝐹(𝗂𝗇1(𝑥)) :≡ �(𝑔 : ¬¬𝐴) 𝑥,
𝐹(𝗂𝗇2(𝑓)) :≡ 𝗋𝖾𝖼𝐴𝟘 (�(𝑔 : ¬¬𝐴) 𝑔(𝑓)).

Exercise 5.2. Let 𝐸 be the type defined by the single constructor

• For 𝑥 : 𝐸, 𝑒(𝑥) : 𝐸.

This type would result from Nat if we removed the constructor 𝟢. Intuitively, 𝐸
should have no elements, as there is no way to bootstrap production. Show that this
is indeed the case, i.e., prove¬𝐸. [Hint: Define a function 𝑓 : 𝐸→𝟘 by 𝐸-recursion.]

Solution. A function 𝑓 : 𝐸 → 𝟘may be defined by the recursion

𝑓(𝑒(𝑥)) :≡ 𝑓(𝑥).

6 Equality
Predicate logic also involves predicates, such as 𝑥 < 𝑦, Prime(𝑛), and so on. Under
the propositions-as-types interpretation, predicates correspond to families of types,
indexed by the respective domains of the arguments.

The definition of a family by recursion applies, in particular, to type families
(more on this in the section on universes). Another option is to define a type family
by giving constructors for its various instances. The definition of equality exploits
the latter possibility.

Equality of a type 𝐴may be defined in two equivalent ways: Either as a family
(𝑥 : 𝐴, 𝑦 : 𝐴) 𝑥 = 𝑦 with respect to both sides, or as a family (𝑥 : 𝐴) 𝑎 = 𝑥 for each
particular element 𝑎 of 𝐴; we will examine them in turn.

6.1 Based equality
Let 𝑎 : 𝐴. Equality-to-𝑎 is the type family (𝑥 : 𝐴) 𝑎 = 𝑥 with the single constructor

• 𝗋𝖾𝖿𝗅𝑎 : 𝑎 = 𝑎.

This constructor corresponds to the introduction rule

.𝑎 = 𝑎

We often refer to elements of 𝑎 = 𝑏 as identifications between 𝑎 and 𝑏.
Recursion with respect to a type family is a principle of definition over all in-

stances of that family at once. In the case of based equality, the recurion principle
concerns itself with the definition of families of the form (𝑥 : 𝐴, 𝑝 : 𝑎 = 𝑥) 𝑡(𝑥, 𝑝) :
𝐶(𝑥) into an arbitrary type family (𝑥 : 𝐴) 𝐶(𝑥) of the same shape as based equality.
Its name comes from homotopy type theory, and draws on the interpretation of
identifications as paths.

11

Based-path recursion: Given a type family (𝑥 : 𝐴) 𝐶(𝑥) and an element 𝑐𝗋𝖾𝖿𝗅𝑎 of
𝐶(𝑎), the assignment

𝑡(𝑎, 𝗋𝖾𝖿𝗅𝑎) :≡ 𝑐𝗋𝖾𝖿𝗅𝑎

defines 𝑡(𝑥, 𝑝) : 𝐶(𝑥) for any 𝑥 : 𝐴 and 𝑝 : 𝑎 = 𝑥.

Notation. For families of the form 𝑡(𝑥, 𝑝) for 𝑥 : 𝐴 and 𝑝 : 𝑎 = 𝑥, the first argument
is often suppressed, as it is determined by the second one, and we simply write 𝑡(𝑝).

Recursors may be interesting from a logical perspective, because they correspond to
elimination rules, but we generally find it more natural and convenient to formulate
definitions by recursion directly. The exception is the recursor of based equality,
which is useful enough to have its own name,

𝑧 : 𝐶(𝑎) 𝑝 : 𝑎 = 𝑏
,

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑝, 𝑧) :≡ 𝗋𝖾𝖼𝐶𝑎=_(𝑧, 𝑝) : 𝐶(𝑏)

and is defined by the based-path recursion

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝗋𝖾𝖿𝗅𝑥, 𝑧) :≡ 𝑧.

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑝, 𝑥) is pronounced “the transport of 𝑥 : 𝐶(𝑎) to 𝐶(𝑏) along 𝑝 : 𝑎 = 𝑏”.
The elimination rule corresponding to 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍 is the law of the indiscernibility

of identicals:

𝜙(𝑎) 𝑎 = 𝑏
.

𝜙(𝑏)

The following identifications testify that based equality is an equivalence relation.

Reflexivity Let 𝑎 : 𝐴. Then,

𝗋𝖾𝖿𝗅𝑎 : 𝑎 = 𝑎.

Transitivity Let 𝑝 : 𝑎 = 𝑏 and 𝑞 : 𝑏 = 𝑐. Then,

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝑎=_(𝑞, 𝑝) : 𝑎 = 𝑐.

Symmetry Let 𝑝 : 𝑎 = 𝑏. Then,

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍_=𝑎(𝑝, 𝗋𝖾𝖿𝗅𝑎) : 𝑏 = 𝑎.

6.2 Symmetric equality
The symmetric equality of a type 𝐴 is the type family (𝑥 : 𝐴, 𝑦 : 𝐴) 𝑥 = 𝑦 having the
constructor

• For 𝑥 : 𝐴, 𝗋𝖾𝖿𝗅𝑥 : 𝑥 = 𝑥.

12

As was the case with based equality, recursion over symmetric equality is a
principle for defining families of the form (𝑥 : 𝐴, 𝑦 : 𝐴, 𝑝 : 𝑥 = 𝑦) 𝑡(𝑥, 𝑦, 𝑝) : 𝐶(𝑥, 𝑦)
into a type family (𝑥 : 𝐴, 𝑦 : 𝐴) 𝐶(𝑥, 𝑦) of the same shape as symmetric equality.

Path recursion: Given types 𝐶(𝑥, 𝑦) for 𝑥, 𝑦 : 𝐴 and elements 𝑐𝗋𝖾𝖿𝗅(𝑥) : 𝐶(𝑥, 𝑥) for
𝑥 : 𝐴, the assignment

𝑡(𝑥, 𝑥, 𝗋𝖾𝖿𝗅𝑥) :≡ 𝑐𝗋𝖾𝖿𝗅(𝑥)

defines 𝑡(𝑥, 𝑦, 𝑝) : 𝐶(𝑥, 𝑦) for arbitrary 𝑥, 𝑦 : 𝐴 and 𝑝 : 𝑥 = 𝑦.
The recursor of symmetric equality is

((𝑥 : 𝐴) 𝑧(𝑥) : 𝐶(𝑥, 𝑥), 𝑎, 𝑏 : 𝐴, 𝑝 : 𝑎 = 𝑏) 𝗋𝖾𝖼𝐶=(𝑧, 𝑝) : 𝐶(𝑎, 𝑏),

is defined by the path recursion

𝗋𝖾𝖼𝐶=(𝑧, 𝗋𝖾𝖿𝗅𝑥) :≡ 𝑧(𝑥)

and corresponds to the alternative elimination rule

(𝑥 : 𝐴)
...

𝜙(𝑥, 𝑥) 𝑎 = 𝑏
𝜙(𝑎, 𝑏)

of equality, which says that equals satisfy any reflexive relation.

6.3 Equivalence between the two definitions
Based equality and symmetric equality are, essentially, two different descriptions of
the same relation. This is testified by the interderivability between the respective
recursion principles (equivalently, the interdefinability between 𝗋𝖾𝖼= and 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍).
One direction is straightforward: Given (𝑥 : 𝐴) 𝑧(𝑥) : 𝐶(𝑥, 𝑥) and 𝑝 : 𝑎 = 𝑏 in 𝐴, an
element of 𝐶(𝑎, 𝑏)may be obtained by transporting 𝑧(𝑎) : 𝐶(𝑎, 𝑎) along 𝑝,

𝗋𝖾𝖼𝐶=(𝑧, 𝑝) :≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑎,_)(𝑝, 𝑧(𝑎)).

The verification of the defining property of 𝗋𝖾𝖼= is left to the reader. The other
direction isn’t particularly difficult either, provided we have function types at our
disposal: Let (𝑥 : 𝐴) 𝐶(𝑥) be a family of types over 𝐴. We first define functions
𝑓𝑝 : 𝐶(𝑎) → 𝐶(𝑏) for 𝑝 : 𝑎 = 𝑏 by means of the path recursion

𝑓𝗋𝖾𝖿𝗅𝑥 :≡ 𝗂𝖽𝐶(𝑥).

We may then define

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑝, 𝑥) :≡ 𝑓𝑝(𝑥).

It is possible, as a matter of fact, to define the entire family

(𝑎, 𝑏 : 𝐴, 𝑝 : 𝑎 = 𝑏,𝑤 : 𝐶(𝑎)) 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑝, 𝑤) : 𝐶(𝑏)

by the path recursion

𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝗋𝖾𝖿𝗅𝑥, 𝑤) :≡ 𝑤

withoutmentioning function types. This definition is essentially correct, but requires
a more general form of path recursion. See the optional paragraph at the end of the
section and the exercises that follow it for some discussion.

13

6.4 Basic properties of equality
We have already shown that equality is an equivalence relation using based-path
recursion. We will now introduce the official operations on paths that constitute the
lowest level of the groupoid structure of types. It is customary to use path recursion
for this purpose, to avoid any unintended judgmental equalities.

Let 𝐴 be a type. For any 𝑥 : 𝐴, we have 𝗋𝖾𝖿𝗅𝑥 : 𝑥 = 𝑥. For 𝑝 : 𝑥 = 𝑦, an
identification 𝑝−1 : 𝑦 = 𝑥 is defined by the path recursion

𝗋𝖾𝖿𝗅−1𝑥 :≡ 𝗋𝖾𝖿𝗅𝑥.

Finally, for 𝑝 : 𝑥 = 𝑦 and 𝑞 : 𝑦 = 𝑧, we first define 𝑡(𝑥, 𝑦, 𝑝) : 𝑥 = 𝑦 by the path
recursion1

𝑡(𝑥, 𝑥, 𝗋𝖾𝖿𝗅𝑥) :≡ 𝗋𝖾𝖿𝗅𝑥.

An identification 𝑝 • 𝑞 : 𝑥 = 𝑧may now be defined by the further path recursion
(on 𝑞)

𝑝 • 𝗋𝖾𝖿𝗅𝑦 :≡ 𝑡(𝑥, 𝑦, 𝑝).

Equality is also respected by families: Let (𝑥 : 𝐴) 𝑢(𝑥) : 𝐵. Then, we may define
𝑢(𝑝) : 𝑢(𝑥) = 𝑢(𝑦) for arbitrary 𝑝 : 𝑥 = 𝑦 by means of the path recursion

𝑢(𝗋𝖾𝖿𝗅𝑥) :≡ 𝗋𝖾𝖿𝗅ᵆ(𝑥).

Strictly speaking, this notation is ambiguous. It follows the common practice in
category theory of using the same symbol for the action of a functor on objects and
on morphisms. In the rare case that we need to differentiate between the two, we
will write 𝖺𝗉ᵆ(𝑝) for 𝑢(𝑝).

More general forms of recursion

A definition by Nat-recursion of the form

𝑡(𝟢, 𝑧) :≡ 𝑐𝟢(𝑧),
𝑡(𝗌(𝑛), 𝑧) :≡ 𝑐𝗌(𝑛, 𝑡(𝑛, 𝑧), 𝑧).

may be understood as defining (𝑛 : Nat) 𝑡(𝑛, 𝑧) for each individual 𝑧; indeed, such a
definition can be expressed by means of the recursor:

𝑡(𝑛, 𝑧) :≡ 𝗋𝖾𝖼Nat(𝑐𝟢(𝑧), (𝑥 : Nat, 𝑦) 𝑐𝗌(𝑥, 𝑦, 𝑧), 𝑛).

Sometimes, however, 𝑡(𝗌(𝑛), 𝑧) is defined in terms of 𝑡(𝑛, 𝑧′) for (several) arbitrary
values of 𝑧′. This situation arises, e.g., when we do simultaneous recursion in two
arguments:

𝗂𝗌_𝖾𝗊𝗎𝖺𝗅(𝟢, 𝟢) :≡ 𝗍𝗋𝗎𝖾,
𝗂𝗌_𝖾𝗊𝗎𝖺𝗅(𝟢, 𝗌(𝑛)) :≡ 𝖿𝖺𝗅𝗌𝖾,
𝗂𝗌_𝖾𝗊𝗎𝖺𝗅(𝗌(𝑚), 𝟢) :≡ 𝖿𝖺𝗅𝗌𝖾,

𝗂𝗌_𝖾𝗊𝗎𝖺𝗅(𝗌(𝑚), 𝗌(𝑛)) :≡ 𝗂𝗌_𝖾𝗊𝗎𝖺𝗅(𝑚, 𝑛).
1If we set 𝑡(𝑥, 𝑦, 𝑝) :≡ 𝑝 directly, we obtain the version of the definition using based-path recursion.

This is a standard trick for weakening a judgmental equality into a propositional one; see the exercise on
the uniqueness of the definiendum at the end of the next section.

14

To formulate such a definition, we would need to supply the entire family (𝑧) 𝑡(𝑛, 𝑧)
as an argument to 𝑐𝗌:

𝑡(𝟢, 𝑧) :≡ 𝑐𝟢(𝑧),
𝑡(𝗌(𝑛), 𝑧) :≡ 𝑐𝗌(𝑛, (𝑧′) 𝑡(𝑛, 𝑧′), 𝑧).

The above assignments determine 𝑡(𝟢, 𝑧) for all 𝑧 and, once 𝑡(𝑛, 𝑧′) is defined for
all 𝑧′, they determine 𝑡(𝗌(𝑛), 𝑧) for all 𝑧. Nevertheless, this definition isn’t always
equivalent to an ordinary definition by recursion over the natural numbers, despite
being as legitimate a definition as any. Formulating a more general recursion prin-
ciple to accommodate for this case is not particularly difficult (see the exercises);
for now, we will be content to state our intention to employ this and other forms of
definition as we see fit.

Exercises
Exercise 6.1. Based on the discussion of the previous paragraph, formulate a more
general principle of definition by recursion over the natural numbers. Optionally,
describe the corresponding recursor. Show how this principle can be reduced to
(i.e., derived from) ordinary Nat-recursion in the presence of function types.

Exercise 6.2. Amore general form of path recursion would be as follows: Given

• types 𝐵(𝑥, 𝑦) for 𝑥, 𝑦 : 𝐴,

• types 𝐶(𝑥, 𝑦, 𝑧) for 𝑥, 𝑦 : 𝐴 and 𝑧 : 𝐵(𝑥, 𝑦), and

• elements 𝑐𝗋𝖾𝖿𝗅(𝑥, 𝑧) of 𝐶(𝑥, 𝑥, 𝑧) for 𝑥 : 𝐴 and 𝑧 : 𝐵(𝑥, 𝑥),

the assignment

𝑡(𝑥, 𝑥, 𝗋𝖾𝖿𝗅𝑥, 𝑧) :≡ 𝑐𝗋𝖾𝖿𝗅(𝑥, 𝑧)

defines 𝑡(𝑥, 𝑦, 𝑝, 𝑧) : 𝐶(𝑥, 𝑦, 𝑧) for 𝑥, 𝑦 : 𝐴, 𝑝 : 𝑥 = 𝑦 and 𝑧 : 𝐵(𝑥, 𝑦). Use this
principle to derive based-path recursion.

Exercise 6.3. A different generalization of Nat-recursion is necessary for expressing
second-order recursive definitions such as the definition of the Fibonacci sequence.
Formulate this principle. Optionally, describe the corresponding recursor. Show
that this principle can be reduced to ordinary recursion in the presence of cartesian
products.

7 Induction
Inductive types also support proofs by induction. In the case of Nat, this is the
familiar principle

From 𝜙(𝟢) and�𝑥 (𝜙(𝑥) � 𝜙(𝗌(𝑥))) infer�𝑥𝜙(𝑥).

In the style of propositions-as-types, we would say that from

• evidence for 𝜙(𝟢) and

15

• evidence for 𝜙(𝗌(𝑥)) depending on evidence for 𝜙(𝑥)

wemay assemble evidence for𝜙(𝑛) for arbitrary 𝑛 : Nat. Its type-theoretic expression
is the following
Principle of Nat-induction: Given a type family (𝑥 : Nat) 𝐶(𝑥) together with

• an element 𝑐𝟢 of 𝐶(𝟢), and

• a family (𝑥 : Nat, 𝑦 : 𝐶(𝑥)) 𝑐𝗌(𝑥, 𝑦) : 𝐶(𝗌(𝑥)),

the assignments

𝑡(𝟢) :≡ 𝑐0,
𝑡(𝗌(𝑥)) :≡ 𝑐𝗌(𝑥, 𝑡(𝑥))

serve to define 𝑡(𝑥) : 𝐶(𝑥) for 𝑥 : Nat.
This principle generalizes the recursion principle of Nat by allowing the type of

𝑡(𝑥) to depend on 𝑥. The induction principles of the other inductive types and type
families are formulated in the same fashion.

The induction principle of Natmay be seen as indirectly asserting that all natural
numbers are generated by the constructors 𝟢 and 𝗌. A direct expression of this fact,
which is already implicit in the inductive definition of Nat, is hindered by the
presence of the recursive constructor 𝗌. For most types, where there is no such
limitation, the corresponding properties may be stated and proved, and shown
to be equivalent to their induction principles. Especially for types with a single
constructor, these so-called “uniqueness principles” take a particularly simple form,
known from the 𝜆-calculus as “propositional 𝜂-expansion rules”. In the case of the
type 𝟙 with the single constructor ⋆ : 𝟙, for instance, we have an identification

𝜂𝟙(𝑥) : ⋆ = 𝑥

for any 𝑥 : 𝟙, obtained by the induction

𝜂𝟙(⋆) :≡ 𝗋𝖾𝖿𝗅⋆,

testifying that⋆ is the only element of 𝟙. What’s more, 𝟙-induction may be recovered
from 𝜂𝟙 (i.e., 𝜂𝟙 and the inductor of 𝟙 are interdefinable). Namely, given a type family
𝐶 over 𝟙 and an element 𝑐⋆ of 𝐶(⋆), the family (𝑥 : 𝟙) 𝑡(𝑥) : 𝐶(𝑥) defined by

𝑡(𝑥) :≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝜂𝟙(𝑥), 𝑐⋆)

satisfies

𝑡(⋆) ≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝜂𝟙(⋆), 𝑐⋆)
≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝗋𝖾𝖿𝗅⋆, 𝑐⋆)
≡ 𝑐⋆.

Similarly, we have an identification

𝜂𝐴1×𝐴2(𝑥) : 𝗉𝖺𝗂𝗋(𝗉𝗋1(𝑥), 𝗉𝗋2(𝑥)) = 𝑥

for any 𝑥 : 𝐴1 × 𝐴2, defined by the recursion

𝜂𝐴1×𝐴2(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) :≡ 𝗋𝖾𝖿𝗅𝗉𝖺𝗂𝗋(𝑥1,𝑥2).

Conversely, given

16

• a type family (𝑥 : 𝐴1 × 𝐴2) 𝐶(𝑥), and

• a family (𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑐𝗉𝖺𝗂𝗋(𝑥1, 𝑥2) : 𝐶(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)),

we may define a family (𝑥 : 𝐴1 × 𝐴2) 𝑡(𝑥) : 𝐶(𝑥) satisfying

𝑡(𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)) ≡ 𝑐𝗉𝖺𝗂𝗋(𝑥1, 𝑥2)

with the help of 𝜂𝐴1×𝐴2:

𝑡(𝑥) :≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝜂𝐴1×𝐴2(𝑥), 𝑐𝗉𝖺𝗂𝗋(𝗉𝗋1(𝑥), 𝗉𝗋2(𝑥))).

Finally, we have an identification

𝜂𝐴→𝐵(𝑓) : �(𝖺𝗉𝗉𝗅𝗒𝑓) = 𝑓

for any 𝑓 : 𝐴→ 𝐵, defined by the recursion

𝜂𝐴→𝐵(�(𝑥 : 𝐴) 𝑏(𝑥)) :≡ 𝗋𝖾𝖿𝗅�(𝑥:𝐴) 𝑏(𝑥).

Once again, definition by induction over 𝐴→ 𝐵 can be recovered as follows: Given

• a type family (𝑓 : 𝐴 → 𝐵) 𝐶(𝑓), and

• a family ((𝑥 : 𝐴) 𝑏(𝑥) : 𝐵) 𝑐�(𝑏) : 𝐶(�(𝑏)),

a family (𝑓 : 𝐴 → 𝐵) 𝑡(𝑓) : 𝐶(𝑓) satisfying

𝑡(�(𝑏)) ≡ 𝑐�(𝑏)

may be defined by

𝑡(𝑓) :≡ 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝜂𝐴→𝐵(𝑓), 𝑐�(𝖺𝗉𝗉𝗅𝗒𝑓)).

Induction over equality comes in two (equivalent) variants.
Based-path indcution: Let 𝑎 : 𝐴. Given a type 𝐶(𝑥, 𝑝) for each 𝑥 : 𝐴 and each
𝑝 : 𝑎 = 𝑥, and an element 𝑐𝗋𝖾𝖿𝗅𝑎 of 𝐶(𝑎, 𝗋𝖾𝖿𝗅𝑎), the assignment

𝑡(𝑎, 𝗋𝖾𝖿𝗅𝑎) :≡ 𝑐𝗋𝖾𝖿𝗅𝑎 (1)

defines 𝑡(𝑥, 𝑝) : 𝐶(𝑥, 𝑝) for arbitrary 𝑥 : 𝐴 and 𝑝 : 𝑎 = 𝑥.
One may be tempted to think, judging from the inductive definition of equality,

that 𝗋𝖾𝖿𝗅𝑎 is the only element of 𝑎 = 𝑎. This is incorrect and is, in fact, refuted by
univalence. The culprit is that it is the entire family (𝑥 : 𝐴) 𝑎 = 𝑥 that is defined by
𝗋𝖾𝖿𝗅𝑎 rather than any specific instance. This is evidenced, among other things, by
the family 𝑡 in (1) being defined on all types 𝑎 = 𝑥 at once rather than on any one of
them. Hence, the correct way to express this is to implicate pairs: For any 𝑥 : 𝐴 and
𝑝 : 𝑎 = 𝑥, an identification

𝜂𝑎=_(𝑥, 𝑝) : 𝗉𝖺𝗂𝗋(𝑎, 𝗋𝖾𝖿𝗅𝑎) = 𝗉𝖺𝗂𝗋(𝑥, 𝑝)

may be defined by the based-path induction

𝜂𝑎=_(𝑎, 𝗋𝖾𝖿𝗅𝑎) :≡ 𝗋𝖾𝖿𝗅𝗉𝖺𝗂𝗋(𝑎,𝗋𝖾𝖿𝗅𝑎),

showing that every element of ∑(𝑥 : 𝐴) 𝑎 = 𝑥 is equal to 𝗉𝖺𝗂𝗋(𝑎, 𝗋𝖾𝖿𝗅𝑎).
Path indcution: Given types 𝐶(𝑥, 𝑦, 𝑝) for 𝑥, 𝑦 : 𝐴 and 𝑝 : 𝑥 = 𝑦, and elements 𝑐𝗋𝖾𝖿𝗅(𝑥)
of 𝐶(𝑥, 𝑥, 𝗋𝖾𝖿𝗅𝑥) for 𝑥 : 𝐴, the assignment

𝑡(𝑥, 𝑥, 𝗋𝖾𝖿𝗅𝑥) :≡ 𝑐𝗋𝖾𝖿𝗅(𝑥)

defines 𝑡(𝑥, 𝑦, 𝑝) : 𝐶(𝑥, 𝑦, 𝑝) for arbitrary 𝑥, 𝑦 : 𝐴 and 𝑝 : 𝑥 = 𝑦.

17

Exercises
Exercise 7.1. Show that∏(𝑥 : Bool) [(𝖿𝖺𝗅𝗌𝖾 = 𝑥) + (𝗍𝗋𝗎𝖾 = 𝑥)].

Exercise 7.2. Show that

∏(𝑥 : 𝐴1 + 𝐴2) [(∑(𝑥1 : 𝐴1) 𝗂𝗇1(𝑥1) = 𝑥) + (∑(𝑥2 : 𝐴2) 𝗂𝗇2(𝑥2) = 𝑥)] .

Exercise 7.3. Formulate the induction principle of 𝟘. Show that it is derivable from
(and hence equivalent to) its recursion principle.

Solution. 𝟘-induction: For any type family 𝐶 over 𝟘 there is a family (𝑥 : 𝟘) 𝑡(𝑥) :
𝐶(𝑥).

Such a family can be defined by 𝟘-recursion: For 𝑥 : 𝟘, there is a family
(𝑦; 𝟘) 𝑡𝑥(𝑦) : 𝐶(𝑥). In particular, 𝑡𝑥(𝑥) : 𝐶(𝑥).

Exercise 7.4 (Uniqueness of the definiendum). Consider the induction

𝑡(𝟢) :≡ 𝑐0,
𝑡(𝗌(𝑥)) :≡ 𝑐𝗌(𝑥, 𝑡(𝑥)),

where 𝑐𝟢 : 𝐶(𝟢) and 𝑐𝗌(𝑥, 𝑦) : 𝐶(𝗌(𝑥)) for 𝑥 : Nat and 𝑦 : 𝐶(𝑥). Given 𝑢(𝑥) : 𝐶(𝑥) for
𝑥 : Nat together with identifications

• 𝑝𝟢 : 𝑢(𝟢) = 𝑐𝟢, and

• 𝑝𝗌(𝑥) : 𝑢(𝗌(𝑥)) = 𝑐𝗌(𝑥, 𝑢(𝑥)) for 𝑥 : Nat,

show that 𝑢(𝑥) = 𝑡(𝑥) for all 𝑥 : Nat.

Exercise 7.5. A special case of induction over the natural numbers is iteration:

𝑡(𝟢) :≡ 𝑑𝟢,
𝑡(𝗌(𝑥)) :≡ 𝑑𝗌(𝑡(𝑥)),

where 𝑑𝟢 : 𝐶(𝟢) and 𝑑𝗌(𝑦) : 𝐶(𝑠(𝑥)) for 𝑥 : Nat and 𝑦 : 𝐶(𝑥). Given a type family
𝐶 over Nat together with elements 𝑐𝟢 : 𝐶(𝟢) and 𝑐𝗌(𝑥, 𝑦) : 𝐶(𝗌(𝑥)) for 𝑥 : Nat and
𝑦 : 𝐶(𝑥) define, using iteration rather than induction, a family (𝑥 : Nat) 𝑟(𝑥) : 𝐶(𝑥)
satisfying

𝑟(𝟢) = 𝑐𝟢,
𝑟(𝗌(𝑥)) = 𝑐𝗌(𝑥, 𝑟(𝑥)).

8 Universes
(…)

8.1 Recursive type families
Recursion principles allow us to define families over types by exploiting theway their
elements are generated by the constructors. Nothing is made use of or otherwise
assumed about the members of the family being defined. Hence, we may lift the
restriction that they are elements of some type (or some types) and consider more
general forms of definition by recursion. In this section, we will explore the case of
recursively defined type families. A very simple example occurs in the proof of the
following

18

Theorem. 𝗍𝗋𝗎𝖾 ≠ 𝖿𝖺𝗅𝗌𝖾.

Proof. The statement asks for a function from 𝗍𝗋𝗎𝖾 = 𝖿𝖺𝗅𝗌𝖾 to 𝟘. Consider the type
family over Bool defined by

𝐶(𝖿𝖺𝗅𝗌𝖾) :≡ 𝟘,
𝐶(𝗍𝗋𝗎𝖾) :≡ 𝟙.

Since ⋆ : 𝟙 ≡ 𝐶(𝗍𝗋𝗎𝖾), it follows that 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝐶(𝑝, ⋆) : 𝐶(𝖿𝖺𝗅𝗌𝖾) ≡ 𝟘 for any
𝑝 : 𝗍𝗋𝗎𝖾 = 𝖿𝖺𝗅𝗌𝖾. By abstracting 𝑝, we obtain the desired function

�(𝑝 : 𝗍𝗋𝗎𝖾 = 𝖿𝖺𝗅𝗌𝖾) 𝗍𝗋𝖺𝗇𝗌𝗉𝗈𝗋𝗍𝑇(𝑝, ⋆) : (𝗍𝗋𝗎𝖾 = 𝖿𝖺𝗅𝗌𝖾) → 𝟘.

Another example is bounded quantification over Nat, defined by

�(𝑥 < 𝟢) 𝐵(𝑥) :≡ 𝟙,
�(𝑥 < 𝗌(𝑛)) 𝐵(𝑥) :≡ (�(𝑥 < 𝑛) 𝐵(𝑥)) × 𝐵(𝑛),

�(𝑥 < 𝟢) 𝐵(𝑥) :≡ 𝟘,
�(𝑥 < 𝗌(𝑛)) 𝐵(𝑥) :≡ (�(𝑥 < 𝑛) 𝐵(𝑥)) + 𝐵(𝑛).

As a by-product, we obtain the finite types

𝐹𝑛 :≡ �(𝑥 < 𝑛) 𝟙.

8.2 Truth predicates
Next, we will reconstruct the language of propositional logic inside type theory. The
type Sent of (formal) sentences is defined by

• For 𝑟, 𝑠 : Sent, 𝑟 � 𝑠 : Sent.

• For 𝑟, 𝑠 : Sent, 𝑟 � 𝑠 : Sent.

• For 𝑟, 𝑠 : Sent, 𝑟 � 𝑠 : Sent.

• � : Sent.

In order to interpret this language, we need to associate each sentence 𝑠 : Sent
with a proposition, i.e. (by propositions-as-types), a type 𝑇(𝑠). This is accomplished
by the following recursion.

𝑇(𝑟 � 𝑠) :≡ 𝑇(𝑟) × 𝑇(𝑠),
𝑇(𝑟 � 𝑠) :≡ 𝑇(𝑟) → 𝑇(𝑠),
𝑇(𝑟 � 𝑠) :≡ 𝑇(𝑟) + 𝑇(𝑠),

𝑇(�) :≡ 𝟘.

The predicate 𝑇, which was introduced in this form by A. Tarski, attaches a notion
of evidence and, by extension, a meaning to formal sentences. In more traditional
philosophical terminology, we might say that 𝑇(𝑠) expresses the conditions under
which 𝑠 is true; for this reason, 𝑇 is called the truth predicate of Sent.

To extend our constructions to predicate logic, we need to incorporate individual
variables. In first-order languages. variables have domains, called sorts. We will

19

assume given a type Sort of sort symbols and, for each 𝑘 : Sort a type 𝑇Sort(𝑘) that
interprets 𝑘 and serves as the domain of the respective variables.

To avoid confusion, formal equality of sort 𝑘 will be written 𝖾𝗊𝑘. The additional
constructors for sentences are

• For 𝑘 : Sort and 𝑎, 𝑏 : 𝑇Sort(𝑘), 𝖾𝗊𝑘(𝑎, 𝑏) : Sent.

• For 𝑘 : Sort and family (𝑥 : 𝑇Sort(𝑘)) 𝑠(𝑥) : Sent,�𝑘𝑠 : Sent.

• For 𝑘 : Sort and family (𝑥 : 𝑇Sort(𝑘)) 𝑠(𝑥) : Sent, �𝑘𝑠 : Sent.

The corresponding clauses in the definition of 𝑇 are

𝑇(𝖾𝗊𝑘(𝑎, 𝑏)) :≡ 𝑎 =𝑇Sort(𝑘) 𝑏,

𝑇(�𝑘𝑠) :≡ ∏(𝑥 : 𝑇Sort(𝑘)) 𝑇(𝑠(𝑥)),

𝑇(�𝑘𝑠) :≡ ∑(𝑥 : 𝑇Sort(𝑘)) 𝑇(𝑠(𝑥)).

8.3 Tarski universes
When attempting to extend the constructions presented above to define a type 𝑈
that reflects a non-trivial fragment of type theory, we run into the following obstacle:
This time, there is no distinction between Sort and Sent, which means that 𝑇Sort
and 𝑇merge into one predicate. As a consequence, the constructors of 𝑈 need to
refer back to 𝑇. The clause for the dependent product, e.g., now looks like this:

• For any element 𝑎 : 𝑈 and any family (𝑥 : 𝑇(𝑎)) 𝑏(𝑥) : 𝑈, 𝖽𝗉𝑎𝑏 : 𝑈.

The bottom line is that we have to define the type𝑈 and the type family 𝑇 simultane-
ously and, along the way, allow the constructors of 𝑈 to refer to 𝑇(𝑢) for previously
constructed elements 𝑢 of 𝑈 (this is not dissimilar to the constructor 𝗌 in the defi-
nition of Nat being able to refer to previously constructed natural numbers). Such
definitions are called inductive-recursive, because they combine the inductive defini-
tion of a type with the recursive definition of a predicate over that type.

The complete mutual definition of 𝑈 and 𝑇 for the fragment {+, 𝟘, 𝟙, =,∏,∑}
has the form

(𝑎, 𝑏 : 𝑈) 𝗌𝗎𝗆(𝑎, 𝑏) : 𝑈 𝑇(𝗌𝗎𝗆(𝑎, 𝑏)) :≡ 𝑇(𝑎) + 𝑇(𝑏),
𝗓𝖾𝗋𝗈 : 𝑈 𝑇(𝗓𝖾𝗋𝗈) :≡ 𝟘,
𝗈𝗇𝖾 : 𝑈 𝑇(𝗈𝗇𝖾) :≡ 𝟙,

(𝑎 : 𝑈, 𝑏, 𝑐 : 𝑇(𝑎)) 𝖾𝗊𝑎(𝑏, 𝑐) : 𝑈 𝑇(𝖾𝗊𝑎(𝑏, 𝑐)) :≡ 𝑏 =𝑇(𝑎) 𝑐,

(𝑎 : 𝑈, (𝑥 : 𝑇(𝑎)) 𝑏(𝑥) : 𝑈) 𝖽𝗉𝑎𝑏 : 𝑈 𝑇(𝖽𝗉𝑎𝑏) :≡∏(𝑥 : 𝑇(𝑎)) 𝑇(𝑏(𝑥)),

(𝑎 : 𝑈, (𝑥 : 𝑇(𝑎)) 𝑏(𝑥) : 𝑈) 𝖽𝗌𝑎𝑏 : 𝑈 𝑇(𝖽𝗌𝑎𝑏) :≡ ∑(𝑥 : 𝑇(𝑎)) 𝑇(𝑏(𝑥)).

A universe (for lack of a better definition) is a pair (𝑈, 𝑇) where 𝑈 is a type (the
underlying type of the universe) and 𝑇 is a type family over 𝑈 (the truth predicate
of the universe).

(…)

20

	Introduction
	Judgmentals of MLTT
	Inductive types
	Recursion
	Logic
	Product
	Function type
	Sum
	0
	Dependent sum
	Dependent product
	Projections and function application

	Equality
	Based equality
	Symmetric equality
	Equivalence between the two definitions
	Basic properties of equality

	Induction
	Universes
	Recursive type families
	Truth predicates
	Tarski universes

