

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ 2022-23 (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό:
M117)

Meta-Programming

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Meta-programming
The ability to write programs that treat other programs as
their input.

Write programs that read, generate, analyze, transform
and modify other programs.

2

Why should I wanna do this?
Program analysis and verification

Software testing and validation
Code optimization

Code generation

Assist software development (e.g dev tools & IDEs)

Change the behavior of existing code (e.g. extend legacy
code)

Deal with cross-cutting concerns

Evolution and adaptiveness

3

Program analysis
Reason about a specific property of a program (e.g.
correctness, security, safety, etc.).

Static analysis: without actually executing the program
(e.g. control-flow or data-flow analyses).

Dynamic analysis: while executing it (e.g. software testing
or monitoring).

Hybrid: combine both techniques.

4

Compile-time meta-programming
Interact with the compiler

directly, through "compiler plugins"
indirectly, through macros or annotations

5

Runtime meta-programming
Interact with the running program, as it runs

through Reflection

through a Metaobject protocol

through the language itself (e.g. dynamic languages)

6

Meta-programming techniques
discussed in this class

Reflection
Proxies

Aspects & Aspect-oriented programming

Metaobject protocols

Annotations

7

Metaobject protocols
Gregor Kiczales, Jim des Rivieres, Daniel G. Bobrow, "The Art of
the Metaobject Protocol", 1991, MIT Press, ISBN 0-262-61074-
4

8

What is a metaobject protocol?
A vocabulary (protocol) to access and manipulate the
structure and behaviour of systems of objects.

Typical functions of a metaobject protocol include:
Create or delete a new class

Create a new property or method

Cause a class to inherit from a different class
("change the class structure")

Generate or change the code defining the methods
of a class

9

Metaobject protocols and the SOLID
principles

Remember SOLID?

O in SOLID is the the open/closed principle: software
"entities" should be open for extension but closed for
modification.
Metaobject protocols violate it.

10

Metaobject protocols and AOP
A metaobject protocol is a way to implement Aspect-
oriented Programming.

AOP is a technique to inject/modify code (advice) at
certain points in the execution of a program (pointcuts) in
order to deal with cross-cutting concerns (tbd).

11

Metaclass
The most widespread realization of a Metaobject protocol
in mainstream PLs.

Supported by Python, Ruby, Groovy, Objective-C (among
others) and also by RDF and UML.

12

Example (Groovy)
Number.metaClass.isGreaterThan { Number n -> return delegate > n }
Number.metaClass.isTheAnswer() { ->return delegate == 42 }
println(5.isGreaterThan(3)) //prints true
println(5.isTheAnswer()) //prints false

13

Example (Python)
Person = type('Person', (), dict(name='Name', surname='Surname'))
//or equivalently
Person = type('Person', (), {'name':'Name', 'surname':'Surname'})
p = Person()
print(p.surname + ", " + p.name) //prints Surname, Name

14

Annotations
A simple meta-programming technique

We will discuss about Java & Groovy annotations

15

Java annotations
Java Tutorial

16

https://docs.oracle.com/javase/tutorial/java/annotations/

Combine annotations with reflection
In the cases where the annotation is not strictly for
documentation purposes, use
a runtime retention policy to allow the annotation to be
available at runtime.
Then use Reflection to make use of it.

17

Example - The Jackson JSON
Encoder/Decoder
Jackson at a glance

Jackson Annotations

18

https://reflectoring.io/jackson/
https://github.com/FasterXML/jackson-annotations

Groovy annotations
They rely on AST (Abstract Syntax Tree) transformations, a
powerful compile-time meta-programming idiom of Groovy

Groovy compile-time meta-programming

The Groovy transform package

19

https://groovy-lang.org/metaprogramming.html#_compile_time_metaprogramming
https://docs.groovy-lang.org/3.0.7/html/gapi/groovy/transform/package-summary.html

