
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό: M117)

Concurrent programming (1)

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Processes
A central concept in operating systems.

Independently running programs that are (almost)
isolated from each other:

A process has a self-contained execution
environment (stack, registers, program counter).

A process has its own memory space.

A process <= application (an application may
incorporate more than one processes).

2

Threads
Threads are independent execution paths within the
process, executing simultaneously and asynchronously to
each other.

Also called lightweight processes
similar to processes, threads have their own
execution environment).

creating a new thread requires fewer resources than
creating a new process.

Threads exist/live in a process, sharing the same memory
space.

Every process has at least one thread.
3

The JVM Main Thread
Every java application starts with one thread, called the
main thread.

Behind the scenes, the JVM spawns additional internal,
housekeeping threads -- e.g., for garbage collection or for
signal handling. Such threads are not visible to the
developer.

The main thread is responsible for running the main
method: public static void main(String[] args) .

Such a method should be available in the main class,
provided as an argument during Java invocation (or
manifested by the jar file specified by the -jar argument)

4

The Thread and the Runnable
java.lang.Thread : Represents a thread of execution (a

separate execution path in the application).

java.lang.Runnable : Represents what a thread should be
executing.

The Thread is-a Runnable: the Thread class implements
the Runnable interface. Yet its implementation of the
run() method is empty (it should be overriden).

5

Creating threads
Almost as simple as creating an instance of the Thread
class; yet you should provide the code that will be run by
the thread.

There are two ways to do this:
Create an implementation of Runnable and pass it to
the Thread constructor.

Subclass the Thread and override its run() method.

6

Example 01 (Runnable)

7

Example 02 (Thread Subclassing)

8

Example 03 (Thread Subclassing
inline)

9

Starting and Stopping a thread
Starting a thread involves a single method call: calling the
start() method of a constructed Thread object.

Stopping a thread, in many cases, is harder than starting
it!
We can't call the stop() method of the Thread object
(unsafe, the caller cannot know whether the thread is
ready to be stopped).

To make the thread stop, try to implement run() to exit.

10

The Runnable.run() method
The run() method is an ordinary java method (no
magic).

You can invoke it in the current thread -- without spawing
a new one (that's why using Runnable is more flexible).

11

Example 04 (Reuse runnable)

12

The Threads do the Magic
Threads have states.
Threads have priorities.

Threads can be daemons.

Threads can sleep.

Threads can be interrupted.

13

Thread scheduling
Threads are scheduled in a non-deterministic manner
(their execution does not provide any ordering
guarantees).

Thread priorities: threads with higher priority are executed
in preference to threads with lower priority.

The Thread class has getPriority() , setPriority()
methods (1-10).

14

Thread States
NEW: Created but not started.

RUNNABLE: Started.

BLOCKED: Waiting for the acquisition of a monitor/lock
(discussed later).

WAITING: Waiting indefinetely for another thread to
perform a particular task.

TIMED_WAITING: As above, but waits for a specific period
of time (not indefinetely).
TERMINATED: The thread's run method has exited.

15

Daemon vs User Threads
A thread can be either a daemon or a user thread. By
default all threads being created are user threads.
A thread can be marked as a daemon through the
setDaemon(boolean) method of the Thread class (should

be called before the thread is started).

The internal threads run by the JVM are daemon threads
(e.g., the garbage collector).

16

When does a Java app terminate?
The Java Virtual Machine exits when the only threads
running are all daemon threads.

17

Thread sleep() and interrupt()
The static method Thread.sleep(long) causes the current
thread (the execution path that performs the call) to
suspend execution for the specified period.

The method throws an InterruptedException : when
another thread interrupts a sleeping thread, the latter is
awaken from the sleep by throwing a exception.
Thread interruption is performed by the interrupt()
method (interrupt the thread from whatever it is doing).

18

Thread interruption

When a thread receives an interrupt its interrupted status
is set (isInterrupted() will return true)

When the interrupted thread is blocked/waiting by/for:

the wait() methods of the Object class,

the join() methods of the {Thread} class,

the sleep() methods of the Thread class,

then it will receive an InterruptedException and its
interrupted status will be cleared (isInterrupted()
will retu rn false).

19

Dealing with interruption

It's your decision how a thread should respond to an
interruption:

it is very common for the thread to just terminate
(exit the run() method).

in our previous examples, the threads kept on
running after an interrupt!

20

Note
The semantics of interrupting a thread, depends on what
the thread is doing.
You should implement your thread with the possibility of
interruption in mind and act accordingly, reflecting the
business-logic of your application.

A thead can always interrupt itself :-)

21

Example 05 (Sum of Factorials)

22

Threads can wait for other threads
The join() method causes the caller's thread to wait for
this thread to die (terminate).

Consider two threads, t1 and t2 , where t1 contains a
call to t2.join() in its run() method.

When the call is reached, t1 will pause and wait for
t2 to terminate.

When t2 terminates, t1 resumes its execution.

There are join() variations that accept timeouts.

23

Example 06 (Impatient)

24

Thread Synchronization

Threads can efficiently communicate with each other by
sharing access to objects and fields (remember: threads
operate on a common heap).

However, two types of errors may occur when multiple
threads access and modify common data:

Thread interference

Memory inconsistency

Synchronization prevents these errors from happening.

25

Thread interference
Two operations, running in different threads, but acting on the
same data, interleave (two operations that consist of multiple
steps, overlap each other's sequences of steps).

26

Memory inconsistency
Two threads have inconsistent views of what should be the
same data. This may happen during data transfer from/to the
CPU registers/caches, the main memory and the thread-local
registers/caches.

27

The fundamental Java
synchronization Idioms

The synchronized keyword (for methods and blocks of
statements): allow only a signle thread to execute a block
of code at a time.
The volatile keyword, offering atomic reads and writes
to variables.

28

Atomic Operations
An atomic operation effectively happens all at once.

It cannot stop in the middle: it either happens completely,
or it doesn't happen at all.

No side effects of an atomic operation are visible until the
operation is complete.

29

Non-atomic Read/Update/Write
operations
Such as

count++

or

count--

30

The synchronized keyword
Its overall purpose is to allow only one thread at a time
into a particular section of code (the critical section).

Every instantiated Java object, including every Class
loaded, has an associated lock (or monitor).
Putting code inside a synchronized block makes the
compiler append instructions to acquire the lock on the
specified object before executing the code, and release it
afterwards (either because the code finishes normally or
abnormally).

31

Re-entrant locking
Between acquiring the lock and releasing it, a thread is
said to own the lock.

At the point of Thread B wanting to acquire the lock, if
Thread A already owns it, then Thread B must wait for
Thread A to release it.
Threads are allowed to acquire a lock they already own
(re-entrant locking).

32

Example 07 (Counter & Synchronized
Counter)

33

Volatile variables
Declare a variable as volatile to indicate that it is expected
to be modified by different threads.

The value of a volatile variable will never be cached by
threads locally: all reads and writes will go straight to
main memory.

In other words, the volatile keyword indicates that reads
and writes to the variable's value should be atomic.
Changes to a volatile variable are always visible to other
threads.

34

When to use a volatile
Use volatiles when the set of valid values that can be
written to a variable is independent of any other program
state, including the variable's current state.

E.g. when you use a boolean variable as a thread exit
flag.

Don't use volatile for:
arrays: only the reference to the array becomes
volatile, not the array's items.

read-update-write operations (such as incrementing
a counter).

complex operations that need to prevent access to a
variable for the duration of the operation (use
synchronized). 35

