
Introductory notes on Martin-Löf’s Type Theory

Nikos Rigas*

Version 2024-11-28

1 Introduction
Martin-Löf’s type theory (MLTT) may be viewed as any of the following:

• A foundation and formalization of constructive mathematics, especially those
of E. Bishop.

• A theory of meaning of (constructive) mathematics.

• An archetypical functional programming language.

• (After Voevodsky) A synthetic language for homotopy theory and a foundation
of constructive-structural mathematics.

The last view is supported by recent developments involving an extended notion
of inductive type (higher inductive types) as well as an axiom (univalence) that
may be understood as a precise expression of the structuralist principle (identity of
isomorphs) in type theory. The extension of MLTT with these new ingredients is
called homotopy type theory (HoTT) and offers a number of views of its own; the
main ones are

• A synthetic language for homotopy theory: It allows the development of
homotopy theory in a way that avoids concrete topological representations.
For instance, paths are no longer represented as continuous functions from
the interval (although they could be); rather, they are defined inductively.

• The internal language of weak∞-topoi: Similarly, it offers an alternative to
categorical diagrams, which are difficult or impossible to reason with in this
context.

• A foundational theory that is at once constructivist and structuralist: It realizes
the prospect of developing (at least) those branches of mathematics that study
abstract structures (e.g., algebra, geometry) while avoiding the need to resort
to an external theory (e.g., set theory) to construct or otherwise find instances
of these structures.

This suggests that HoTT may indeed function as a unifying framework for a range
of diverse aspects of mathematics.

These notes, which are meant as a prelude to HoTT, will emphasize the founda-
tional character of type theory and the main ideas underlying it.

*Email: nicolasr@di.uoa.gr

1

Remarks on the presentation

It has become established practice (after the HoTTbook, presumably) to present
(homotopy) type theory taking Σ-types, Π-types and universes as primitive. From
the point of view of the formal system, it makes little difference, as it is purely an
organizational issue, and may indeed be a shorter path to the stage of development
where homotopical ideas and results can be discussed. From a conceptual point
of view, deciding what to take as primitive is of essence, as it reflects the concep-
tual precedence between the various ingredients of the theory. For a constructive
theory such as MLTT, getting the order of precedence right means, among other
things, preserving the interdependence between constructions. In these notes, we
have chosen to only accept constructors of inductive types as primitive (as they
express elementary, indecomposable and otherwise irreducible acts of construction),
and to treat everything else (including Σ-types, Π-types and universes) as defined.
Constructors of inductive and inductive-recursive types (such as zero and succes-
sor for the natural numbers, pairs for products and dependent sums, lambdas for
function types and dependent products, false and true for the type of truth values,
type formers for universes, etc.), inductive type families (such as equality, fibers,
etc.), recursive type families (such as observational equality, heterogeneous equality,
truth predicates, etc.), as well as recursors and other constructs, are all expressed
by families of various shapes and forms. These families may depend on elements
of types, but they may also depend on families of elements of types (e.g., lambda),
families of families (e.g., recursors of function types), and so on. Consequently, our
language provides for an arbitrary nesting of dependencies.

2 Judgmentals of MLTT
We will present MLTT as a theory of definitions. This is akin to a programming
language that is initially “empty”, and any types, functions, and similar need to
be defined from scratch before they may be used. Such a programming language
would involve concrete choices regarding the form of definitions and provide the
syntactical means necessary for stating such definitions. In MLTT, this rôle is played
by the judgmental layer of the language.

Judgmental equality A previously undefined expression 𝑒1 may be assigned the
same meaning as an already defined expression 𝑒2; this act is denoted by

𝑒1 :� 𝑒2.

We further write 𝑒1 � 𝑒2 if expressions 𝑒1 and 𝑒2 may be syntactically identified by
expanding the definitions of sub-expressions. If this is the case, we say that 𝑒1 and
𝑒2 are judgmentally equal or definitionally equal or synonymous.

Elementhood Types have elements (more on this later). We write 𝑎 : 𝐴 to express
the judgment that 𝑎 is an element of 𝐴.

2

Families
Indexed families are denoted by prepending the indices parenthesized. For example,

(𝑥 : 𝐴) 𝑡(𝑥) : 𝐵

denotes a family of elements of type 𝐵 indexed by type 𝐴. We often refer to such a
family by saying “for (arbitrary) 𝑥 : 𝐴, 𝑡(𝑥) : 𝐵”. Similarly,

(𝑥1 : 𝐴1,… , 𝑥𝑛 : 𝐴𝑛) 𝑡(𝑥) : 𝐴

denotes a family with 𝑛 indices. (A family with zero indices is a single element of 𝐴.)
For example, for any type 𝐴 there is the identity family (𝑥 : 𝐴) 𝑥, and any element 𝑎
of 𝐴 gives rise to constant families over any and all indices.

Indices may themselves be families. This is reflected in expressions like

(𝑥 : 𝐴, (𝑦 : 𝐵) 𝑧(𝑦) : 𝐶) 𝑡(𝑥, 𝑧),

which signifies a family depending on elements of 𝐴 and families of elements of 𝐶
depending on elements of 𝐵.

3 Inductive types
The primary means of introducing new types into the system is inductive definition.
For example, the natural numbers are generated by the induction scheme

• zero is a natural number, and

• the successor of a natural number is a natural number.

In type-theoretic notation, the above inductive description takes the form

• 0 :Nat, and

• (𝑛 :Nat) s(𝑛) :Nat.

0 and s are the postulated ways of constructing natural numbers; they are the
constructors of Nat. 0 has zero indices and constructs a single element of Nat,
whereas s is a family of natural numbers with one index which is itself a natural
number (hence, it is a recursive constructor).

An inductive definition of a type amounts to listing its constructors, i.e., certain
families of elements of the type being defined that signify the (canonical) ways
of constructing elements of that type. More general forms (e.g., mutual inductive
definitions, inductive-inductive definitions, inductive-recursive definitions) are
possible; they will be introduced as the need arises.

Other common examples of inductively defined types are the type List(𝐴) of
lists of elements of a type 𝐴, with constructors

• nil𝐴 :List(𝐴),

• (head : 𝐴, tail :List(𝐴)) cons𝐴(head, tail) :List(𝐴),

and the type Bool, with constructors

• false :Bool,

• true :Bool.

3

4 Recursion
There are two primary uses of the inductive description of a type: Defining functions
by recursion, and proving properties of its elements by induction. We will treat
recursion now, and defer induction for when we have type families at our disposal.
In the case of Nat this is the familiar definition by primitive recursion: Given a
type 𝐶, an element 𝑐0 of 𝐶 and a family (𝑥 :Nat, 𝑦 : 𝐶) 𝑐s(𝑥, 𝑦) of elements of 𝐶, the
assignments

𝑡(0) :� 𝑐0,
𝑡(s(𝑛)) :� 𝑐s(𝑛, 𝑡(𝑛)),

define 𝑡(𝑥) : 𝐶 for arbitrary 𝑥 :Nat. For example, we may define addition of natural
numbers by recursion in the second operand:

𝑚+ 0 :� 𝑚,
𝑚 + s(𝑛) :� s(𝑚 + 𝑛).

In other words, addition (to𝑚) is defined by the instance of Nat-recursion where
𝑐0 � 𝑚 and 𝑐s(𝑥, 𝑦) � s(𝑦). Any definition by recursion over the natural numbers is
determined by these two parameters, 𝑐0 and 𝑐s. By turning these into indices of the
family being defined, we arrive at the recursor

(𝑧 : 𝐶, (𝑥 :Nat, 𝑦 : 𝐶) 𝑤(𝑥, 𝑦) : 𝐶, 𝑛 :Nat) rec𝐶Nat(𝑧, 𝑤, 𝑛) : 𝐶

of Nat, defined by the recursion

rec𝐶Nat(𝑧, 𝑤, 0) :� 𝑧,
rec𝐶Nat(𝑧, 𝑤, s(𝑛)) :� 𝑤(𝑛, rec𝐶Nat(𝑧, 𝑤, 𝑛)).

The superscript 𝐶 is omitted when uninteresting or implied by the context.
Any recursive family may be explicitly defined with the help of the recursor; for

example, addition would be defined by

𝑚+ 𝑛 :� recNat(𝑚, (𝑥 :Nat, 𝑦 :Nat) s(𝑦), 𝑛).

The recursion principle of any inductive type follows the same pattern; namely,
in order to define a family over an inductive type it suffices to specify its instances
on the constructors. For example, the recursion principle of Bool asserts that given
two elements 𝑐false and 𝑐true of a type 𝐶, the assignments

𝑡(false) :� 𝑐false,
𝑡(true) :� 𝑐true,

define a family (𝑥 :Bool) 𝑡(𝑥) : 𝐶.

Exercises
Exercise. Define multiplication on Nat by recursion and/or using the recursor.
Optionally, continue with exponentiation and the factorial.

4

5 Logic
Our next task will be to add/inject logic into MLTT. The following definitions will
reconstruct intuitionistic first-order logic, by means of the propositions-as-types
paradigm. The general idea of propositions-as-types is to identify each proposition
with the type whose elements are the possible pieces of evidence for that proposition;
then, a proof of 𝐴 from assumptions 𝐴1,… , 𝐴𝑛 yields evidence for 𝐴 conditional on
evidence for 𝐴1,… , 𝐴𝑛, i.e., it is a family of elements of 𝐴 indexed by 𝐴1,… , 𝐴𝑛.

5.1 Product
The type-theoretic analogue of the conjunction of two propositions is the product
𝐴1 × 𝐴2 of two types 𝐴1 and 𝐴2, defined by the ordered pair constructor:

• For 𝑥1 : 𝐴1 and 𝑥2 : 𝐴2, pair(𝑥1, 𝑥2) : 𝐴1 × 𝐴2.

By erasing the elements from the formation rule

𝑥1 : 𝐴1 𝑥2 : 𝐴2

pair(𝑥1, 𝑥2) : 𝐴1 × 𝐴2

of pair and switching to logical notation, we obtain the introduction rule

𝜙1 𝜙2
𝜙1 � 𝜙2

of conjunction.
Recursion principle: Given a family (𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑐pair(𝑥1, 𝑥2) of elements of a

type 𝐶 indexed by 𝐴1 and 𝐴2, the assignment

𝑡(pair(𝑥1, 𝑥2)) :� 𝑐pair(𝑥1, 𝑥2)

defines 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 × 𝐴2. Recursion over 𝐴1 × 𝐴2 may be expressed by
means of the recursor

(𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑧(𝑥1, 𝑥2) : 𝐶 𝑥 : 𝐴1 × 𝐴2

rec𝐴1×𝐴2(𝑧, 𝑥) : 𝐶

of 𝐴1 × 𝐴2, defined by the recursion

rec𝐴1×𝐴2(𝑧, pair(𝑥1, 𝑥2)) :� 𝑧(𝑥1, 𝑥2).

Omitting the elements yields the elimination rule

(𝜙1, 𝜙2)...
𝜃 𝜙1 � 𝜙2

𝜃

of conjunction.

5

5.2 Function type
The type 𝐴 → 𝐵 of functions from 𝐴 to 𝐵 corresponds to logical implication; it is
defined by the functional abstraction constructor:

• For a family (𝑥 : 𝐴) 𝑏(𝑥) of elements of 𝐵 indexed by 𝐴, 𝜆(𝑥 : 𝐴) 𝑏(𝑥) : 𝐴 → 𝐵.

(Technically, we should be writing 𝜆((𝑥 : 𝐴) 𝑏(𝑥)), since the argument to 𝜆 is the
entire family (𝑥 : 𝐴) 𝑏(𝑥), but the tradition is to omit parentheses here.) By omitting
the elements and switching to logical notation, this yields the introduction rule

(𝜙)
...
𝜓

𝜙 � 𝜓

of implication.
Recursion principle: Given a family ((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑐𝜆(𝑦) : 𝐶, the assignment

𝑡(𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑐𝜆((𝑥 : 𝐴) 𝑏(𝑥))

defines 𝑡(𝑓) for arbitrary 𝑓 : 𝐴 → 𝐵. The recursor of 𝐴 → 𝐵 has the formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑧(𝑦) : 𝐶 𝑓 : 𝐴 → 𝐵
rec𝐴→𝐵(𝑧, 𝑓) : 𝐶

and is defined by the recursion

rec𝐴→𝐵(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝜙
𝜓
)
...
𝜃 𝜙 � 𝜓

𝜃

for implication.

5.3 Sum
Disjunction is modelled by the sum 𝐴1 + 𝐴2 of types 𝐴1 and 𝐴2, defined by the two
constructors

• For 𝑥1 : 𝐴1, in1(𝑥1) : 𝐴1 + 𝐴2.

• For 𝑥2 : 𝐴2, in2(𝑥2) : 𝐴1 + 𝐴2.

These constructors correspond to the introduction rules

𝜙1
𝜙1 � 𝜙2

𝜙2
𝜙1 � 𝜙2

6

for disjunction.
Recursion principle: Given families (𝑥1 : 𝐴1) 𝑐in1(𝑥1) : 𝐶 and (𝑥2 : 𝐴2) 𝑐in2(𝑥2) : 𝐶,

the assignments

𝑡(in1(𝑥1)) :� 𝑐in1(𝑥1),
𝑡(in2(𝑥2)) :� 𝑐in2(𝑥2),

define 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 + 𝐴2. The recursor has the form

(𝑥1 : 𝐴1) 𝑧1(𝑥1) : 𝐶 (𝑥2 : 𝐴2) 𝑧2(𝑥2) : 𝐶 𝑥 : 𝐴1 + 𝐴2 ,
rec𝐴1+𝐴2(𝑧1, 𝑧2, 𝑥) : 𝐶

is defined by the recursion

rec𝐴1+𝐴2(𝑧1, 𝑧2, in1(𝑥1)) :� 𝑧1(𝑥1),
rec𝐴1+𝐴2(𝑧1, 𝑧2, in2(𝑥2)) :� 𝑧2(𝑥2),

and yields the elimination rule

(𝜙1)...
𝜃

(𝜙2)...
𝜃 𝜙1 � 𝜙2
𝜃

(proof by cases) for disjunction.

5.4 𝟘
The type 𝟘 corresponds to falsum (�); it has no constructors. Hence, its recursion
principle stipulates the existence of a family (𝑥 : 𝟘)𝑡(𝑥) : 𝐶 for any type𝐶. Its recursor
has the form

𝑥 : 𝟘 ,
rec𝟘(𝑥) : 𝐶

has no defining assignments (because there is nothing it can be defined on), and
corresponds to the elimination rule

�
𝜃

(ex falso) of �.
The negation of a type 𝐴 is defined to be the type ¬𝐴 :� 𝐴 → 𝟘.

5.5 Dependent sum
The product may be generalized by allowing the second operand to depend on the
first: Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent sum∑(𝑥 : 𝐴) 𝐵(𝑥) is defined by
the constructor

• For 𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥), pair(𝑥, 𝑦) :∑(𝑥 : 𝐴) 𝐵(𝑥).

7

(Note that the order now becomes important: We may not declare 𝑦 : 𝐵(𝑥) before
we have declared 𝑥 : 𝐴.) We use the same name for the constructors of the product
and the dependent sum to reinforce the fact that the latter is a generalization of the
former. By erasing elements we obtain the introduction rule

𝜙(𝑎)
�(𝑥 : 𝐴) 𝜙(𝑥)

of the existential quantifier.
Recursion principle: Given an element 𝑐pair(𝑥, 𝑦) : 𝐶 for arbitrary𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥),

the assignment

𝑡(pair(𝑥, 𝑦)) :� 𝑐pair(𝑥, 𝑦)

defines 𝑡(𝑤) for any 𝑤 :∑(𝑥 : 𝐴) 𝐵(𝑥). The form of the recursor is

(𝑥 : 𝐴, 𝑦 : 𝐵(𝑥)) 𝑧(𝑥, 𝑦) : 𝐶 𝑤 :∑(𝑥 : 𝐴) 𝐵(𝑥)
rec∑(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑤) : 𝐶

and yields the elimination rule

(𝑥 : 𝐴, 𝜙(𝑥))
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

𝜃

for the existential quantifier. (Notice that displaying the cancellation of 𝑥 : 𝐴 is
necessary here to avoid any undesired dependencies.)

5.6 Dependent product
As in the case of the product, we may relax the conditions for the function type:
Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent product∏(𝑥 :𝐴) 𝐵(𝑥) is defined by
the constructor

• For a family (𝑥 : 𝐴) 𝑏(𝑥) : 𝐵(𝑥), 𝜆(𝑥 : 𝐴) 𝑏(𝑥) :∏(𝑥 : 𝐴) 𝐵(𝑥).

Again, using the same symbol for the constructors of the function type and the
dependent product is justified by the latter being a generalization of the former.
Omitting the elements yields the introduction rule

(𝑥 : 𝐴)
...

𝜙(𝑥)
�(𝑥 : 𝐴) 𝜙(𝑥)

of the universal quantifier. (Notice, once more, the necessity of displaying the
cancellation of 𝑥 : 𝐴.)

Recursion principle: Given a family ((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵(𝑥)) 𝑐𝜆(𝑦) : 𝐶, the assignment

𝑡(𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑐𝜆((𝑥 : 𝐴) 𝑏(𝑥))

8

defines 𝑡(𝑓) for arbitrary 𝑓 :∏(𝑥 : 𝐴) 𝐵(𝑥). The recursor of ∏(𝑥 :𝐴) 𝐵(𝑥) has the
formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵(𝑥)) 𝑧(𝑦) : 𝐶 𝑓 :∏(𝑥 : 𝐴) 𝐵(𝑥)
rec∏(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑓) : 𝐶

and is defined by the recursion

rec∏(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝑥:𝐴
𝜙(𝑥)

)
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

𝜃

of the universal quantifier.

5.7 Projections and function application
Of the types defined above, those that have a single constructor admit simpler (and
familiar) constructs equivalent to (i.e., interdefinable with) their recursors. First,
we may define, for 𝑥 : 𝐴1 × 𝐴2, the projections

pr𝑖(𝑥) : 𝐴𝑖, 𝑖 = 1, 2

by the recursion

pr𝑖(pair(𝑥1, 𝑥2)) :� 𝑥𝑖.

Then, the recursor of 𝐴1 × 𝐴2 may be expressed in terms of pr1 and pr2 by setting

rec𝐴1×𝐴2(𝑧, 𝑥) :� 𝑧(pr1(𝑥), pr2(𝑥)).

This definition satisfies the defining property of rec𝐴1×𝐴2, namely,

rec𝐴1×𝐴2(𝑧, pair(𝑥1, 𝑥2)) � 𝑧(pr1(pair(𝑥1, 𝑥2)), pr2(pair(𝑥1, 𝑥2)))
� 𝑧(𝑥1, 𝑥2).

Similarly, we define the application apply𝑓(𝑎) : 𝐵 of 𝑓 : 𝐴 → 𝐵 to 𝑎 : 𝐴 by the recursion
(on 𝑓)

apply𝜆(𝑥:𝐴) 𝑏(𝑥)(𝑎) :� 𝑏(𝑎).

The recursor of 𝐴 → 𝐵may then be defined in terms of function application:

rec𝐴→𝐵(𝑧, 𝑓) :� 𝑧((𝑥 : 𝐴) apply𝑓(𝑥)).

The defining property of rec𝐴→𝐵 is satisfied:

rec𝐴→𝐵(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) � 𝑧((𝑥 : 𝐴) apply𝜆(𝑥:𝐴) 𝑏(𝑥)(𝑥))

� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

9

We will follow common practice and write 𝑓(𝑥) instead of apply𝑓(𝑥). We often use
function application and projections in place of recursion over functions respectively
pairs.

The above extend,mutatismutandis, to dependent sums and products. Note, also,
that these constructs yield the familiar elimination rules for conjunction, implication,
and universal quantification (the existential quantifier does not have such special
elimination rules).

Bottom line
We have reconstructed intuitionistic first-order logic within MLTT. Consequently,
propositions of first-order logic may now be expressed by types (pending the def-
inition of useful predicates, like equality, to be discussed next). What this means,
in practice, is that formulating a theorem amounts to describing a type, and prov-
ing it amounts to exhibiting an element of that type. This may well take place in
natural language. For example, we may show (the type-theoretic analogue of) the
transitivity of implication:

Theorem. If 𝐴 → 𝐵 then if 𝐵 → 𝐶 then 𝐴 → 𝐶.

Proof. We have to exhibit a function 𝐹 : (𝐴 → 𝐵) → ((𝐵 → 𝐶) → (𝐴 → 𝐶)). Let
𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶. Then, for 𝑥 : 𝐴, 𝑔(𝑓(𝑥)) : 𝐶. Hence,

𝑔 ∘ 𝑓 :� 𝜆(𝑥 : 𝐴) 𝑔(𝑓(𝑥)) : 𝐴 → 𝐶.

We may now abstract 𝑔 and 𝑓 in this order to obtain the desired function

𝜆(𝑓 : 𝐴 → 𝐵) 𝜆(𝑔 : 𝐵 → 𝐶) 𝑔 ∘ 𝑓.

Exercises
Exercise. Show the following logical facts.

(i) 𝐴 → 𝐴.

(ii) 𝐴 → ��𝐴.

(iii) ��(𝐴 + �𝐴).

(iv) (𝐴 + �𝐴) → (��𝐴 → 𝐴).

Exercise. Let 𝐸 be the type defined by the single constructor

• For 𝑥 : 𝐸, 𝑒(𝑥) : 𝐸.

This type would result from Nat if we removed the constructor 0. Intuitively, 𝐸
should have no elements. Prove that this is indeed the case, i.e., show that�𝐸. [Hint:
Formulate its recursion principle first.]

10

6 Equality
Predicate logic also involves predicates, such as 𝑥 < 𝑦, Prime(𝑛), and so on. Under
the propositions-as-types interpretation, predicates correspond to families of types,
indexed by the respective domains of the arguments.

The definition of a family by recursion applies, in particular, to type families
(more on this in the section on universes). Another option is to define a type family
by giving constructors for its various instances. The definition of equality exploits
the latter possibility.

Equality of a type 𝐴may be defined either as a family (𝑥 : 𝐴, 𝑦 : 𝐴) 𝑥 = 𝑦 with
respect to both sides, or as a family (𝑥 : 𝐴) 𝑎 = 𝑥 for each particular element 𝑎 of 𝐴;
we will examine them in turn.

6.1 Based equality
Let 𝑎 : 𝐴. Equality-to-𝑎 is the type family (𝑥 : 𝐴) 𝑎 = 𝑥 with the single constructor

• refl𝑎 : 𝑎 = 𝑎.

This constructor corresponds to the introduction rule

.𝑎 = 𝑎

We often refer to elements of 𝑎 = 𝑏 as identifications between 𝑎 and 𝑏.
Recursion with respect to a type family is a principle of definition over all in-

stances of the family at once. In the case of based equality, the recurion principle con-
cerns itself with the definition of families of the form (𝑥 : 𝐴, 𝑝 : 𝑎 = 𝑥) 𝑡(𝑥, 𝑝) : 𝐶(𝑥)
into an arbitrary type family (𝑥 : 𝐴)𝐶(𝑥) of the same shape as based equality. Its name
comes from homotopy type theory, and refers to the interpretation of identifications
as paths.

Based-path recursion: Given a type family (𝑥 : 𝐴) 𝐶(𝑥) and an element 𝑐refl𝑎 of
𝐶(𝑎), the assignment

𝑡(𝑎, refl𝑎) :� 𝑐refl𝑎

defines 𝑡(𝑥, 𝑝) : 𝐶(𝑥) for any 𝑥 : 𝐴 and 𝑝 : 𝑎 = 𝑥.

Notation. For families of the form 𝑡(𝑥, 𝑝) for 𝑥 : 𝐴 and 𝑝 : 𝑎 = 𝑥, the first argument
may be suppressed, as it is determined by the second one, and we may simply write
𝑡(𝑝).

Recursors may be interesting from a logical perspective, because they correspond to
elimination rules, but we generally find it more natural and convenient to formulate
definitions by recursion directly. The exception is the recursor of based equality,
which is useful enough to have its own name,

𝑥 : 𝐶(𝑎) 𝑝 : 𝑎 = 𝑏
.

transport𝐶(𝑝, 𝑥) :� rec𝐶𝑎=_(𝑥, 𝑝) : 𝐶(𝑏)

transport𝐶(𝑝, 𝑥) is pronounced “the transport of 𝑥 : 𝐶(𝑎) to 𝐶(𝑏) along 𝑝 : 𝑎 = 𝑏”.

11

The elimination rule corresponding to transport is the law of the indiscernibility
of identicals:

𝜙(𝑎) 𝑎 = 𝑏
.

𝜙(𝑏)

The following operations testify that based equality is an equivalence relation.

Reflexivity Let 𝑎 : 𝐴. Then,

refl𝑎 : 𝑎 = 𝑎.

Transitivity Let 𝑝 : 𝑎 = 𝑏 and 𝑞 : 𝑏 = 𝑐. Then,

𝑝 ⋅ 𝑞 :� transport𝑎=_(𝑞, 𝑝) : 𝑎 = 𝑐.

Symmetry Let 𝑝 : 𝑎 = 𝑏. Then,

𝑝−1 :� transport_=𝑎(𝑝, refl𝑎) : 𝑏 = 𝑎.

Based equality is also preserved by families: Let (𝑥 : 𝐴) 𝑢(𝑥) : 𝐵. Then, we may
define 𝑢(𝑝) : 𝑢(𝑎) = 𝑢(𝑏) for arbitrary 𝑝 : 𝑎 = 𝑏 by means of the recursion

𝑢(refl𝑎) :� reflᵆ(𝑎),

or by transporting reflᵆ(𝑎) : 𝑢(𝑎) = 𝑢(𝑎) to 𝑢(𝑎) = 𝑢(𝑏) along 𝑝:

𝑢(𝑝) :� transportᵆ(𝑎)=ᵆ(_)(𝑝, reflᵆ(𝑎)).

6.2 Symmetric equality
The symmetric equality of a type 𝐴 is the type family (𝑥 : 𝐴, 𝑦 : 𝐴) 𝑥 = 𝑦 having the
constructor

• For 𝑥 : 𝐴, refl𝑥 : 𝑥 = 𝑥.

As was the case with based equality, recursion over symmetric equality is a
principle for defining families of the form (𝑥 : 𝐴, 𝑦 : 𝐴, 𝑝 : 𝑥 = 𝑦) 𝑡(𝑥, 𝑦, 𝑝) : 𝐶(𝑥, 𝑦)
into a type family (𝑥 : 𝐴, 𝑦 : 𝐴) 𝐶(𝑥, 𝑦) of the same shape as symmetric equality.

Path recursion: Given types 𝐶(𝑥, 𝑦) for 𝑥, 𝑦 : 𝐴 and elements 𝑐refl(𝑥) : 𝐶(𝑥, 𝑥) for
𝑥 : 𝐴, the assignment

𝑡(𝑥, 𝑥, refl𝑥) :� 𝑐refl(𝑥)

defines 𝑡(𝑥, 𝑦, 𝑝) : 𝐶(𝑥, 𝑦) for arbitrary 𝑥, 𝑦 : 𝐴 and 𝑝 : 𝑥 = 𝑦.
The recursor of symmetric equality is

((𝑥 : 𝐴) 𝑧(𝑥) : 𝐶(𝑥, 𝑥), 𝑎, 𝑏 : 𝐴, 𝑝 : 𝑎 = 𝑏) rec𝐶=(𝑧, 𝑝) : 𝐶(𝑎, 𝑏)

and corresponds to the alternative elimination rule

(𝑥 : 𝐴)
...

𝜙(𝑥, 𝑥) 𝑎 = 𝑏
𝜙(𝑎, 𝑏)

of equality, which says that equals satisfy any reflexive relation.

12

6.3 Equivalence between the two definitions
Based equality and symmetric equality are, essentially, two different descriptions of
the same relation. This is testified by the interderivability between the respective
recursion principles (equivalently, the interdefinability between rec= and transport).
One direction is straightforward: Given (𝑥 : 𝐴) 𝑧(𝑥) : 𝐶(𝑥, 𝑥) and 𝑝 : 𝑎 = 𝑏 in 𝐴, an
element of 𝐶(𝑎, 𝑏)may be obtained by transporting 𝑧(𝑎) : 𝐶(𝑎, 𝑎) along 𝑝,

rec𝐶=(𝑧, 𝑝) :� transport𝐶(𝑎,_)(𝑝, 𝑧(𝑎)).

The verification of the defining property of rec= is left to the reader. The other
direction isn’t particularly difficult either, provided we have function types at our
disposal: Let (𝑥 : 𝐴) 𝐶(𝑥) be a family of types over 𝐴. We first define functions
𝑓𝑝 : 𝐶(𝑎) → 𝐶(𝑏) for 𝑝 : 𝑎 = 𝑏 by means of the path recursion

𝑓refl𝑥 :� id𝐶(𝑥).

We may then define

transport𝐶(𝑝, 𝑥) :� 𝑓𝑝(𝑥).

It is possible, as a matter of fact, to define the entire family

(𝑎, 𝑏 : 𝐴, 𝑝 : 𝑎 = 𝑏,𝑤 : 𝐶(𝑎)) transport𝐶(𝑝, 𝑤) : 𝐶(𝑏)

by the path recursion

transport𝐶(refl𝑥, 𝑤) :� 𝑤

withoutmentioning function types. This definition is essentially correct, but requires
a more general form of path recursion. See the next, optional, paragraph and the
exercises that follow it for some discussion.

More general forms of recursion

A definition by Nat-recursion of the form

𝑡(0, 𝑧) :� 𝑐0(𝑧),
𝑡(s(𝑛), 𝑧) :� 𝑐s(𝑛, 𝑡(𝑛, 𝑧), 𝑧).

may be understood as defining (𝑛 :Nat) 𝑡(𝑛, 𝑧) for each individual 𝑧. Sometimes,
however, 𝑡(s(𝑛), 𝑧) is defined in terms of 𝑡(𝑛, 𝑧′) for (several) arbitrary values of 𝑧′.
This situation arises, e.g., when we do simultaneous recursion in two arguments:

is_equal(0, 0) :� true,
is_equal(0, s(𝑛)) :� false,
is_equal(s(𝑚), 0) :� false,

is_equal(s(𝑚), s(𝑛)) :� is_equal(𝑚, 𝑛).

To express such a definition, we would need to supply the entire family (𝑧) 𝑡(𝑛, 𝑧) as
an argument to 𝑐s:

𝑡(0, 𝑧) :� 𝑐0(𝑧),
𝑡(s(𝑛), 𝑧) :� 𝑐s(𝑛, (𝑧′) 𝑡(𝑛, 𝑧′), 𝑧).

13

The above assignments determine 𝑡(0, 𝑧) for all 𝑧 and, once 𝑡(𝑛, 𝑧′) is defined for
all 𝑧′, they determine 𝑡(s(𝑛), 𝑧) for all 𝑧. Nevertheless, this is not equivalent to
an ordinary definition by recursion over the natural numbers, despite being as
legitimate a definition as any. Formulating a more general recursion principle to
accommodate for this case is not particularly difficult, but we won’t bother (see the
exercises); instead, we will express our intent to employ this and other forms of
definition as we see fit.

Exercises
Exercise. Based on the discussion of the previous paragraph, formulate a more
general principle of definition by recursion over the natural numbers. Optionally,
describe the corresponding recursor. Show how this principle can be reduced to
(i.e., derived from) ordinary Nat-recursion in the presence of function types.

Exercise. Amore general form of path recursion would be as follows: Given

• types 𝐵(𝑥, 𝑦) for 𝑥, 𝑦 : 𝐴,

• types 𝐶(𝑥, 𝑦, 𝑧) for 𝑥, 𝑦 : 𝐴 and 𝑧 : 𝐵(𝑥, 𝑦), and

• elements 𝑐refl(𝑥, 𝑧) of 𝐶(𝑥, 𝑥, 𝑧) for 𝑥 : 𝐴 and 𝑧 : 𝐵(𝑥, 𝑥),

the assignment

𝑡(𝑥, 𝑥, refl𝑥, 𝑧) :� 𝑐refl(𝑥, 𝑧)

defines 𝑡(𝑥, 𝑦, 𝑝, 𝑧) : 𝐶(𝑥, 𝑦, 𝑧) for 𝑥, 𝑦 : 𝐴, 𝑝 : 𝑥 = 𝑦 and 𝑧 : 𝐵(𝑥, 𝑦). Use this principle
to derive based-path recursion.

Exercise. A different generalization of Nat-recursion is necessary for expressing
second-order recursive definitions such as the definition of the Fibonacci sequence.
Formulate this principle. Optionally, describe the corresponding recursor. Show
that this principle can be reduced to ordinary recursion in the presence of binary
products.

7 Induction

8 Universes

14

	Introduction
	Judgmentals of MLTT
	Inductive types
	Recursion
	Logic
	Product
	Function type
	Sum
	0
	Dependent sum
	Dependent product
	Projections and function application

	Equality
	Based equality
	Symmetric equality
	Equivalence between the two definitions

	Induction
	Universes

