
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό: M117)

Garbage Collection

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Manual memory management
The programmer has to:

Allocate the memory required to hold the contents of the
data structures.

Remember to deallocate (free) it, in order to avoid
memory leaks.

2

Automatic memory management
The programmer has nothing to do :)

The runtime environment employs a garbage collection
mechanism (the garbage collector) that takes care of
allocating/de-allocating memory transparently.

3

Benefits

1. The code is easier to write, read, understand and
maintain.

2. Increases the level of abstraction and advances
productivity.

4

The heap
Objects reside in the heap.
Objects reference each other.

5

The garbage collector
1. Determines whether an object is referenced.

2. If not, it reclaims the memory used by the object and
delivers it back to the executing program.

6

Desired attributes
The garbage collector should be:

Safe: never reclaim a "live" object.
Concise: never allow a dead object to be kept for more
than a small number of collections

Efficient: does not take too much time to finish (the
execution pauses should be as short as possible)

Scalable: memory allocation/deallocation scales well
under heavy load in multithreaded systems

7

Classification of garbage collectors (I)
Based on the algorithmic approach

Reference counting:

Maintain a reference counter per object
Cannot handle ref cycles.

Reference tracing (Mark & sweep)

Mark phase: traverse the reference graph and mark
unreachable objects

Sweep phase: free memory

8

Reachable objects

Define a set of roots (e.g. main class, static
methods/variables, etc. depends on the implementation)

An object is reachable by the executing program if there
is a path of references from the roots that accesses the
object.

9

Classification (II)
Based on the parallelism of the collector implementation

Serial: a single collection is executed at a time.

Parallel: the collection is devised in sub-tasks which are
executed in parallel.

10

Classification (III)
Based on the program pauses introduced by the collector

Stop the world: the collection cannot happen concurrently
to the execution of the program, the application is being
suspended during the collection.

Concurrent: the collector runs concurrently to the
program (yet some pauses may occur).

11

Classification (IV)
Based on the handling of heap fragmentation

Compacting: moves and rearranges reachable/live objects
in contiguous heap space blocks. The remaining space is
free space.

Noncompacting: leaves the free heap space of the non-
reachable objects as-is.
Copying: copies all reachable objects in a different
contiguous area of the heap space. The source area is free
area.

12

The generational hypothesis
Most objects are short-lived (they die very quickly).

Some objects have very long lifetime.

Old objects usually reference a few younger ones.

13

The generational collectors
Group objects by their "generation" to offer shorter
collection pauses:

Classify objects based on their generation

move them from younger to older generations
depending on how many collections the objects
manage to survive.

14

Shorter collection pauses
Multiple generations are GCed independently:

improves locality.

reduces work to be done.
The garbage collection of the young generation involves
mostly dead objects which can be quickly reclaimed

The collector doesn’t spend time copying and moving the
same long-lived objects.

The younger generations are collected more frequently.

15

Criteria for choosing a garbage
collector

16

Throughput
The percentage of total time spent in useful application
activity versus memory allocation and garbage collection.

For example, if your throughput is 95%, that means the
application code is running 95% of the time and garbage
collection is running 5% of the time. You want higher
throughput for any high-load business application.

17

Latency
Application responsiveness, which is affected by garbage
collection pauses.

In any application interacting with a human or some
active process, you want the lowest possible latency.

18

Footprint
The total memory consumption of the running application
(or more accurately, of the whole JVM instance).

19

GC Survey
https://yanniss.github.io/M135-21/gcsurvey.pdf

20

https://yanniss.github.io/M135-21/gcsurvey.pdf

In practical terms (summing up)
Three steps involved in the garbage collection process:

Mark

Sweep
Compact

We usually want these actions to occur concurrently with our
running program, causing the smallest "stop-the-world"
pauses possible.

21

The main garbage collectors
supported by OpenJDK 17
https://docs.oracle.com/en/java/javase/17/gctuning/

Serial collector

Parallel collector
G1

Z

22

https://docs.oracle.com/en/java/javase/17/gctuning/

The serial collector
A generational collactor that uses a single thread to
perform all garbage collection work.

It's best-suited to single processor machines.
It can be useful on multiprocessors for applications with
small data sets (up to approximately 100 MB).

Enabled with the -XX:+UseSerialGC option.

23

The parallel collector
Also known as the throughput collector.

A generational collactor that uses multiple threads to
perform the garbage collection work.
Supports parallel compaction, the major collections are
performed in parallel.

Intended for applications with medium-sized to large-
sized data sets that are run on multiprocessor or
multithreaded hardware.
Enabled with the -XX:+UseParallelGC option.

24

The G1 (Garbage-first) collector
A mostly concurrent collector, performing expensive work
concurrently to the application.
Designed to scale from small machines to large
multiprocessor machines with a large amount of memory.

It provides the capability to meet a pause-time goal with
high probability, while achieving high throughput.

G1 is selected by default on most hardware and operating
system configurations, or can be explicitly enabled using
-XX:+UseG1GC .

25

The Z collector
A scalable low-latency garbage collector, that performs all
expensive work concurrently, without stopping the
execution of application threads.
Provides max pause times of a few milliseconds, but at the
cost of some throughput.

It is intended for applications, which require low-latency,
while pause times are independent of the heap size that is
being used.
It supports heap sizes from 8MB to 16TB.

Enabled with the -XX:+UseZGC option.

26

Basic memory & GC monitoring tools
jinfo

jstat

jconsole

27

JVM options that affect memory use
-Xms: Sets the minimum and initial size of the heap.
-Xmx: Sets the maximum size of the heap.
-XX:MetaspaceSize: Sets the initial size of Metaspace.
-XX:MaxMetaspaceSize: Sets the maximum size of Metaspace.

Production environments often set the -Xms and -Xmx options
to the same value so that the heap size is fixed and pre-
allocated to the JVM.

28

Calculating JVM memory
consumption
JVM memory =
 Heap memory +
 Metaspace +
 CodeCache +
 (ThreadStackSize * Number of Threads) +
 DirectByteBuffers +
 JVM-native

29

JVM memory components
Heap memory: Stores the objects of the application.
Metaspace: Stores information about the classes and
methods used in the application (class metadata).

CodeCache: Stores the native code generated by the JVM
(due to JIT compilation, mainly).

DirectByteBuffers: Direct buffer pools (Latest Java/JVM
versions allows an app to allocate native off-heap
memory).

JVM-native: JVM internals.

30

The life-cycle of objects in the JVM
Object reachability states

Object finalizers

The java.lang.ref package

31

Object reachability states
Reachable: An object begins its life in this state and
remains reachable as long as the garbage collector can
‘‘reach’’ it by traversing the reference graph starting from
the roots.

Resurrectable: An object is resurrectable if it is
unreachable, yet, potentially, it could be made reachable
again by a finalizer (through the finalize() method).

Unreachable: An object is not reachable and it cannot be
made reachable by the execution of a finalizer.

32

Object Finalization
The method protected void finalize() of
java.lang.Object . It is (supposed to be) called by the

garbage collector.

This method is supposed to be overridden in order to
perform object specific finalizations.

33

However

There is no guarantee that this method will ever be
executed.

If it will be executed, the guarantee is that it will be
executed only once.

Don’t implement your application logic to rely on this
method.

Avoid to override the finalize() method. Finalize your
objects in another fashion (e.g., by using a shutdown
hook or by implementing and calling a dispose() method),
always adding an appropriate finally block).

34

The java.lang.ref Package
Finer-grained reachable states - interaction with the
garbage collector

Reachable
Strongly reachable. Ordinary object references.

Softly reachable (SoftReference). Well-suited for
caches.

Weakly reachable (WeakReference). Well-suited for
canonicalizing mappings.
Phantom reachable (PhantomReference). Well-suited
for premortem cleanup (instead of finalize()). This is
the only way to determine when an object is
removed from memory.

35

The Reference Object
A reference object holds a reference to another object,
called the referent.

Whereas a strong reference prevents its referent from
being garbage collected, soft, weak, and phantom
references do not!

36

Example
User user = new User("user");
SoftReference<User> ref = new SoftReference<>(user) ;

37

Reference object methods
get() : returns the referent.

clear() : invalidates the referent.

User user = ref.get() ;
println ("User : " + user) ;
ref.clear() ;
user = ref.get() ;
println("User : " + user) ;

> User: user
> User: null

38

The java.lang.ref.ReferenceQueue
Used by the garbage collector to inform the program
about an object’s state changes.
A SoftReference or WeakReference object may be
optionally associated with a ReferenceQueue.

A PhantomReference is always associated with a
ReferenceQueue.

39

Associating a Reference with a Queue
ReferenceQueue q = new ReferenceQueue();
User user = new User("user");
SoftReference<User> ref = new SoftReference<>(user, q) ;

40

Monitoring the ReferenceQueue
The collector will append a Reference to the
ReferenceQueue when the referent’s reachability state
changes.
The application can monitor the ReferenceQueue using:

ReferenceQueue.poll() : Removes the object waiting
in the queue (if any) and returns it. If the queue is
empty it immediately returns null (nonblocking).

ReferenceQueue.remove(timeout) : As above, but
blocking. It will block until an object is available in the
queue or until the timeout expires.

41

Reachability States Revisited
Strongly reachable: the object can be reached through an
ordinary reachable reference. The collector does not
attempt to reclaim the memory used by this object.
Softly reachable: the referent of a strongly reachable
SoftReference.

Weakly reachable: the referent of a strongly reachable
WeakReference.

The collector may attempt to reclaim the memory used by
softly and weakly reachable objects, clearing and
enqueuing their respective Reference object.

42

Reachability States Revisited
Resurrectable: The object is not strongly, softly or weakly
reachable, but it may be resurrected back to its original
state (strong, soft, weak) by a finalizer.

Phantom reachable: The referent of a strongly referenced
PhantomReference, after the execution of the referent’s
finalizers (if any).

Unreachable: To be reclaimed.

The get() method of a PhantomReference always returns null.

43

Soft/Weak references and the Queue
The garbage collector enqueues soft and weak references
when their referents are leaving the relevant state.

When the collector needs to reclaim a soft or weak
reference, it first clears the referent of the respective
reference object.

Then, either immediately or at a later point in time, it adds
the cleared reference to its associated queue (if such a
queue is present).

44

Phantom references and the Queue
The garbage collector enqueues phantom references when the
referents are entering the relevant state (they have been
finalized).

That is, the garbage collector enqueues
PhantomReference objects to indicate that their referents
have entered the phantom reachable state.

Phantom reachable objects will remain phantom
reachable until their reference objects are explicitly
cleared by the program (by calling the
clear() method).

45

When to use Weak References
When you need to "hold" some ephemeral data/state that
you don't need it to survive a collection (the JVM collects
weak references eagerly).
Mainly used for implementing canonicalizing mappings.

A weak reference isn't strong enough to force an object
to remain in memory. Weak references allow you to
leverage the garbage collector's ability to determine
reachability for you, so you don't have to do it yourself.

46

When to use Soft References
When you need to "hold" some ephemeral data/state that
you need it to survive as many collections as possible (the
JVM collects soft references less eagerly, usually as part of
its effort to prevent/avoid memory exhaustion).

Mainly used for implementing memory-resident caches.

A soft reference is exactly like a weak reference, except
that it is less eager to throw away the object to which it
refers. An object which is only weakly reachable (the
strongest references to it are WeakReferences) will be
discarded at the next garbage collection cycle, but an
object which is softly reachable will generally stick around
for a while.

47

When to use Phantom References
Mainly for scheduling pre-mortem cleanup actions in a
more flexible way than is possible with the Java
finalization mechanism.

They are not automatically cleared by the garbage
collector as they are enqueued. An object that is
reachable via phantom references will remain so until all
such references are cleared or themselves become
unreachable.

48

Example
Let's see the GCTest* examples on the course's repo.

Check out how the
org.apache.commons.io.FileCleaningTracker class, which uses

phantom references and the reference queue to delete files
when marker objects enter the phantom-reachable state.

49

java.util.WeakHashMap
Well-suited for canonicalizing mappings.

It contains weak keys (not weak values).

Not to be used for caching!

50

Using SoftReference for Caching
public class SoftReferenceCache<K, V> {

 private final Map<K, SoftReference <V>> map = new HashMap<>();

 public void put (K key, V value) {
 map. put (key, new SoftReference<V>(value));
 }

 public V get (K key) {
 SoftReference <V> reference = map.get(key) ;
 if (reference == null) { //the key is not in the cache

 return null;
 }
 else { //the referent may be null (GCed), users may not expect this
 return reference.get();
 }
 }
}

51

Memory Leakage
The SoftReference objects remain strongly referenced
within the map, yielding softly-reachable referents.

Modify the get() method to remove the SoftReference
objects from the map when their referrents are null.

public V get(K key) {
 SoftReference<V> reference = map.get(key) ;
 if (reference == null) { //the key is not in the cache
 return null ;
 } else {
 V v = reference.get() ;
 if(v == null) map.remove(key);
 return v ;
 }
}

52

