
Introductory notes on Martin-Löf’s Type Theory

Nikos Rigas*

Version 2024-11-20

1 Introduction
Martin-Löf’s type theory (MLTT) may be viewed as any of the following:

• A foundation and formalization of constructive mathematics, especially those
developed by E. Bishop.

• A theory of meaning of (constructive) mathematics.

• An archetypical functional programming language.

• (After Voevodsky) A synthetic language for homotopy theory and a foundation
of constructive-structural mathematics.

2 Judgmentals of MLTT
We will present MLTT as a theory of definitions. This is akin to a programming
language that is initially “empty”, and any types, functions, and similar need to
be defined from scratch before they can be used. Such a programming language
would involve concrete choices regarding the form of definitions and provide the
syntactical means necessary for stating such definitions. In MLTT, this rôle is played
by the judgmental layer of the language.

Judgmental equality
A previously undefined expression 𝑒1 may be assigned the same meaning as an
already defined expression 𝑒2; this act is denoted by

𝑒1 :� 𝑒2.

We further write 𝑒1 � 𝑒2 if expressions 𝑒1 and 𝑒2 may be syntactically identified by
expanding the definitions of sub-expressions. If this is the case, we say that 𝑒1 and
𝑒2 are judgmentally equal or definitionally equal or synonymous.

Elementhood
Types have elements (more on that later). We write 𝑎 : 𝐴 to express the judgment
that 𝑎 is an element of type 𝐴.

*Email: nicolasr@di.uoa.gr

1

Families
Indexed families are denoted by prepending the indices parenthesized. For example,

(𝑥 : 𝐴) 𝑡(𝑥) : 𝐵

denotes a family of elements of type 𝐵 indexed by type 𝐴. We often refer to such a
family by saying “for (arbitrary) 𝑥 : 𝐴, 𝑡(𝑥) : 𝐵”. Similarly,

(𝑥1 : 𝐴1,… , 𝑥𝑛 : 𝐴𝑛) 𝑡(𝑥) : 𝐴

denotes a family with 𝑛 indices. (A family with zero indices is a single element of 𝐴.)
For example, for any type 𝐴 there is the identity family (𝑥 : 𝐴) 𝑥, and any element 𝑎
of 𝐴 gives rise to constant families over any and all indices.

The indices of a family may themselves be families. This is reflected in expres-
sions like

(𝑥 : 𝐴, (𝑦 : 𝐵) 𝑧(𝑦) : 𝐶) 𝑡(𝑥, 𝑧),

which signifies a family indexed by elements of 𝐴 and families of elements of 𝐶
indexed by elements of 𝐵.

3 Inductive types
The primary means of introducing new types into the system is inductive definition.
For example, the natural numbers are generated by the induction scheme

• zero is a natural number, and

• the successor of a natural number is a natural number.

In type-theoretic notation, the above inductive description takes the form

• 0 :Nat, and

• (𝑛 :Nat) s(𝑛) :Nat.
0 and s are the postulated ways of constructing natural numbers; they are the
constructors of Nat. 0 has zero indices and constructs a single element of Nat,
whereas s is a family of natural numbers with one index which is itself a natural
number (hence, it is a recursive constructor).

An inductive definition of a type amounts to listing its constructors, i.e., certain
families of elements of the type being defined that signify the (canonical) ways
of constructing elements of that type. More general forms (e.g., mutual inductive
definitions, inductive-inductive definitions, inductive-recursive definitions) are
possible; we will introduce them only where necessary.

Other common examples of inductively defined types are the type List(𝐴) of
lists of elements of a type 𝐴, with constructors

• nil𝐴 :List(𝐴),

• (head : 𝐴, tail :List(𝐴)) cons𝐴(head, tail) :List(𝐴),
and the type Bool, with constructors

• false :Bool,

• true :Bool.

2

4 Recursion
There are two primary uses of the inductive description of a type: Defining functions
by recursion, and proving properties of its elements by induction. We will treat
recursion now, and defer induction for when we have type families at our disposal.
In the case of Nat this is the familiar definition by primitive recursion: Given a
type 𝐶, an element 𝑐0 of 𝐶 and a family (𝑥 :Nat, 𝑦 : 𝐶) 𝑐s(𝑥, 𝑦) of elements of 𝐶, the
assignments

𝑡(0) :� 𝑐0,
𝑡(s(𝑛)) :� 𝑐s(𝑛, 𝑡(𝑛)),

define 𝑡(𝑥) : 𝐶 for arbitrary 𝑥 :Nat. For example, we may define addition of natural
numbers by recursion in the second operand:

𝑚+ 0 :� 𝑚,
𝑚 + s(𝑛) :� s(𝑚 + 𝑛).

In other words, addition (to𝑚) is defined by the instance of Nat-recursion where
𝑐0 � 𝑚 and 𝑐s(𝑥, 𝑦) � s(𝑦). Any definition by recursion over the natural numbers is
determined by these two parameters, 𝑐0 and 𝑐s. By turning these into indices of the
family being defined, we arrive at the recursor

(𝑧 : 𝐶, (𝑥 :Nat, 𝑦 : 𝐶) 𝑤(𝑥, 𝑦) : 𝐶, 𝑛 :Nat) rec𝐶Nat(𝑧, 𝑤, 𝑛) : 𝐶

of Nat, defined by the recursion

rec𝐶Nat(𝑧, 𝑤, 0) :� 𝑧,
rec𝐶Nat(𝑧, 𝑤, s(𝑛)) :� 𝑤(𝑛, rec𝐶Nat(𝑧, 𝑤, 𝑛)).

The superscript 𝐶 is omitted when uninteresting or implied by the context.
Any recursive family may be explicitly defined with the help of the recursor; for

example, addition would be defined by

𝑚+ 𝑛 :� recNat(𝑚, (𝑥 :Nat, 𝑦 :Nat) s(𝑦), 𝑛).

The recursion principle of any inductive type follows the same pattern; namely,
in order to define a family over an inductive type it suffices to specify its instances
on the constructors. For example, the recursion principle of Bool asserts that given
two elements 𝑐false and 𝑐true of a type 𝐶, the assignments

𝑡(false) :� 𝑐false,
𝑡(true) :� 𝑐true,

define a family (𝑥 :Bool) 𝑡(𝑥) : 𝐶.

5 Logic
Our next task will be to add/inject logic into MLTT. The following definitions will
reconstruct intuitionistic first-order logic, by means of the propositions-as-types
paradigm. The general idea of propositions-as-types is to identify each proposition
with the type whose elements are the possible pieces of evidence for that proposition;
then, a proof of 𝐴 from assumptions 𝐴1,… , 𝐴𝑛 yields evidence for 𝐴 conditional on
evidence for 𝐴1,… , 𝐴𝑛, i.e., it is a family of elements of 𝐴 indexed by 𝐴1,… , 𝐴𝑛.

3

5.1 Product
The type-theoretic analogue of the conjunction of two propositions is the product
𝐴1 × 𝐴2 of two types 𝐴1 and 𝐴2, defined by the ordered pair constructor:

• For 𝑥1 : 𝐴1 and 𝑥2 : 𝐴2, pair(𝑥1, 𝑥2) : 𝐴1 × 𝐴2.

By erasing the elements from the formation rule

𝑥1 : 𝐴1 𝑥2 : 𝐴2

pair(𝑥1, 𝑥2) : 𝐴1 × 𝐴2

of pair and switching to logical notation, we obtain the introduction rule

𝜙1 𝜙2 (�-intro)
𝜙1 � 𝜙2

of conjunction.
Recursion principle: Given a family (𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑐pair(𝑥1, 𝑥2) of elements of a

type 𝐶 indexed by 𝐴1 and 𝐴2, the assignment

𝑡(pair(𝑥1, 𝑥2)) :� 𝑐pair(𝑥1, 𝑥2)

defines 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 × 𝐴2. Recursion over 𝐴1 × 𝐴2 may be expressed by
means of the recursor

(𝑥1 : 𝐴1, 𝑥2 : 𝐴2) 𝑧(𝑥1, 𝑥2) : 𝐶 𝑥 : 𝐴1 × 𝐴2

rec𝐴1×𝐴2(𝑧, 𝑥) : 𝐶

of 𝐴1 × 𝐴2, defined by the recursion

rec𝐴1×𝐴2(𝑧, pair(𝑥1, 𝑥2)) :� 𝑧(𝑥1, 𝑥2).

Omitting the elements yields the elimination rule

(𝜙1, 𝜙2)...
𝜃 𝜙1 � 𝜙2 (�-elim)

𝜃
of conjunction.

5.2 Function type
The type 𝐴 → 𝐵 of functions from 𝐴 to 𝐵 corresponds to logical implication; it is
defined by the functional abstraction constructor:

• For a family (𝑥 : 𝐴) 𝑏(𝑥) of elements of 𝐵 indexed by 𝐴, 𝜆(𝑥 : 𝐴) 𝑏(𝑥) : 𝐴 → 𝐵.

(Technically, we should be writing 𝜆((𝑥 : 𝐴) 𝑏(𝑥)), since the argument to 𝜆 is the
entire family (𝑥 : 𝐴) 𝑏(𝑥), but the tradition is to omit parentheses here.) By omitting
the elements and switching to logical notation, this yields the introduction rule

(𝜙)
...
𝜓

(�-intro)
𝜙 � 𝜓

4

of implication.
Recursion principle: Given a family ((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑐𝜆(𝑦) : 𝐶, the assignment

𝑡(𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑐𝜆((𝑥 : 𝐴) 𝑏(𝑥))

defines 𝑡(𝑓) for arbitrary 𝑓 : 𝐴 → 𝐵. The recursor of 𝐴 → 𝐵 has the formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵) 𝑧(𝑦) : 𝐶 𝑓 : 𝐴 → 𝐵
rec𝐴→𝐵(𝑧, 𝑓) : 𝐶

and is defined by the recursion

rec𝐴→𝐵(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝜙
𝜓
)
...
𝜃 𝜙 � 𝜓

(�-elim)
𝜃

for implication.

5.3 Sum
Disjunction is modelled by the sum 𝐴1 + 𝐴2 of types 𝐴1 and 𝐴2, defined by the two
constructors

• For 𝑥1 : 𝐴1, in1(𝑥1) : 𝐴1 + 𝐴2.

• For 𝑥2 : 𝐴2, in2(𝑥2) : 𝐴1 + 𝐴2.

These constructors correspond to the introduction rules

𝜙1 (�-intro1)
𝜙1 � 𝜙2

𝜙2 (�-intro2)
𝜙1 � 𝜙2

for disjunction.
Recursion principle: Given families (𝑥1 : 𝐴1) 𝑐in1(𝑥1) : 𝐶 and (𝑥2 : 𝐴2) 𝑐in2(𝑥2) : 𝐶,

the assignments

𝑡(in1(𝑥1)) :� 𝑐in1(𝑥1),
𝑡(in2(𝑥2)) :� 𝑐in2(𝑥2),

define 𝑡(𝑥) : 𝐶 for any 𝑥 : 𝐴1 + 𝐴2. The recursor has the form

(𝑥1 : 𝐴1) 𝑧1(𝑥1) : 𝐶 (𝑥2 : 𝐴2) 𝑧2(𝑥2) : 𝐶 𝑥 : 𝐴1 + 𝐴2 ,
rec𝐴1+𝐴2(𝑧1, 𝑧2, 𝑥) : 𝐶

is defined by the recursion

rec𝐴1+𝐴2(𝑧1, 𝑧2, in1(𝑥1)) :� 𝑧1(𝑥1),
rec𝐴1+𝐴2(𝑧1, 𝑧2, in2(𝑥2)) :� 𝑧2(𝑥2),

5

and yields the elimination rule

(𝜙1)...
𝜃

(𝜙2)...
𝜃 𝜙1 � 𝜙2 (�-elim)
𝜃

(proof by cases) for disjunction.

5.4 𝟘
The type 𝟘 corresponds to falsum (�); it has no constructors. Hence, its recursion
principle stipulates the existence of a family (𝑥 : 𝟘)𝑡(𝑥) : 𝐶 for any type𝐶. Its recursor
has the form

𝑥 : 𝟘 ,
rec𝟘(𝑥) : 𝐶

has no defining assignments (because there is nothing it can be defined on), and
corresponds to the elimination rule

� (�-elim)
𝜃

(ex falso) of �.
The negation of a type 𝐴 is defined to be the type ¬𝐴 :� 𝐴 → 𝟘.

5.5 Dependent sum
The product may be generalized by allowing the second operand to depend on the
first: Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent sum∑(𝑥 : 𝐴) 𝐵(𝑥) is defined by
the constructor

• For 𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥), pair(𝑥, 𝑦) :∑(𝑥 : 𝐴) 𝐵(𝑥).

(Note that the order now becomes important: We may not declare 𝑦 : 𝐵(𝑥) before
we have declared 𝑥 : 𝐴.) We use the same name for the constructors of the product
and the dependent sum to reinforce the fact that the latter is a generalization of the
former. By erasing elements we obtain the introduction rule

𝜙(𝑎)
(�-intro)

�(𝑥 : 𝐴) 𝜙(𝑥)

of the existential quantifier.
Recursion principle: Given an element 𝑐pair(𝑥, 𝑦) : 𝐶 for arbitrary𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥),

the assignment

𝑡(pair(𝑥, 𝑦)) :� 𝑐pair(𝑥, 𝑦)

defines 𝑡(𝑥, 𝑦) for any 𝑥 : 𝐴 and 𝑦 : 𝐵(𝑥). The form of the recursor is

(𝑥 : 𝐴, 𝑦 : 𝐵(𝑥)) 𝑧(𝑥, 𝑦) : 𝐶 𝑤 :∑(𝑥 : 𝐴) 𝐵(𝑥)
rec∑(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑤) : 𝐶

6

and yields the elimination rule

(𝑥 : 𝐴, 𝜙(𝑥))
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

(�-elim)
𝜃

for the existential quantifier. (Notice that displaying the cancellation of 𝑥 : 𝐴 is
necessary here to avoid any undesired dependencies.)

5.6 Dependent product
As in the case of the product, we may relax the conditions for the function type:
Given a type family (𝑥 : 𝐴) 𝐵(𝑥), the dependent product∏(𝑥 :𝐴) 𝐵(𝑥) is defined by
the constructor

• For a family (𝑥 : 𝐴) 𝑏(𝑥) : 𝐵(𝑥), 𝜆(𝑥 : 𝐴) 𝑏(𝑥) :∏(𝑥 : 𝐴) 𝐵(𝑥).

Again, using the same symbol for the constructors of the function type and the
dependent product is justified by the latter being a generalization of the former.
Omitting the elements yields the introduction rule

(𝑥 : 𝐴)
...

𝜙(𝑥)
(�-intro)

�(𝑥 : 𝐴) 𝜙(𝑥)

of the universal quantifier. (Notice, once more, the necessity of displaying the
cancellation of 𝑥 : 𝐴.)

Recursion principle: Given a family ((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵(𝑥)) 𝑐𝜆(𝑦) : 𝐶, the assignment

𝑡(𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑐𝜆((𝑥 : 𝐴) 𝑏(𝑥))

defines 𝑡(𝑓) for arbitrary 𝑓 :∏(𝑥 : 𝐴) 𝐵(𝑥). The recursor of ∏(𝑥 :𝐴) 𝐵(𝑥) has the
formation rule

((𝑥 : 𝐴) 𝑦(𝑥) : 𝐵(𝑥)) 𝑧(𝑦) : 𝐶 𝑓 :∏(𝑥 : 𝐴) 𝐵(𝑥)
rec∏(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝑓) : 𝐶

and is defined by the recursion

rec∏(𝑥:𝐴) 𝐵(𝑥)(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) :� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

If we erase the elements, this becomes the elimination rule

(𝑥:𝐴
𝜙(𝑥)

)
...
𝜃 �(𝑥 : 𝐴) 𝜙(𝑥)

(�-elim)
𝜃

of the universal quantifier.

7

5.7 Projections and function application
Of the types defined above, those that have a single constructor admit simpler (and
familiar) constructs equivalent to (i.e., interdefinable with) their recursors. First,
we may define, for 𝑥 : 𝐴1 × 𝐴2, the projections

pr𝑖(𝑥) : 𝐴𝑖, 𝑖 = 1, 2

by the recursion

pr𝑖(pair(𝑥1, 𝑥2)) :� 𝑥𝑖.

Then, the recursor of 𝐴1 × 𝐴2 may be expressed in terms of pr1 and pr2 by setting

rec𝐴1×𝐴2(𝑧, 𝑥) :� 𝑧(pr1(𝑥), pr2(𝑥)).

This definition satisfies defining property of rec𝐴1×𝐴2, namely,

rec𝐴1×𝐴2(𝑧, pair(𝑥1, 𝑥2)) � 𝑧(pr1(pair(𝑥1, 𝑥2)), pr2(pair(𝑥1, 𝑥2)))
� 𝑧(𝑥1, 𝑥2).

Similarly, we define the application apply𝑓(𝑎) of 𝑓 : 𝐴 → 𝐵 to 𝑎 : 𝐴 by the recursion
(on 𝑓)

apply𝜆(𝑥:𝐴) 𝑏(𝑥)(𝑎) :� 𝑏(𝑎).

The recursor of 𝐴 → 𝐵may then be defined in terms of function application:

rec𝐴→𝐵(𝑧, 𝑓) :� 𝑧((𝑥 : 𝐴) apply𝑓(𝑥)).

The defining property of rec𝐴→𝐵 is satisfied:

rec𝐴→𝐵(𝑧, 𝜆(𝑥 : 𝐴) 𝑏(𝑥)) � 𝑧((𝑥 : 𝐴) apply𝜆(𝑥:𝐴) 𝑏(𝑥)(𝑥))

� 𝑧((𝑥 : 𝐴) 𝑏(𝑥)).

We will follow common practice and write 𝑓(𝑥) instead of apply𝑓(𝑥). We often use
function application and projections in place of recursion over functions respectively
pairs.

The above extend,mutatismutandis, to dependent sums and products. Note, also,
that these constructs yield the familiar elimination rules for conjunction, implication,
and universal quantification (the existential quantifier does not have such special
elimination rules).

Bottom line
We have reconstructed intuitionistic first-order logic within MLTT. Consequently,
propositions of first-order logic may now be expressed by types (pending the def-
inition of useful predicates, like equality, to be discussed next). What this means,
in practice, is that formulating a theorem amounts to describing a type, and prov-
ing it amounts to exhibiting an element of that type. This may well take place in
natural language. For example, we may show (the type-theoretic analogue of) the
transitivity of implication:

8

Theorem. If 𝐴 → 𝐵 then if 𝐵 → 𝐶 then 𝐴 → 𝐶.

Proof. We need to exhibit a function 𝐹 : (𝐴 → 𝐵) → ((𝐵 → 𝐶) → (𝐴 → 𝐶)). Let
𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶. Then, for 𝑥 : 𝐴, 𝑔(𝑓(𝑥)) : 𝐶. Hence,

𝑔 ∘ 𝑓 :� 𝜆(𝑥 : 𝐴) 𝑔(𝑓(𝑥)) : 𝐴 → 𝐶.

We may now abstract 𝑔 and 𝑓 in this order to obtain the desired function

𝜆(𝑓 : 𝐴 → 𝐵) 𝜆(𝑔 : 𝐵 → 𝐶) 𝑔 ∘ 𝑓.

Exercises
Exercise. Define multiplication on Nat by recursion and/or using the recursor.
Optionally, continue with exponentiation and the factorial.

Exercise. Show the following logical facts.

(i) 𝐴 → 𝐴.

(ii) 𝐴 → ��𝐴.

(iii) ��(𝐴 + �𝐴).

(iv) (𝐴 + �𝐴) → (��𝐴 → 𝐴).

9

