
Lambda Functions
in Java

Giannis Kalopisis

Μ135 - Advanced Programming Methods

What is Lambda?

What is Lambda (λ)?

1. The 11th letter of the Greek alphabet (λ) - Alphabet

2. The symbol for wavelength in mathematical equations - Mathematics

3. An anonymous functions - Computer Science

A little bit of history

Alonso Church
1903 - 1995

● Mathematician at Princeton University

● Interests: Notion of a function from a computational
perspective

His answer to that?

Lambda Calculus

A little bit of history

Alan Turing
1912 - 1954

● Mathematician & Computer Scientist at Princeton
University

● Inventor of Turing Machine

● Turing Machines capture a basic state-based model of
computation

A little bit of history

Basic Functional notion of
computation

(Lambda Calculus)

Basic State-Based notion
of computation

(Turing Machine)

Church - Turing Hypothesis

● Church - Turing Hypothesis: Functional & State-Based notion of computation are
EQUIVALENT

Lambda Calculus - Church

function
x , y x + y

Function is a black box:

● Takes input

● Gives output

Lambda Calculus - Church

Important details:

● They are black boxes
○ Can’t see the internal mechanics

○ Can only give input and observe the output

● They are pure mathematical functions with no internal state
○ Map input and output

○ No internal state or hidden information to use

○ Completely opposite notion of computation than Turing Machines (based on internal-states)

Lambda Calculus - Church

Pure mathematical functions:

● Given the same inputs, a function will always produce the same output and will not cause any

side effects. Its behavior is solely determined by its arguments.

No internal state:

● Functions don't maintain any internal state or store any information beyond what is

explicitly provided in their arguments.

And some maths...

λx. λy. x + y

Lambda Calculus syntax (addition function):

● Parameter1: λx

● Parameter2: λy

● Output: x + y

What’s the point?

1. Can encode any computation
a. A program from any programming language (invented or ever will be invented) it can be encoded

to Lambda Calculus

b. So, what kind of program you can encode? ANYTHING

Alan Turing’s

Machines

Church’s Lambda

Calculus

Formally Equivalent

Any Turing Machine program can be
translated into an equivalent

Lambda Calculus program

What’s the point?

2. Basis for functional programming
a. Haskell: compiled down to a very small core language, essentially a glorified form of Lambda

Calculus

b. ML family

3. Now in most languages
a. Python, Java, C#, etc.

1. Can encode any computation
a. A program from any programming language (invented or ever will be invented) it can be encoded

to Lambda Calculus

b. So, what kind of program you can encode? ANYTHING

Completeness

Encode any
computation

Programming
Language

Turing
Complete

Two Turing-complete systems
are equivalent in their
computational power

Compute anything
that is

algorithmically
describable.

Lambda Calculus & Lambda Functions

Lambda Calculus
Theoretical Foundation

Lambda Functions
Implementation in Programming

Why?

Conceptual Similarities:

1. Abstraction: Both allow the definition of anonymous functions

2. Higher-Order Functions: Both support higher-order functions
a. Enable functions to be passed as arguments or returned from other functions

3. Syntax: The syntax of lambda functions in languages is directly inspired by lambda

calculus.
a. Lambda Calculus: λx . x

b. Python: lambda x: x

4. Functional Programming Paradigm: Shape functional programming languages
a. Haskell, Lisp, Scheme

Lambdas in Java

Syntax

Simple syntax with one parameter:

● parameter -> expression

More parameters (use parentheses):

● (parameter1, parameter2) -> expression

No parameters:

● () -> expression

Syntax

Any problems with those syntaxes?

● They have to immediately return a value

● They cannot contain variables, assignments or statements

Solution:

● (parameter1, parameter2) -> { code block }

Syntax Examples

Example with no parameters:

Example with one parameters:

Syntax Examples

Example with two parameters:

Example with block of code:

Method Reference

Method reference:

● Method references provide a way to refer to methods without invoking them
● Replace lambda expressions when the lambda's sole purpose is to call a method

● The syntax Main::println is equivalent to a lambda expression that takes an argument and
passes it to my print method of Main class.

Lambdas internal
implementation

 Functional Interfaces

Definition:

● Functional interfaces are Java interfaces that contain exactly one abstract method.
○ Can also have default or static methods.

Purpose:

● Introduced in Java 8 to support functional programming and lambda expressions.
○ A concise way to express instances of single-method interfaces

● Treat functionality as a first-class citizen, allowing methods to be passed around as if they

were data.

Annotation:

● Often annotated with the @FunctionalInterface annotation.

 Functional Interfaces

 A functional interface is nothing but an interface that has only one abstract method.

Lambda expressions are nothing but the implementation of the functional interface.

 Functional Interfaces

Example:

Common Functional Interfaces

Java provides a set of functional interfaces in the `java.util.function` package, such as:

● Consumer

● Function

● Predicate

● …

which are commonly used in functional programming with lambda expressions.

These interfaces cover various use cases and allow developers to write more concise and

expressive code.

Common Functional Interfaces - Examples

1. Function<V, T>: Takes one argument of type V and produces a result of type T

Function<String, Integer> transformLength = str -> str.length();

3. Supplier<T>: Represents a supplier with no arguments, produces a result of type T

Supplier<Double> getRandom = () -> Math.random();

2. BiFunction<V, V, T>: Takes two arguments of type V, produces a result of type T

BiFunction<Integer, Integer, Integer> add = (a, b) -> a + b;

4. Consumer<V>: Takes a single argument of type V and returns no result

Consumer<String> printUpperCase = str -> System.out.println(str.toUpperCase());

Common Functional Interfaces - Examples

5. Predicate<V>: Represents a boolean-valued function of one argument of type V

Predicate<Integer> isPositive = num -> num > 0;

5. UnaryOperator<V>: An operation on a single operand of type V, producing a result of the
same type V

UnaryOperator<Integer> square = num -> num * num;

8. BinaryOperator<V>: An operation upon two operands of the same type V, producing a

result of the same type V

BinaryOperator<Integer> multiply = (a, b) -> a * b;

6. BiPredicate<V, T>: Represents a predicate of two arguments of types V and T

BiPredicate<String, Integer> hasSameLength = (s, len) -> s.length() == len;

Actual code example

This lambda doesn't explicitly return a value (it performs actions and doesn't have a return

statement), it's transforming or processing each m element. Therefore, in terms of functional

programming, this lambda could be seen as Consumer.

Lambdas power

Why use Lambdas?

Conciseness and Readability

Lambdas can reduce verbosity and enhance readability in code by providing a concise way to

define simple functionalities.

1. Conciseness: express functionality in a single line, reducing the need for a separate

named function.

2. Inline Usage: used directly where they're needed, eliminating the need for a named

function that might only be used in one specific context.

3. Avoiding Overhead: In cases where a function is simple and used only once, creating a

named function might add unnecessary overhead.

Conciseness and Readability

Without Lambdas: With Lambdas:

Functional Programming Paradigm

Lambdas encourage functional programming principles by enabling the use of functions as
first-class citizens.

1. Functions as Values: Lambdas allow functions to be treated as values, enabling them to

be passed as arguments to other functions, returned as results, or stored in data

structures (treating functions as any other data type.)

2. Higher-Order Functions: Functions that either take other functions as arguments, return

functions as results, or both (composing complex functionalities by combining simpler

functions, promoting modularity and reusability).
a. Enhance Streams API, encourages the use of higher-order functions like map, filter, reduce.

3. Declarative Style: Lambdas enable a more declarative style of programming, expressing

the "what" rather than the "how".

4. Pure Functions: Encourage writing pure functions (functions with no side effects)

Flexibility and Code Reusability

Lambdas provide versatility for creating reusable functions:

Encapsulate behavior
within a compact and

flexible unit

case1

case2

caseN

passed around and
reused in various

contexts

Flexibility and Code Reusability

Streams + Lambdas = <3

Streamlining APIs and Iteration

Iterate through items:

Make a collection of items stream and apply functions on it:

Convert a collection to stream and apply higher-order

functions:

Parallel Processing and Multithreading

1. Facilitating Parallel Processing
a. Simplified Parallelization: Simplify the usage of concurrent APIs by encapsulating tasks as

functional units.

b. Parallel Stream Operations: Lambdas, when combined with the Streams API, allow for easy

parallelism by leveraging parallel stream operations (parallelStream()). These operations

automatically distribute tasks across multiple threads, allowing for parallel processing of

collections.

Parallel Processing and Multithreading

2. Functional Approach to Multithreading
a. Encapsulation of Tasks: Lambdas encapsulate tasks or operations, enabling them to be easily

passed to multithreading constructs like ExecutorService, Thread.

b. Simplified Thread Creation: Lambdas can be used as concise implementations of the Runnable or
Callable interfaces, simplifying the creation of threads or tasks in multithreaded environments.

Simplify the creation of a Callable instance, avoiding the need for a separate class or implementing a
verbose anonymous inner class.

Problems?!

Problems of Lambdas in programming

While lambda functions offer numerous advantages, they come with certain drawbacks that

need careful consideration:

1. Complexity and Readability

2. Debugging Challenges

3. Learning Curve and Compatibility

Complexity and Readability

Nested or intricate lambda expressions

can make code harder to comprehend,

especially for developers unfamiliar

with functional programming concepts.

Debugging Challenges

● Understanding the flow and behavior of complex lambda expressions during debugging

sessions can be daunting, affecting development and troubleshooting processes.

● Lambdas, especially those with nested or intricate logic, might obscure the sequence of

operations and make it challenging to isolate and rectify issues.

Learning Curve and Compatibility

Lambda expressions often introduce new concepts. Understanding and effectively utilizing

lambdas might require:

● learning new syntax

● grasping functional programming principles:
○ Higher-order functions

○ Immutability

○ Closures

Additionally, compatibility issues might arise when working with older systems or languages

that do not support lambda expressions or have limited support for functional programming

features.

The impact of Lambdas in
performance

Performance Overhead

Using lambda expressions `might` introduce a slight performance impact compared to

equivalent non-lambda code.

In this scenario, the lambda expression simplifies the code and makes it more concise.

However, internally, the lambda expression involves the creation of an additional object (an

instance of a functional interface) to represent the lambda, which might incur a small

performance cost compared to the non-lambda approach.

Performance dependency

What does performance depend on?

● Your code:
○ Algorithmic complexity

○ Produced bytecode

● JVM implementation

● Running phase:
○ Cold

○ Hot

Improve performance

1. The JIT compiler optimizes at the method level. It only optimizes the most promising

methods. That's methods that have run hot by being called again and again, and short

methods are compiled earlier. The longer a method gets, the less likely it's optimized.

2. Performance impact of functional programming it's there, but almost exclusively during

the cold start phase. The JIT compiler optimizes most of the overhead.

3. Real-world programs usually involve slow stuff like a database or file access, so you're

free to choose your preferred approach without worrying about performance.

Links for the performance impact

Links for more on performance:

● https://www.beyondjava.net/functional-programming-java-performance-impact

● https://www.beyondjava.net/blog/performance-java-8-lambdas

● https://stackoverflow.com/questions/27524445/does-a-lambda-expression-create-an-o

bject-on-the-heap-every-time-its-executed

● https://stackoverflow.com/questions/16827262/how-will-java-lambda-functions-be-co

mpiled

https://www.beyondjava.net/functional-programming-java-performance-impact
https://www.beyondjava.net/blog/performance-java-8-lambdas
https://stackoverflow.com/questions/27524445/does-a-lambda-expression-create-an-object-on-the-heap-every-time-its-executed
https://stackoverflow.com/questions/27524445/does-a-lambda-expression-create-an-object-on-the-heap-every-time-its-executed
https://stackoverflow.com/questions/16827262/how-will-java-lambda-functions-be-compiled
https://stackoverflow.com/questions/16827262/how-will-java-lambda-functions-be-compiled

Conclusion

Conclusion

● Lambda Calculus, a mathematical concept of computation, introduced us to functional
programming and Lambda functions.

● Lambdas in Java have revolutionized programming by introducing functional paradigms
through functional interfaces.

● As we see every day in our science, many ideas combine to improve each other.

● And finally, as with any `new` idea there are not only advantages, and therefore we should
be careful.

Conclusion

Let's embrace their power while
navigating their challenges, paving the
way for more efficient and expressive

code.

ChatGPT

