Νέες και Παλιές Προκλήσεις στα Δίκτυα Κινητών Επικοινωνιών

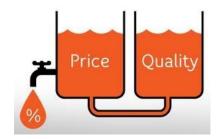
ΤΜΉΜΑ ΠΛΗΡΟΦΟΡΙΚΉΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΊΩΝ, ΕΚΠΑ

ΔΡ. ΔΗΜΗΤΡΙΟΣ ΤΣΟΛΚΑΣ & ΚΑΘ. ΛΑΖΑΡΟΣ ΜΕΡΑΚΟΣ

Takeaways from Lectures 3 and 4

- API exposure is performed with CAPIF support
- QoS Enforcement
 - QFI concept
 - Network slice selection during the PDU session set up
- 5G New Radio (NR)
 - Deployment options: SA / NSA
 - SDAP protocol is added to realize filtering of 5G quality flows to DRB
 - The protocols stack is Split to allow central management of radio flows (concept of functional split)
- 5G New Radio (NR)
 - Channels
 - Numerology
 - Key Performance Indicators (KPIs)

Lecture 5 Targets


- From QoS to QoE
- Qualitative and quantitative QoE evaluation
- QoE research Challenges

Motivation to move from QoS to QoE

Two "competing" entities:

Operator/Provider vs. Customer/User ←→

min(Cost) vs. max(Quality)

Some facts:

- 82% of customer defections are due to frustration and the provider's inability to deal with this effectively
- For 1 person who calls with a problem, 29 never will
- 1 frustrated customer will tell 13 others
- 90% abandons a service without even complaining

Motivation to move from QoS to QoE

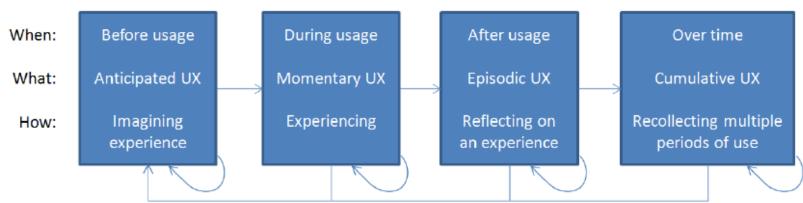
"Unlimited internet with speed up to 24Mbps"

→ QoS (Quality of Service)

"Excellent user experience guaranteed"

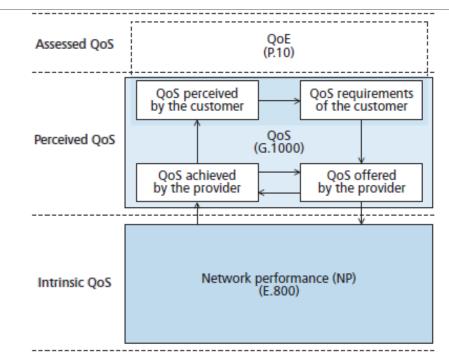
 \rightarrow **QoE** (Quality of Experience)

>QoS is "a set of technical quality requirements on the collective behaviours of one or more objects in order to define the required performance criteria". <u>But:</u>


- It handles pure technical aspects
- Same QoS values do not imply same customer experience
- QoS does not reflect the end-user satisfaction

QoE definition

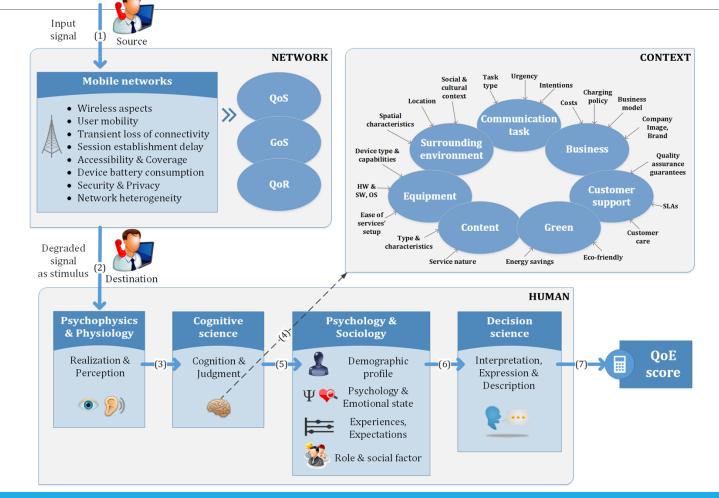
<u>ITU-T</u>: "The overall acceptability of an application or service, as perceived subjectively by the end-user."


ETSI: "A measure of user performance based on both objective and subjective psychological measures of using an ICT service or product."

<u>Practically</u>: "The degree of your delight or annoyance over a product, application or service." [Qualinet] Time spans of UX

* "User Experience White Paper: Bringing clarity to the concept of user experience", Dagstuhl Seminar

QoE: A multidisciplinary field

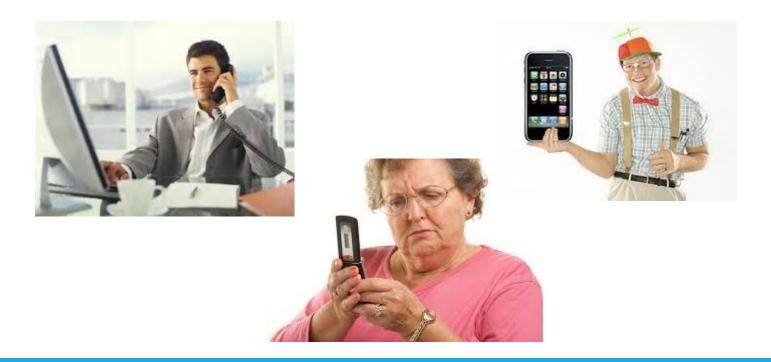

- QoS: technology-centred
- QoE: user-centred

Main properties:

- User-dependent
- Application-dependent
- Terminal-dependent
- Time variant

* R. Stankiewicz, P. Cholda, and A. Jajszczyk, "QoX: What is it really?," IEEE Communications Magazine, vol. 49, no. 4, pp. 148–158, Apr-2011.

QoE: A multidisciplinary field


NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

1. Network (Key Performance Indicators - KPIs)

Aspect	Quality Influence Factors	Aspect	Quality Influence Factors
Video specific	 Frame Rate Video bit rate Video content Terminal type Display size, type and resolution Codec type and implementation Video resolution and video format 	Transport/ Network	 Round trip / one-way delay Jitter Packet loss ratio Delay burstiness distribution Loss burstiness distribution Bottleneck bandwidth Congestion period
Video on Demand	 Number of stalling events Duration of stalling events Total video duration Initial delay (start-up delay) Time on highest layer (HTTP Adaptive Streaming - HAS) Number of switches (HAS) Altitude (HAS) 	Physical	 SNR / SIR / SINR Bit rate BLER Outage probability Packet / Symbol / Bit Error probability Outage capacity Ergodic capacity / throughput Diversity order / coding gain Area spectral efficiency Energy efficiency

2. Human

Age, gender, education level, cultural background, sociological and psychological factors, cognitive and perceptual abilities, user expectations, experiences, emotion, mood, perception, preferences

3. Context

Energy consumption

Terminal type

Human role

Communication task, Urgency

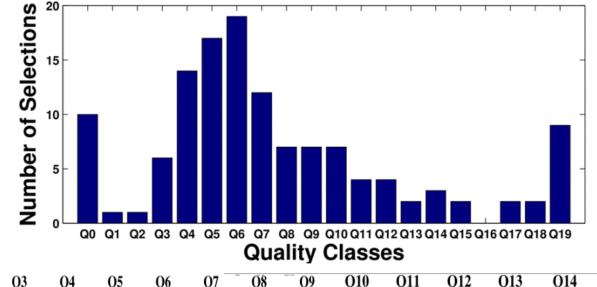
Customer support, ease of setup & use

Charging policy & price

Environment

Content

Context-based approaches

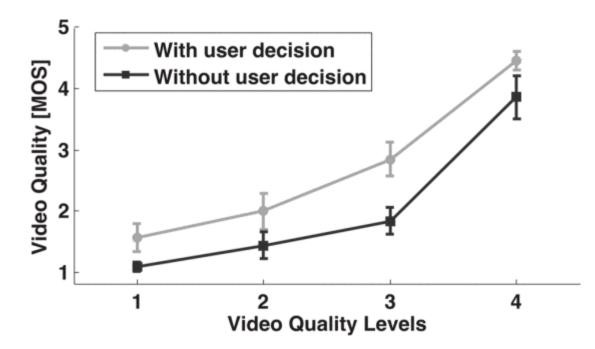

Two users are in proximity based on GPS data:

- Then, any call initiated between them is automatically treated as a D2D connection (Deviceto-Device)
- A user has limited battery level:
- Then, an incoming or outgoing call is switched to the closest access point (e.g. Wi-Fi instead of 4G)

A user checks his/her Facebook account at more or less the same time every date at his home:

 Then, the network pre-fetches (caches) the news feed on location instead of waiting for the user to update

Willingness to pay

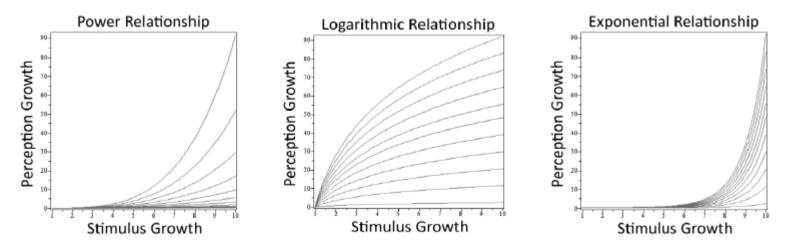


Quality Class	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	
VBR [kBit/s]	128	181	256	362	512	724	1024	1448	2048	2896	4096	5793	8192	11585	16384	23170	32768	32768	32768	32768	
Priceplan A [€]	0	0.105	0.211	0.316	0.421	0.526	0.632	0.737	0.842	0.947	1.053	1.158	1.263	1.368	1.474	1.579	1.684	1.789	1.895	2	

* A. Sackl, P. Zwickl, et al. "The trouble with choice: An empirical study to investigate the influence of charging strategies and content selection on QoE", IEEE CNSM, 2013.

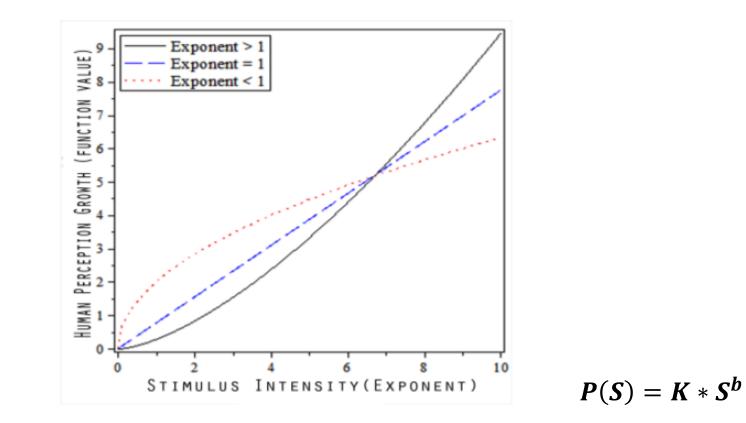
Willingness to pay and QoE

Users who decide to choose (and pay for) high quality multimedia services tend to evaluate this quality in a different way than if they are simply offered the same quality levels for consumption


Quality is evaluated more positively when preceded by a monetary decision

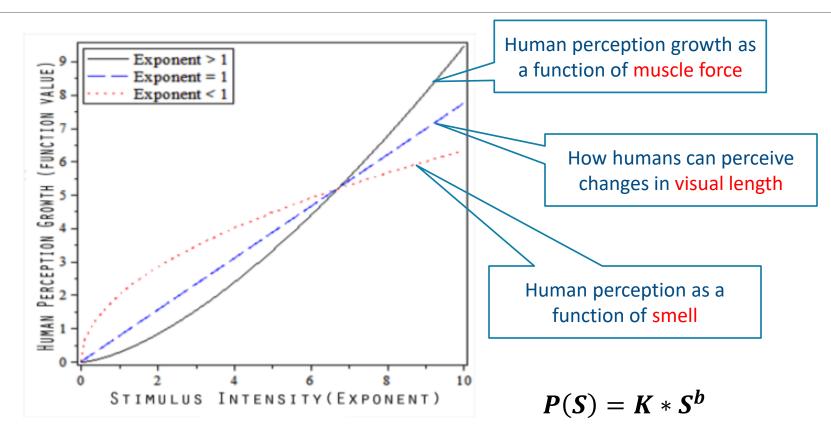
* A. Sackl, P. Zwickl, et al. "The role of cognitive dissonance for QoE evaluation of multimedia services", IEEE Globecom Workshops, 2012.

NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS


QoS - QoE qualitative relationship

	Name	Trend	Relation	Form
Adopted from	Stevens' Power Law	Stimulus-centric	$QoE = K.QoS^b$	Power
Psychophysics	Weber-Fechner Law	Stimulus-centric	$QoE = k.\ln(QoS)$	Logarithmic
Adopted from a Hypothesis	IQX	Perception-centric	$QoE = \alpha . e^{-\beta . QoS} + \gamma$	Exponential

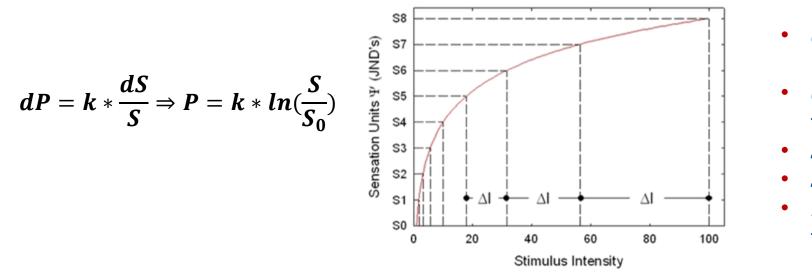
* S. Khorsandroo, et al, "A Generic Quantitative Relationship to Assess Interdependency of QoE and QoS", Ksii Transactions on Internet and Information Systems, 2013.


Steven's law

* S. Khorsandroo, et al, "A Generic Quantitative Relationship to Assess Interdependency of QoE and QoS", Ksii Transactions on Internet and Information Systems, 2013.

NKUA, DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS

Steven's law

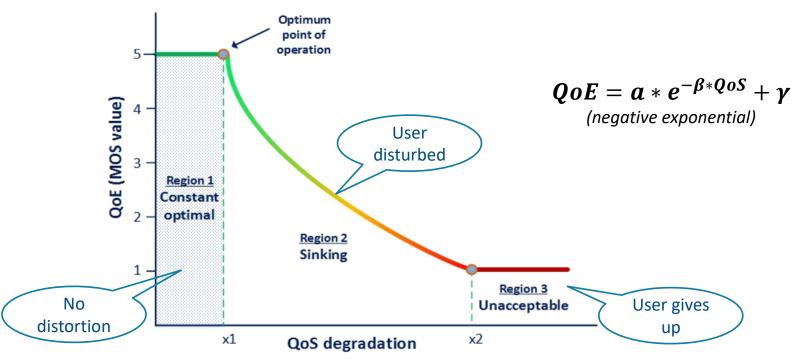

* S. Khorsandroo, et al, "A Generic Quantitative Relationship to Assess Interdependency of QoE and QoS", Ksii Transactions on Internet and Information Systems, 2013.

Weber Fechner Law

"Just noticeable differences" concept - jnd:

Weight: 100gr distinguished from 105 gr, 200gr distinguished from 210gr => 5% is the "Weber fraction"

Observed values: need to change by at least some small but constant proportion of the current value to ensure humans will reliably detect it -- Brightness, loudness, numerical cognition, etc.



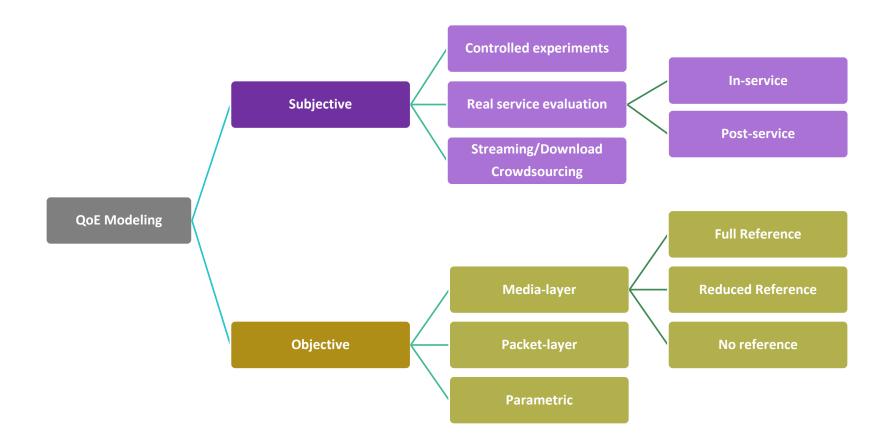
- *dP* = differential change in perception
- *dS* = differential increase in the stimulus
- **S** = instantaneous stimulus
- S_0 = stimulus threshold
- k = constant, experimentally found

The IQX hypothesis

The change of QoE depends on its current level

High QoE => small disturbances strong impact ≠ small QoE => unperceived

* M. Fiedler, T. Hossfeld, and P. Tran-Gia, "A generic quantitative relationship between quality of experience and quality of service," IEEE Network, vol. 24, no. 2, pp. 36–41, Mar-2010.


QoE - importance

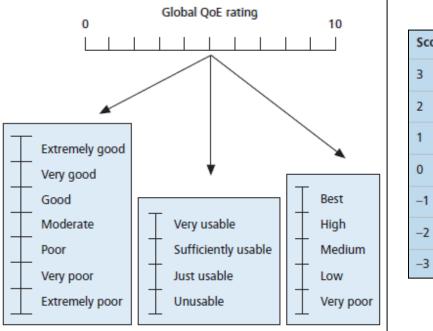
- Why the study of QoE is important?
 - The QoE encompasses the issue of the user's decision on retaining a service (and keep paying for it) or giving it up
 - It is more efficient to focus on guaranteeing QoE than promising high QoS
 - Obviously, high QoS results in high QoE, however the quantification of this relation may be useful from the perspective of saving network resources or providing QoEcentric services (and charges)
 - QoE is the most reliable way to evaluate real time services such as VoIP and video which are currently used by more and more people

QoE - challenges

Can we measure QoE? Highly subjective metric - there is a long list of dependences we cannot measure it, but we can, to some degree, estimate it

QoE estimation/ how to measure

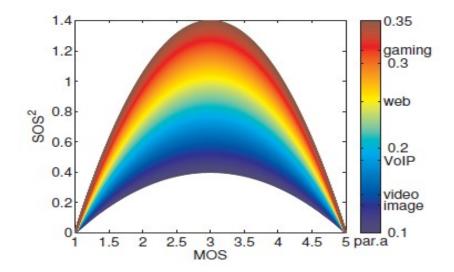
Subjective Vs Objective models


Model	Advantages	Disadvantages	Restrictions
Subjective (controlled)	+ The most reliable QoE measurement model, highly accurate and valid + Ensures uniformity between subjective scores from different laboratories	 Not real-time (requires lab setting), not reproducible on demand Time consuming and expensive Needs thorough planning => complex May be biased by user opinion, assumptions or unconscious psychological factors Users may be greedy on their QoE demands and hence evaluations Users' tiredness and lack/loss of concentration Participants may just want to earn money and not be concise Difficult for users to discriminate between e.g. "Bad" and "Poor" values in MOS scale 	-> Experiments need to be conducted under strict requirements and controlled conditions: isolated sound room, dedicated equipment, suitably selected panel and number of participants, specific duration of signals, etc.
Objective (in general)	 + Automatically predict QoE + Same input always gives same output + Bypass the need for a human panel (the majority) + May be real-time, may be proactive 	 Complexity May not always highly correlate to reality No universal generic quality model available, each one has a specific application scope Need continuous validation against subjective data 	-> Differ per application/service

Quality scales

Absolute Mean Opinion Scores (MOS) / comparative

MOS	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying


Score	Description
3	Much Better
2	Better
1	Slightly Better
0	About the Same
-1	Slightly Worse
-2	Worse
-3	Much Worse

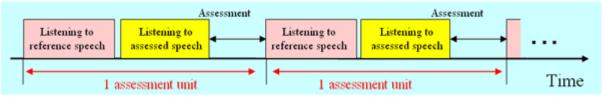
SOS – The MOS is not enough

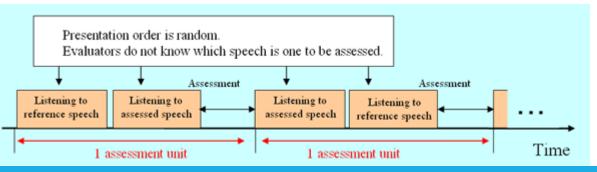
Standard deviation of Opinion Scores (SOS) Statistical summary of subjective user tests Reflects the level of rating diversity

A square function of MOS \rightarrow SOS hypothesis

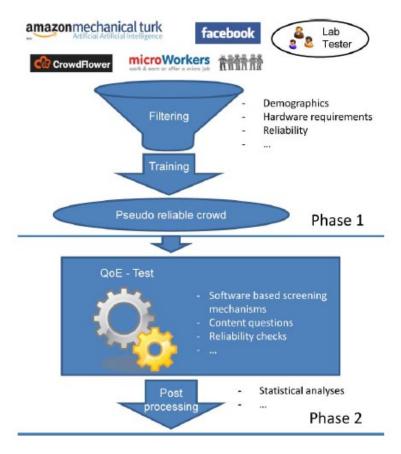
No diversity at the edges and maximal diversity at MOS = 3

* T. Hossfeld, R. Schatz, and S. Egger, "SOS: The MOS is not enough!," in 2011 Third International Workshop on Quality of Multimedia Experience, 2011, pp. 131–136.

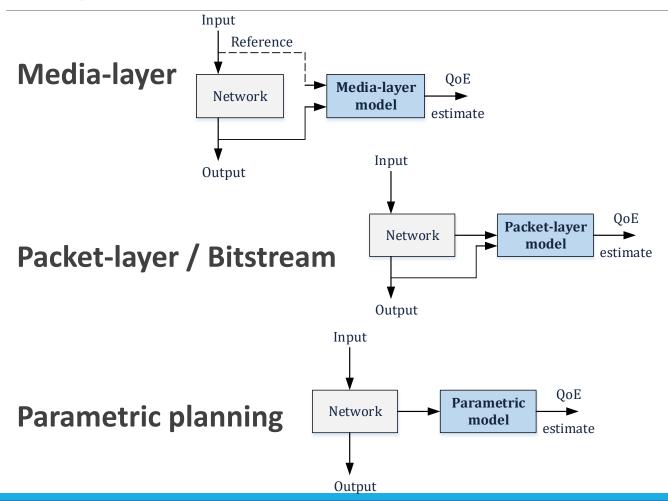

Subjective: controlled experiments


• MOS (Mean Opinion Score)


DMOS (Degradation MOS)


CMOS (Comparison MOS)

Subjective: real service evaluation


Subjective: Crowdsourcing

* T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and P. Tran-Gia, "Best Practices for QoE Crowdtesting: QoE Assessment With Crowdsourcing," IEEE Trans. Multimed., vol. 16, no. 2, pp. 541–558, Feb. 2014.

ΕΙΔΙΚΆ ΘΈΜΑΤΑ ΔΙΚΤΎΩΣΗΣ: ΝΈΕΣ ΚΑΙ ΠΑΛΙΈΣ ΠΡΟΚΛΉΣΕΙΣ ΣΤΑ ΔΊΚΤΥΑ ΚΙΝΗΤΏΝ ΕΠΙΚΟΙΝΩΝΙΏΝ

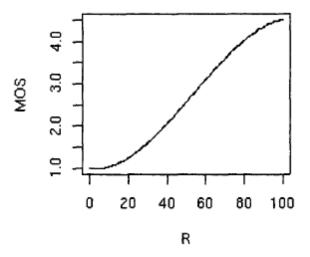
Objective: evaluation methods

Objective: evaluation methods

Model	Advantages	Disadvantages
Media-layer: <u>Full Reference</u> (e.g. PESQ)	+ Do not require any a-priori knowledge or assumptions about the underlying network + Highly accurate and robust (based on psycho-acoustics)	 Require the reference signal (intrusive) Very high computational effort Practically impossible to implement at network midpoint Do not enable insight into the internal system functionality & degradation causes (black-box) => diagnosis not possible Neglect human dimensions, pure technical
Parametric planning: <u>E-model</u>	 + Ease of use and respect of privacy + The network is characterized by the technical specifications of its constituent elements, (non-intrusive approach) + Quantifies the human factor through the "Advantage factor", & contextual factor + Mouth-to-ear complete transmission chain => conversational + No restrictions on the network with respect to size, configuration, hierarchy, technology used, nor on the components of the network 	 Intended only for the planning phase of a system (extended format) Good in theory, but difficult to include all the model parameters online Accurate only under strict application scenarios: new subjective tests and regression analysis needed for different conditions Speech independent A-priori information requirement
Packet-layer: <u>ITU-T P.564</u>	 + Enables insight into the internal system functionality (glass-box) + Light in terms of computational effort + Multiple monitoring points help identify the root of a network impairment + Used not only for speech quality predictions but also for the production of diagnostic outputs + In-service, non-intrusive (privacy) + Quality followed and pooled over time 	 Not standardized, models need to be created that comply with these recommendations The model doesn't know the characteristics of speech content to evaluate (speech level, echo, background noise etc.): assumes a generic voice payload Only concerns impairments on the IP network (no end-to-end evaluation) Large volume of QoE data Models deployed require strict conformance testing

Examples of parametric models

• [E-model] voip: = 94.2 - [0.024d + 0.11(d - 177.3)H(d - 177.3)] - [11 + 40 ln(1 + 10p)]delay packet loss rate [E-model] Real-time video: V_q = 1 + I_{coding} * I_{transmission} FR, BR, PLR • YouTube (TCP): $QoE = 3.5 * e^{-(0.15L+0.19)*N} + 1.5$ #of stalling event duration of stalls • HTTP Adaptive Streaming (TCP): $QoE = 0.003 * e^{0.064 * t} + 2.498$ time on highest quality level • FTP: $QoE = \alpha \log_{10}(\beta R)$, $10kbps < R \leq 300kbps$ data rate


ITU-T G.107 "E-model" for voice

A parametric model that produces the so-called Rating factor *R*:

 $R = R_0 - I_s - I_d - I_{e-eff} + A$

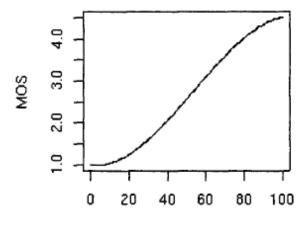
- $R_o \rightarrow$ basic signal-to-noise ratio, $R_o = 100$
- $I_s \rightarrow$ impairments due to the **voice signal travelling** in the network
- $I_d \rightarrow$ impairments caused by **delay from end-to-end travelling** signal
- $I_{e-eff} \rightarrow$ equipment impairment factor & impairments due to **packet loss**

ITU-T G.107 "E-model" for voice (simplified)

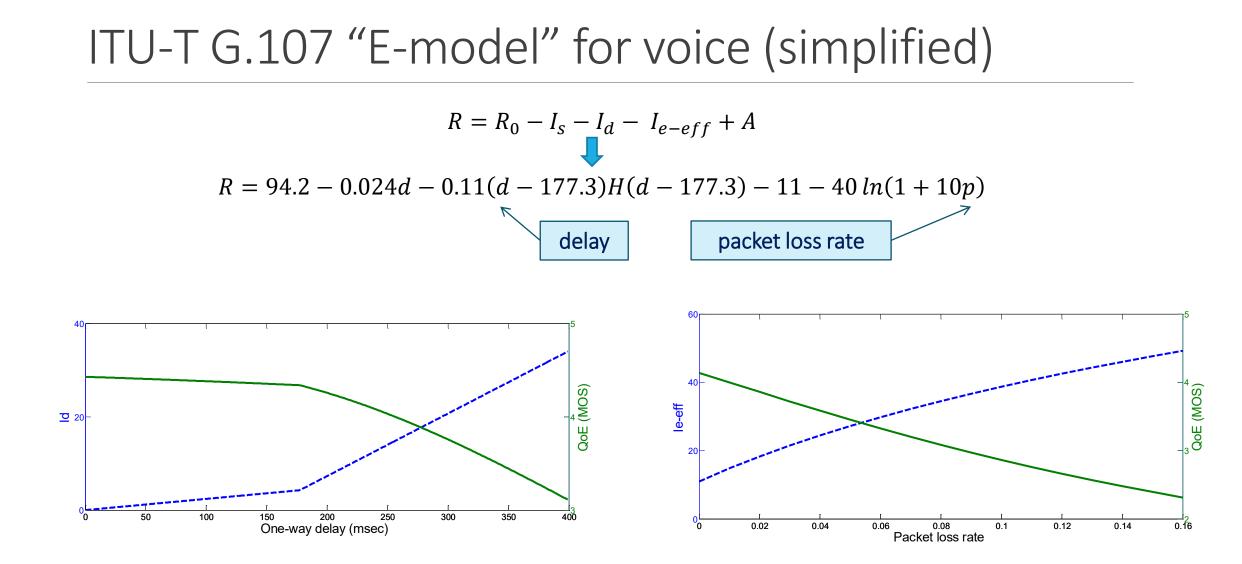
$$R = R_0 - I_s - I_d - I_{e-eff} + A$$

Under specific assumptions, the model may be simplified:

- $I_s \rightarrow$ default values, $A \rightarrow$ neglected $\Rightarrow R = 94.2 I_d I_{e-eff}$
- $I_d = 0.024d + 0.11(d 177.3) H(d 177.3) \rightarrow G.107$
- $I_{e-eff} = 11 + 40 \ln(1 + 10e) \rightarrow G.113$ delay = dnetwork + dcodec + dde-jitter_buffer
- G.729a codec


more...

 \bigcirc


packet loss = enetwork + ede-jitter_buffer

Then, R [0..100] is mapped to MOS [0..5]

- Purpose: monitoring the conversational voice quality
- Delay & Packet loss are isolated

* R. G. Cole, J. H. Rosenbluth, "Voice over IP performance monitoring," ACM SIGCOMM Comput. Commun. Rev., vol. 31, no. 2, p. 9, 2001.

ITU-T G.1070 "E-model" for video

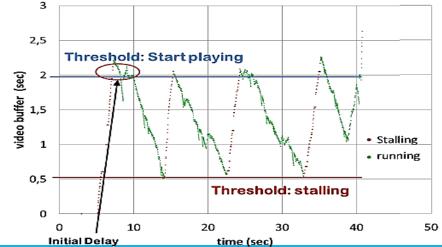
A computational model for point-to-point interactive videophone applications over IP networks (UDP-based - lossy video)

Network, Application & Terminal parameters incorporated

Video quality =

$V_q = 1 + I_{coding} * I_{transmission}$

 \succ I_{coding} = the video quality affected by the coding distortion

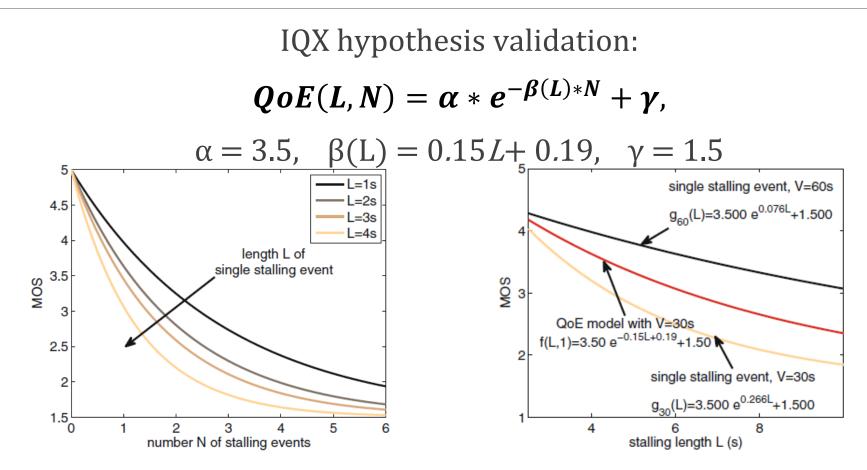

- \succ $I_{transmission}$ = the video quality affected by the transmission process
- > Ultimately everything is a function of:
 - the video frame rate (fps) FR
 - the video bit rate (kbps) BR
 - the video packet loss rate PLR
 - 12 coefficients

QoE model for YouTube

Video on Demand (VoD), TCP-based connection (no losses)

Quality influence factors (by crowdsourcing & lab tests):

- Number of stalling events, N
- Duration of stalling events, L
- > Total video duration, **T** (total stalling duration over video duration)
- \succ Initial delay (video start-up delay) \rightarrow cache redirections' impact

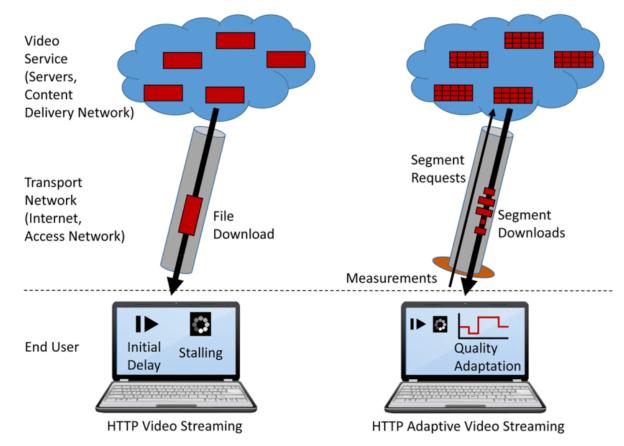


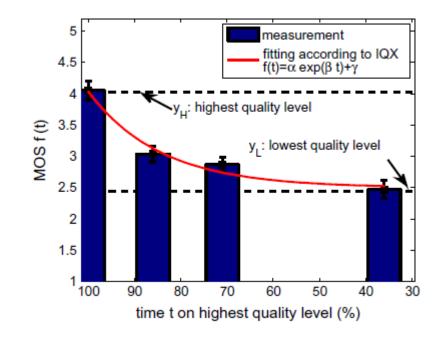
QoE model for YouTube

Some conclusions:

- > The user demographics have no significant influence (!)
- Initial delays have almost no influence on MOS for videos of duration 60s and 30s compared to the influence of stalling length
- The user ratings are statistically independent from video motion, type of content, the usage pattern of the user, access speed, etc.
- The number of stalling events together with the stalling length are clearly dominating the user perceived quality
- > The video duration only plays a role if there are only a very few stalling events

QoE for YouTube




ΕΙΔΙΚΆ ΘΈΜΑΤΑ ΔΙΚΤΎΩΣΗΣ: ΝΈΕΣ ΚΑΙ ΠΑΛΙΈΣ ΠΡΟΚΛΉΣΕΙΣ ΣΤΑ ΔΊΚΤΥΑ ΚΙΝΗΤΏΝ ΕΠΙΚΟΙΝΩΝΙΏΝ

QoE model for HTTP Adaptive Streaming (HAS)

Comparison of HTTP video streaming and HTTP adaptive video streaming

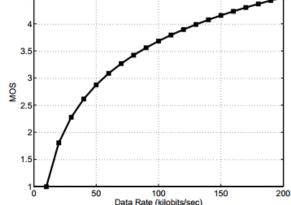
QoE model for HTTP Adaptive Streaming (HAS)

$$QoE = 0.003 * e^{0.064 * t} + 2.498$$

t = time on highest layer

Other influence factors: Adaptation frequency (number of switches), adaptation amplitude, adaptation direction, segment length, buffer size, etc.

QoE model for file download services

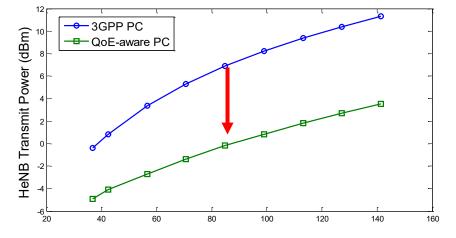

Elastic service, for which the utility function is an increasing, strictly concave, and continuously differentiable function of throughput

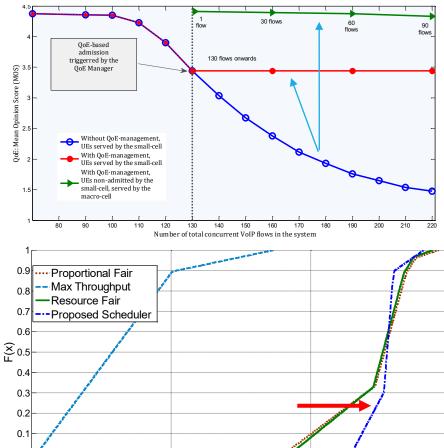
The user satisfaction of a file transfer service is solely dependent on the provided data rate

Logarithmic relationship between MOS and throughput:

 $MOS = \begin{cases} 1, & R < 10kbps \\ \alpha \log_{10}(\beta R), & 10kbps < R < 300kbps \\ 4.5, & 300kbps < R \end{cases}$

- > **R** is the data rate of the service
- *α* and *β* obtained from the upper and lower user perceived quality expectations


Research areas


QoE Management procedure	QoE impairment prediction, diagnosis	Incorporate QoE in LTE-A mechanisms	Network dimensioning & planning for QoE	Organise subjective experiments, combine
QoE-driven procedures (QoE-aware routing, resource control)	Interworking problem, HetNets	Identify KPIs (Influence Factors)	Quantify user perception (impact of stimulus)	Study quality- affecting phenomena
Map QoS to QoE, QoE to acceptance	Network- based vs. agent-based, initialisation	QoE business models, Charge for QoE	Diversification & Fairness among users	Optimise for user + provider perspective
Delivery of QoE reports, expression	Security Privacy Legal issues	SLAs Certification Labelling	QoE target, Granularity, Rating scale used	Consensus in QoE practices

4/7/2022

Power Control

D. Tsolkas, E. Liotou, N. Passas, and L. Merakos, "The Need for QoE-driven Interference Management in Femtocell-Overlaid Cellular Networks ", in 10th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous), Tokyo, December 2013.

QoE-AREA (MOS)

43

2.5

1.5

Admission Control

E. Liotou, D. Tsolkas, N. Passas and L. Merakos, "Quality of Experience management in mobile cellular networks: Key issues and design challenges," IEEE Communications Magazine, Network & Service Management Series, July 2015.

Radio Resource Scheduling

E. Liotou, R. Schatz, A. Sackl, P. Casas, D. Tsolkas, N. Passas, and L. Merakos, "The beauty of consistency in radio-scheduling decisions," 59th Global Communications Conference (IEEE Globecom Wkshps) - International Workshop on Quality of Experience for Multimedia Communications (QoEMC), Washington, DC, USA, December 2016.

QoE Research Work

Some Examples