
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ 2022-23 (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό:
M117)

Θεμελιώδεις έννοιες (επανάληψη)

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Θεμέλιοι προγραμματιστικοί λίθοι
Θεμελιώδεις αφαιρέσεις

Threads

Memory (Stack and Heap)

2

Η Θεμελιώδης Αφαίρεση
Ποια είναι;

3

Η συνάρτηση
Με διάφορα ονόματα και παραλλαγές, ανάλογα με τη
γλώσσα

Function, Procedure, Method, Subroutine, Message (etc.)
Divide and conquer

Black box abstraction

4

Η συνάρτηση και ο κώδικας (γενικά)
Ένα "κομμάτι κώδικα" που λαμβάνει κάποιες εισόδους,
εκτελεί έναν ή περισσότερους υπολογισμούς και
"επιστρέφει / παράγει" 0 ή περισσότερες εξόδους
<return_type> functionName(<type1> arg1Name, <type 2>

arg2Name)

functionName(arg1Name: <type1>, arg2Name: <type 2>) :

<return_type>

Pure function (function as in math): για την ίδια είσοδο,
παράγεται πάντα το ίδιο αποτέλεσμα, χωρίς
"παρενέργειες (side-effects)"

5

Η μνήμη και τα δεδομένα (γενικά)
Ο "χώρος" στον οποίο αποθηκεύονται τα δεδομένα
(όσο τρέχει το πρόγραμμα - προσωρινά).

Δεδομένα: Μεταβλητές, δομές δεδομένων, πεδία
αντικειμένων, κλπ.

6

Variables
Addressable/identifiable "memory slots" that (can) hold a
piece of data (bits and bytes).

Their type (symbolic name) determines the "actual
meaning / form" of the data (what these bits and bytes
"represent").

7

Το σύστημα τύπων (type system)
Ένα σύστημα κανόνων που προσπαθεί να αποδώσει
"νόημα" στο πρόγραμμα (στις "συναρτήσεις" του και
στα "δεδομένα" του, αν/όπου υπάρχει τέτοια διάκριση).

Στόχος (type checking): να εννοιολογήσει και να
κατηοριοποιήσει τα στοιχεία του προγράμματος, ώστε
να διασφαλίσει ιδιότητες και να εγγυηθεί συμπεριφορές,
αποτρέποντας λάθη.
Type safety

Memory safety

8

Type safety (type system soundness)

Well-typed programs cannot "go wrong" (R. Millner).

All expressions accepted by the type system must
evaluate to a value of the appropriate type (rather than
produce a value of some other, unrelated type or crash
with a type error) (Wikipedia).

9

Type safety (contd.)

Progress and Preservation (Wright and Felleisen)

A well-typed program never gets "stuck": every
expression is either already a value or can be reduced
towards a value in some well-defined way.
After each evaluation step, the type of each
expression remains the same (that is, its type is
preserved).

10

Memory safety
Protect against various software bugs and security
vulnerabilities when dealing with memory access, such as
buffer overflows and dangling pointers.

Requires runtime checks.

Thread safety is relevant but also different (another
lecture).

11

Dynamic vs static typing

Statically typed languages:

Resolve the types of variables at compile-time (statically).

The type of a variable cannot change at runtime (e.g. Java,
C#).

Dynamically typed languages:

Resolve the types of variables at runtime (dynamically,
during execution).
The type of a variable can change at runtime (e.g. Ruby, C,
Javascript).

12

Δηλαδή;
Τι σημαίνει το "the type of a variable can/cannot change";

Να μπορείς να αλλάξεις τη "μορφή" του memory slot
(π.χ. είχα δεσμεύσει έναν "χώρο" για να κρατάω "string"
και τώρα, στον ίδιο "χώρο" (στην ίδια διεύθυνση), θέλω
να κρατάω "integer").
Δεν αλλάζει το ίδιο το value, ο "χώρος" για να
αποθηκευθεί αυτό αλλάζει.

13

Strong vs weak typing

Strongly typed languages:

Guarantee type conformance.
You cannot convert the value of a variable to an
incompatible/wrong type (e.g. Java, Ruby).

Usually implies memory-safety, too.

14

Weakly typed languages:

Leaky/broken type abstactions.
For example, C does not prevent you from shooting
yourself in various painful ways.

While Javascript has some broken
primitives/arithmetics/coercions.

Caution though: C is not memory-safe, Javascript is.

15

Type inference
The ability to automatically decide upon the type of a
variable at compile-time (without requiring the
programmer to explicitly declare it).

List<String> list = new ArrayList<>();
var list = new ArrayList<String>();

16

The memory of running programs
The stack

The heap

17

The stack
Also named as Call stack, Execution stack, Program stack,
Runtime stack

A LIFO data structure managed automatically by the
(high-level) programming language

Primary role: to keep track of the specific point to which
each a function call should return control after execution.
Function calls are nested: a function calls another
function, that calls another function, etc.

A function can also call itself (recursion).

18

The stack frames
The elements of the stack, also named activation records
(function activations/invocations)

Each frame usually holds:
The parameters passed to the function call (if any)

The local variables of the function

The return address of the caller (the frame pointer)

19

Stack overflow
Programming languages apply a limit to the size of the
stack (e.g. 10.000 framses)
If the program exceeds the limit a Stack Overflow error is
thrown

Most probably, an infinite loop / non-terminated
recursion has occurred

20

The stack / call / error trace
I suppose you' ve seen one, right?

Stack unwinding: pop one or more frames off the stack to
resume execution elsewhere in the program

Exception handling:
The stack frame holds entries specifying exception
handlers (non-local control structures that may exist
in an outer/caller function)

When an exception is thrown (in the body of the
currently active function), the programming language
unwinds the stack until a suitable handler (trap) is
found that can handle (catch) the specific exception

21

The primitive types
Many languages have a small set of primitive types

Such as char, int, bool, etc, that represent "simple forms"
of data

In order to be able to easily store such data in the stack
frame (in the space kept for holding the local variables)

22

The reference types
Let's recall our OOP discussion and the new operator that
creates instances of classes
The classes are usually called reference types and the
instances/objects are also called references

Where are theses instances/objects held?

23

The heap
The space where dynamic, not-in-the-stack, memory
allocation occurs

Addressable/identifiable through pointers
Manual memory management

Automatic memory management

24

Manual memory management
The programmer is responsible for allocating and de-
allocating the required portions of the heap space
required to hold the data of the program
Hard, error-prone, security issues with buffer
overflow/underflow

25

Automatic memory management
The programming language is responsible for allocating
and de-allocating the required portions of the heap space
required to hold the data of the program
Memory safety guarantees with additional runtime checks

The new operator performs the allocation (and hides the
underlying pointers from the programmer)

The programming language's runtime employs Garbage
collection techiques for performing the de-allocation,
recycling unused memory to be reused by the same
program
(we will discuss GC in more detail in another lecture)

26

Out of memory errors
Once again, the programming language enforces a limit
on the size of the heap space (in automatically-managed
memory)

If your program exceeds this limit, an OutOfMemory error
is thrown (not enough space exists for storing a new
instance of some class/type)

27

Stack vs. Heap
Stack is faster (as fast as it gets, usually utilizing the CPU
registers)
Heap is bigger (main memory + swap space on disk(s),
using Virtual Memory techniques)

Both StackOverflow and OutOfMemory errors are usually
non-recoverable (causing abnormal program termination)

28

Wait, who's actually running the
program?

Who is executing the code?

Who is invoking the functions?

29

The threads
Also called lightweight processes.

Similar to processes, threads have their own execution
environment, comprising a stack, registers and program
counter. Depending on the OS, they may also have a
thread-local storage.
Creating a new thread requires fewer resources than
creating a new process.

30

The threads
Threads exist/live in a process, sharing the same memory
space (heap).

Every process has at least one thread, executing the main
execution path (the one followed by the main method).

Threads are independent execution paths within the
process, executing
simultaneously and asynchronously to each other.

31

Multi-threaded vs single-threaded
Some languages are designed to be single-threaded (e.g.
Javascript), some to be multi-threaded (e.g. Java)

In the first case, the runtime environment may support
threads in a transparent fashion for the programmer (e.g.
Browser)

In the second case, the programmer is responsible for
spawning and managing any additional threads, yet the
language can provide a lot of helpful utilities

32

Simple threading example in Java
public class MyRunnable implements Runnable {
 public void run () {
 while (true) {
 println ("Hello from another thread") ;
 try { Thread.sleep (1000) ; }
 catch(InterruptedException ie) { println ("Interrupted") ; }
 }
 }

 public static void main(String[] args) {
 Thread t = new Thread(new MyRunnable());
 t.start();
 // continue with other tasks
 }
}

33

The JVM Main Thread
Every java application starts with one thread, called the
main thread.

Behind the scenes, the JVM spawns additional ‘‘internal’’,
housekeeping
threads – e.g., for garbage collection or for signal
handling. Such threads
are not ‘‘visible’’ to the developer.

The main thread is responsible for running the main
method:

public static void main(String[] args)

34

Keep in mind
Since a common heap space is shared by multiple
threads, we can easily shoot ourselves on the foot (and
corrupt data or miscalculate something), if we don't
synchronize the memory access operations.

We will discuss synchronization in a another lecture.

35

