EOviko kat Kammodiotploko Mavemiotnuio ABnvwv
TuApa NMAnpo@optkng & TNAETILKOWVWVLWV

[Mponypeveg MeBodol
[TpOoYyPOUUATIOMOU

MM 2022-23 (M135.CS1E, M135.CS23B, M135.1CTE, mtaAawo:
M117)

OgpeAlwdeLg Evvoleg (emavainyn)
Ap. Kwotag 2aiéng (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

OEUEALOL TIPOYPOAUUATIOTLKOL AlOOL

* OepeAMWOELG APALPETELG
e Threads
e Memory (Stack and Heap)

H OgpeAiwdng Apaipeon

[Mowx sivat

H cuvaptnon

e Me SLAPOPA OVOUOATA KOL TIAPOAAAAYES, AVAAOYQ JUE TN
YAwoox

e Function, Procedure, Method, Subroutine, Message (etc.)
e Divide and conquer

e Black box abstraction

H cuvaptnon Kot 0 KwOLKAG (YEVIKA)

e Eva "KOUMATL KWAKA" TIou AapPAVEL KATIOLEG LGOS0V,
EKTEAEL EVOV I TIEPLOCOTEPOVC UTIOAOYLOHOUE KOL
"eTloTPEPEL / TTapayel” 0) TtepLocOTEPEG €£0O0VG

® <return_type> functionName(<typel> arglName, <type 2>

arg2Name)

® functionName(arglName: <typel>, arg2Name: <type 2>) :

<return_type>
e Pure function (function as in math): yia tnv dla €ilcodo,

TIAPAYETAL TIAVTA TO (OO ATIOTEAECUQ, XWPLG
"tapevepyeleg (side-effects)”

H pvApn Kot ta 0edopEva (YEVIKK)

e O "Ywpoc¢" otov omoio amodnkevovtal Ta SedopEVA
(000 TPEXEL TO TIPOYPAUUD - TIPOCWPLVAY).

o Asdopeva: MetafAnteg, dopeg dedopevwy, edia
QVTIKELUEVWYV, KATL.

Variables

e Addressable/identifiable "memory slots" that (can) hold a
piece of data (bits and bytes).

e Their type (symbolic name) determines the "actual

meaning / form" of the data (what these bits and bytes
‘represent”).

To ovoTnua TVTTWV (type system)

e EVva OUOTNUO KAWOVWV TIOL TIPOCOTIOOEL VO ATTOOWOEL
"VOnua" oTo TIPOYPOUMA (OTLC "OUVOPTHOELS" TOU KOl
oTa "0edopEVA” TOV, aV/OTIOV LUTIAPXEL TETOLX SLAKPLON).

* >TOXOG (type checking): va evwoloAoynaoet Kat va
KATNOPLOTIOLNOEL T OTOLXELX TOV TIPOYPAUMATOC, WOTE
VO OLOCPOALTEL LOLOTNTEC KOl VO £YYUNDEL CUUTIEPLPOPEC,
OTIOTPETIOVTOG AAON.

e Type safety

e Memory safety

Type safety (type system soundness)

e Well-typed programs cannot "go wrong" (R. Millner).

e All expressions accepted by the type system must
evaluate to a value of the appropriate type (rather than
produce a value of some other, unrelated type or crash
with a type error) (Wikipedia).

Type safety (contd.)

e Progress and Preservation (Wright and Felleisen)

o A well-typed program never gets "stuck": every
expression is either already a value or can be reduced
towards a value in some well-defined way.

o After each evaluation step, the type of each

expression remains the same (that is, its type is
preserved).

10

Memory safety

e Protect against various software bugs and security
vulnerabilities when dealing with memory access, such as
buffer overflows and dangling pointers.

e Requires runtime checks.

e Thread safety is relevant but also different (another

lecture).

11

Dynamic vs static typing

Statically typed languages:
e Resolve the types of variables at compile-time (statically).

e The type of a variable cannot change at runtime (e.g. Java,
C#).

Dynamically typed languages:

e Resolve the types of variables at runtime (dynamically,
during execution).
e The type of a variable can change at runtime (e.g. Ruby, C,

Javascript).
12

AnAodn;

e TiLonuaivel To "the type of a variable can/cannot change”;

e No puTTopEilg va oAAGEELG TN "pop@en” Tou memory slot
(TL.X. Elxa Seopevoel evav "Xxwpo" ylux va Kpataw "“string”
KOl TwPO, oToV 1010 "Ywpo" (otnv Wl dlevbuvan), BeAw
va Kpataw "integer").

e Agv aA&(eL TO (610 TO value, 0 "xwpog" ya va
omoOnkevOel auTO aAAalEL.

13

Strong vs weak typing

Strongly typed languages:

e Guarantee type conformance.

e You cannot convert the value of a variable to an
incompatible/wrong type (e.g. Java, Ruby).

e Usually implies memory-safety, too.

14

Weakly typed languages:
e Leaky/broken type abstactions.

e For example, C does not prevent you from shooting
yourself in various painful ways.

e While Javascript has some broken
primitives/arithmetics/coercions.

e Caution though: C is not memory-safe, Javascript is.

15

Type inference

e The ability to automatically decide upon the type of a
variable at compile-time (without requiring the
programmer to explicitly declare it).

List<String> list = new ArraylList<>();
var list = new ArraylList<String>();

16

The memory of running programs

e The stack
e The heap

17

The stack

e Also named as Call stack, Execution stack, Program stack,

Runtime stack

A LIFO data structure managed automatically by the
(high-level) programming language

Primary role: to keep track of the specific point to which

each a function call should return control after execution.

Function calls are nested: a function calls another
function, that calls another function, etc.

A function can also call itself (recursion).

18

The stack frames

e The elements of the stack, also named activation records
(function activations/invocations)

e Each frame usually holds:
o The parameters passed to the function call (if any)

o The local variables of the function

o The return address of the caller (the frame pointer)

19

Stack overflow

e Programming languages apply a limit to the size of the
stack (e.g. 10.000 framses)

e |f the program exceeds the limit a Stack Overflow error is
thrown

e Most probably, an infinite loop / non-terminated
recursion has occurred

20

The stack / call / error trace

| suppose you' ve seen one, right?

Stack unwinding: pop one or more frames off the stack to
resume execution elsewhere in the program

Exception handling:
o The stack frame holds entries specifying exception
handlers (non-local control structures that may exist
In an outer/caller function)

o When an exception is thrown (in the body of the
currently active function), the programming language
unwinds the stack until a suitable handler (trap) is
found that can handle (catch) the specific exception

21

The primitive types

e Many languages have a small set of primitive types

e Such as char, int, bool, etc, that represent "simple forms"
of data

e |n order to be able to easily store such data in the stack
frame (in the space kept for holding the local variables)

22

The reference types

e Let's recall our OOP discussion and the new operator that

creates instances of classes

e The classes are usually called reference types and the
instances/objects are also called references

e Where are theses instances/objects held?

23

The heap

e The space where dynamic, not-in-the-stack, memory
allocation occurs

e Addressable/identifiable through pointers
e Manual memory management

e Automatic memory management

24

Manual memory management

e The programmer is responsible for allocating and de-
allocating the required portions of the heap space
required to hold the data of the program

e Hard, error-prone, security issues with buffer
overflow/underflow

25

Automatic memory management

e The programming language is responsible for allocating
and de-allocating the required portions of the heap space
required to hold the data of the program

e Memory safety guarantees with additional runtime checks

e The new operator performs the allocation (and hides the
underlying pointers from the programmer)

e The programming language's runtime employs Garbage
collection techiques for performing the de-allocation,
recycling unused memory to be reused by the same
program
(we will discuss GC in more detail in another lecture)

26

Out of memory errors

e Once again, the programming language enforces a limit
on the size of the heap space (in automatically-managed
memory)

e |f your program exceeds this limit, an OutOfMemory error
is thrown (not enough space exists for storing a new
instance of some class/type)

27

Stack vs. Heap

e Stack is faster (as fast as it gets, usually utilizing the CPU
registers)

e Heap is bigger (main memory + swap space on disk(s),
using Virtual Memory techniques)

e Both StackOverflow and OutOfMemory errors are usually
non-recoverable (causing abnormal program termination)

28

Wait, who's actually running the
program?

e Who is executing the code?

e Who is invoking the functions?

29

The threads

e Also called lightweight processes.

e Similar to processes, threads have their own execution
environment, comprising a stack, registers and program
counter. Depending on the OS, they may also have a
thread-local storage.

e Creating a new thread requires fewer resources than
creating a new process.

30

The threads

e Threads exist/live in a process, sharing the same memory
space (heap).

e Every process has at least one thread, executing the main
execution path (the one followed by the main method).

e Threads are independent execution paths within the
process, executing
simultaneously and asynchronously to each other.

31

Multi-threaded vs single-threaded

e Some languages are designed to be single-threaded (e.qg.
Javascript), some to be multi-threaded (e.g. Java)

e |n the first case, the runtime environment may support
threads in a transparent fashion for the programmer (e.g.
Browser)

e |n the second case, the programmer is responsible for
spawning and managing any additional threads, yet the
language can provide a lot of helpful utilities

32

Simple threading example in Java

public class MyRunnable implements Runnable {
public void run () {
while (true) {
println ("Hello from another thread") ;
try { Thread.sleep (1000) ; }
catch(InterruptedException ie) { println ("Interrupted") ; }

¥
¥

public static void main(String[] args) {
Thread t = new Thread(new MyRunnable());
t.start();
// continue with other tasks
}
}

33

The JVM Main Thread

e Every java application starts with one thread, called the
main thread.

e Behind the scenes, the JVM spawns additional “internal”,

housekeeping
threads — e.g., for garbage collection or for signal

handling. Such threads
are not "visible"” to the developer.

e The main thread is responsible for running the main
method:

public static void main(String[] args)

34

Keep in mind

e Since a common heap space is shared by multiple
threads, we can easily shoot ourselves on the foot (and

corrupt data or miscalculate something), if we don't
synchronize the memory access operations.

e We will discuss synchronization in a another lecture.

35

