
An Introduction to Selective
Forwarding Units

Πηγή: https://voximplant.com/blog/an-introduction-to-selective-forwarding-units

Adding peer-to-peer communications to an application is relatively straight-forward.

Developers can leverage WebRTC APIs or a CPaaS service to quickly add real time

voice and video to their web or mobile app. But, what if you want to hold a meeting with

more than two people? How can you leverage powerful WebRTC APIs to build a multi

party conferencing application?

Application developers have settled on the selective forwarding unit (SFU) as the

preferred method of extending WebRTC to multi party conferencing. SFUs enable you to

deploy WebRTC in efficient and scalable hub-and-spoke topologies with low latency and

high quality of service. Recent simulcast enhancements are further improving this

essential component for any conferencing service.

In this blog, we’ll help you understand how an SFU fits into your conferencing

application. We’ll describe the key features and functions, review the range of DIY and

CPaaS services available to help you add it to your application, and describe the SFU

services available in the Voximplant CPaaS platform.

Multi party conferencing with WebRTC

Even though WebRTC was designed for peer to peer communications, it is relatively

easy to build a multi party conferencing application with it. There are multiple

approaches offering trade-offs in scalability, cost, quality and security. The simplest

approach is to build a mesh topology in which every participant sends and receives

media from every other participant. This maintains the end-to-end security inherent in

WebRTC peer connections and offers the lowest latency and highest quality of service.

However, a mesh topology quickly reaches scalability limitations. It consumes a lot of

bandwidth and client processing power to manage all the media streams. In particular,

the compute burden can be a significant limitation for mobile devices with limited

battery power.

https://voximplant.com/blog/an-introduction-to-selective-forwarding-units
https://voximplant.com/platform
https://voximplant.com/platform

To increase scalability, you need to build a hub-and-spoke topology by inserting a media

server into the network. A hub-and-spoke topology reduces the amount of network

bandwidth and client CPU cycles required because the server takes care of replicating

media streams for the clients. The amount of savings varies based on the type of media

server used.

Hub-and-spoke topologies can increase latency because media must traverse a longer

path from sender to receiver. For this reason, you should carefully consider the

geographic placement of media servers relative to where clients are located.

In addition, the hub-and-spoke topology introduces an intermediary between clients that

breaks the WebRTC end-to-end security feature. Encrypted media streams transmitted

by clients are terminated by the media server, which originates a new encrypted stream

for transmission to clients. Without the incorporation of additional end-to-end

encryption (E2EE) techniques, a bad actor could potentially monitor the media as it

passes through the media server. You should review regulations that apply to your

industry and determine whether this is permissible.

Media servers for video conferencing

Two types of media servers can be used to implement the hub-and-spoke topology: The

multipoint control unit (MCU); and the selective forwarding unit (SFU).

What is an MCU?

The MCU decodes each received media stream, rescales them, creates a new tiled

stream featuring all participants, encodes and sends it to all clients. It may adapt each

transmitted stream to the network conditions available for each client. For example, it

may send 1080p video using VP8 to clients with good conditions, 720p to browsers with

some bandwidth restrictions, and VGA using H.264 to mobile devices.

The MCU is an expensive and compute-intensive infrastructure element when used on

high-bandwidth streams like video. Encoding at multiple resolutions places a heavy CPU

burden upon it. The MCU scales higher than the mesh, but server CPU capacity can limit

the maximum conference size. Another drawback: the MCU typically presents the same

image to all participants; the participants have limited flexibility to change the tile

arrangement on their screen without contorting that image.

On the other hand, the MCU completely relieves clients of local processing and it is the

most efficient of all the alternatives in its bandwidth utilization.

What is an SFU?

The SFU strikes a compromise between the mesh and MCU by limiting its manipulation

of the media. The SFU receives media streams from each participant and merely

forwards them to the other participants without changes. It does not perform any

decoding and encoding of streams, which burdens the CPU of an MCU and adds

latency. This makes the SFU more scalable and lower cost than an MCU, plus it delivers

better quality of service.

SFU bandwidth efficiency is better than a mesh topology, but lower than an MCU. In

contrast to the mesh, the SFU saves the upstream client link from carrying media

addressed to all the other clients. But, the downstream client link must carry n-1 media

streams, where n is the total number of clients participating in the conference

(assuming the desire to view everyone at the same time).

Because each client receives video from all other clients, it has flexibility to arrange the

streams in any presentation preferred by the user. The user can choose to display the

active speaker, tile view or any other arrangement. This makes the SFU more flexible

than the MCU.

However, in an SFU architecture, the client with the least bandwidth dictates the video

quality available to all clients. This is because video codecs dynamically adapt the

amount of media data they transmit based on information the receiver provides about

its available bandwidth. The codecs adjust resolution, quantization and frame rate so

that packets aren’t lost due to congestion. If one participant is sending “too much data”,

all the other participants will throttle their sent bandwidth, reducing the video quality for

all participants, not just the one with bandwidth issues.

Simulcast SFU

Simulcast is the latest advancement in SFU technology. It is designed to prevent a few

clients with limited bandwidth resources from degrading the video quality available to

all. Here is how it works: Using a common agreed codec, each client transmits its video

stream in multiple quality levels. The SFU forwards the resolution preferred by each

client, based on its available bandwidth.

Simulcast alleviates the lowest common bandwidth problem. Each client has access to

the highest quality streams that its local network bandwidth can support. Quality

limitations affect only the streams transmitted by clients connected to poorly

performing networks.

As an example, consider 4 laptop clients connected to a simulcast SFU by a broadband

network and one mobile device connected by 4G. The laptops transmit high and low

quality streams, while the mobile device has only enough bandwidth to transmit a

single, low quality stream. The laptops receive three high quality streams from the SFU,

plus a low quality stream from the mobile device. The laptop users enjoy high quality

video from their peers without being penalized by the low bandwidth connection used

by the mobile device. The mobile device receives only low quality streams so as not to

overwhelm its available bandwidth.

MCU vs. SFU vs. Mesh

While there are many tradeoffs to each approach to building a WebRTC conferencing

service, SFUs have become the preferred method for developers. The comparison

below illustrates how the SFU strikes a compelling balance among the alternatives.

 Simulcast SFU MCU Peer

Infrastructure cost $ $$$$ -

Scalability High Medium Low

Client bandwidth Medium Low High

Client CPU load Medium Low High

Server CPU load Medium High N/A

Latency Medium High Low

Presentation flexibility High None High

SFU services: DIY or CPaaS?

There are multiple options available for deploying an SFU infrastructure. We’ll leave a

complete evaluation for another post. Instead, we’ll describe the two primary options

and some important considerations in selecting between them.

There are two ways to deploy an SFU infrastructure: You can do-it-yourself by leveraging

one of the open source projects available; alternatively, leverage the infrastructure

provided by a communications platform as a service (CPaaS) provider.

This is a classic build vs buy decision with factors such as cost, time to market, and

SFU features weighing in the evaluation. From a cost perspective, you’ll want to

compare the cost and time required to build your own SFU, plus the cost to manage and

maintain a distributed server infrastructure, against the cost to purchase SFU services

from a CPaaS provider. Don’t overlook maintenance costs because browser technology

changes frequently, requiring regular testing and updates to your SFU.

Time to market and features can tilt the evaluation in favor of a CPaaS solution. The

SDKs and APIs offered by most CPaaS make it quick and easy to integrate your

application and a global infrastructure is already deployed. Because CPaaS service a

broad base of applications and use cases, their SFU infrastructures are typically rich

with features and offer excellent reliability. In addition, the CPaaS shoulders the burden

of maintaining compatibility with changing browser technology.

Regardless of which path you follow, you’ll want to consider geographic coverage

because latency can reduce the quality of a conferencing service. You can minimize

latency by locating SFUs as close to your users as possible. If you’re building a global

service, you should expect to position media servers across all densely populated

regions. Most providers have servers in Europe, US east coast and west coasts, Brazil

and a couple of Asian locations (e.g. Japan and India). In any case, it’s best to monitor

latency and adjust based on usage patterns.

Open source SFU implementations

There are many open source media servers. You’ll want to examine the hosting platform

and programming languages supported by each project. You should also consider the

size of the user community and its activity level, in case you need some help along the

way. Here is a summary of the two most popular, based on Github stars: Jitsi (3.1K) and

Janus (4.6K). A more comprehensive list is available here.

The Jitsi project started in 2008 and produced the JitsiMeet video bridge for WebRTC in

2014. The technology powers many commercial web conferencing services, including

8x8, Comcast and Symphony. There is a vibrant user community and the organization

touts a user community that exceeds 10 million.

The Janus project was begun in 2012 as a general purpose WebRTC server. It includes

server plugins for an SFU. The company claims third party applications in a range of

industries incorporate its technology, including online learning, co-working,

broadcasting and contact centers. There is a vibrant user community of over 10 million,

according to the organization.
 Jitsi Meet Janus

Platform Apache Linux

Signaling XMPP Custom JSON

https://docs.google.com/presentation/d/1WHocMl47fukck4YQ6RuPzfagAj6bW0SjUELzwguC3qs/edit#slide=id.ga427533723_4_242
https://jitsi.org/
https://community.jitsi.org/
https://janus.conf.meetecho.com/
https://groups.google.com/forum/#!forum/meetecho-janus

Extensibility Specialized conference bridge, only
Plugins available for recording,
streaming, SIP gateway

CPaaS SFU services

Most every CPaaS vendor offers video bridging among its core services and all are

based on SFU technology. Here are some of the key characteristics to evaluate:

• Maximum number of participants - This can vary significantly between providers.

• Platform support - Does the CPaaS have SDKs for the languages and end user

environments that your developers need and do they keep pace with changing

browser technology?

• Price - This also can vary significantly between providers based on the number of

streams and stream features.

• Features and APIs - Do they offer simulcast support and other important

features?

• Support - Do they offer technical support for developers in case something goes

wrong?

Here is a brief summary of the offerings from leading service providers to help get your

evaluation started.

The SFU enables scalable WebRTC conferences

Adding multiparty conferencing capabilities to your WebRTC application is easy with a

selective forwarding unit. These media servers are vital infrastructure that enable

WebRTC to scale to large numbers of participants without consuming large amounts of

network bandwidth or client CPU cycles.

Developers have flexibility to deploy proven SFU infrastructure solutions using open

source software or CPaaS services.

