
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ 2022-23 (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό:
M117)

Concurrent programming (2)

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Liveness
The ability of the multi-threaded, concurrent application
to execute in a timely manner.
Three liveness problems: deadlock, starvation, livelock.

2

Deadlock

A situation where two or more threads are waiting for
each other, blocking indefinetely.

There are four conditions that must hold simultaneously
for a deadlock to occur:

Mutual exclusion: there is at least a non-shareable
resource.
Hold and wait: a requesting thread holds a resource
and waits for some other requested resource.

No-preemption allowed: a resource held by the lock
cannot be ``taken back''.

Circular wait: threads form a chain where each one
waits for a resource held by the next. 3

Example 08 (BankAccount &
BankTransfer)

4

How to avoid deadlocks
Provide an ordering to your locks.

Don't synchronize randomly.

5

Example 08 (contd.)

6

Starvation
A thread is unable to gain access to shared resources and,
thus, is unable to make progress.

This happens when shared resources are made
unavailable (locked) for long periods of time.

7

Livelock
In cases where a thread (A) act in response to the actions
of another thread (B) and the latter also responds to
actions of some other thread (C), may lead to livelocked
threads.

As with deadlock, livelocked threads are unable to make
progress; the threads are not blocked — they are simply
too busy responding to each other to resume any actual
work.

8

Guarded blocks, thread signaling and
coordination

The most common thread coordination idiom is the
guarded block; a block begins by polling a condition that
must be true before the block can proceed.

9

Example
public synchronized void guardedAction() {
 while(!safe) {
 try {

 wait();
}

 catch(InterruptedException ie) {}
...
// do the action

 }
}

10

The builtin Object's wait() and
notify() methods

These methods effectively allow threads to signal each
other.
They are available to all Java objects (they reside in the
java.lang.Object class).

A call to obj.wait() suspends the current thread. The
thread is said to be "waiting on" the obj .

Another thread calls obj.notify() or obj.notifyAll() .
This "wakes up" the threads waiting on the obj .

You need to have the lock/monitor of an object to be able
to call wait/notify.

11

The wait() and wait(long) methods
These methods, when called on an object, cause the
current thread to wait until either another thread invokes
notify() / notifyAll() on this object, or a specified

amount of time has elapsed (timed waiting).

The current thread releases the object's lock/monitor
during a wait.
When a thread is interrupted during a wait, the thread
wakes up and the wait() method returns by throwing an
InterruptedException .

12

The notify() and notifyAll()
methods

The first wakes up a single thread that is waiting on this
object's monitor. If many threads are waiting on this
object, one of them (arbitrary) is chosen to be awakened.

The second wakes up all threads that are waiting on this
object's monitor.

The current thread (the invoker of notify() or notifyAll())
should release the object's lock in order for the awakened threads
to compete again to obtain the object's lock.

13

When to use guarded blocks with
wait/notify signaling?

In various scenarios that require thread communication

Producer-Consumer (classic example):

A data structure,

where one or more threads write to it
and one or more thread read from it.

14

Example 09 (A logging
producer/consumer)

Multiple threads (producers) use a common logger to log
application events.
The logger writes events to standard output (consumer).

15

Can we avoid synchronization?
Yes, when we don't share state!

Making our objects immutable guarantees that no
synchronization will be required (the state of our objects
does not change).

Immutability: since the state of immutable objects cannot
change, the objects cannot be corrupted by thread
interference or observed in an inconsistent state.

16

