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Abstract—The availability schedule provides information on
whether each network node is available at each time slot. The
service interruptions caused by node unavailability marked in
availability schedule can be suppressed if the functions are allo-
cated according to the availability schedule. However, the given
availability schedule may have gaps with the actual one and
influence the VNF allocation. This paper proposes a robust
optimization model to allocate virtual network functions (VNFs)
in service function chains (SFCs) for time slots in sequence aim-
ing to maximize the continuous available time of SFCs in a
network with uncertain availability schedules by suppressing the
interruptions caused by node unavailability marked in availabil-
ity schedule and function reallocation. We formulate the problem
as a mixed integer linear programming (MILP) problem over the
given uncertainty set of the start time slot and period of unavail-
ability on each node in the availability schedule. For solving the
model in a practical time in a relative large size of network, we
develop a heuristic algorithm. The numerical results show that
the proposed model outperforms the baseline models under dif-
ferent levels of robustness in terms of the worst-case minimum
number of the longest continuous available time slot in each SFC.
The heuristic algorithm reduces the computation time with lim-
ited performance loss compared with the MILP approach. In the
discussion, we introduce a constraint condition for the mainte-
nance ability, which reduces the size of uncertainty set, and an
extension for supporting more than one unavailability periods in
the availability schedule on each node.

Index Terms—Network function virtualization, virtual network
function allocation, service function chain, availability schedule,
mixed integer linear programming.

I. INTRODUCTION

IN TRADITIONAL networks, each network function
depends on specific hardware, which makes function

deployment and management difficult and costly. Network
function virtualization (NFV) has been introduced to decou-
ple the functions from specific hardware [1]. The functions are
virtualized to virtual network functions (VNFs). The functions
form a service function chain (SFC) in a specific order [2] to
provide a service. Service providers (SPs) generate an SFC to
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connect a user with the desired VNFs when the user requests
a service.

The flexible allocation of VNFs is an advantage of NFV,
which deploys the network functions rapidly and improves
network performance. The works in [3], [4] considered VNF
allocation model to minimize the consumption of network
resources. The works in [5], [6] addressed allocation models
for minimizing service latency to ensure real-time business.

A node in the network can be sometimes unavailable
because of failure or maintenance. The unavailability interrupts
the SFCs that use the VNFs running on the node, so a VNF
allocation model that prevents service interruptions is required.
Existing studies in [7], [8] presented several allocation models
to offset the effect of unavailability.

By using the operation records of node availabilities, SPs
can mark some specific nodes as unavailabilities during a
period for system update and regular maintenance, which
identify unavailable nodes at each time slot. We refer to the
information that presents the availability of each network node
at each time slot in future as the availability schedule here-
after. The duration of a time slot can be determined according
to conditions of network operation, such as the interval of data
sampling for fault detection. The number of uninterrupted time
slots can be a metric that expresses the service quality of SFCs.

An availability schedule has the positions and time of node
availability. Allocations based on the availability schedule can
minimize service interruptions. The work in [9], [10] intro-
duced an optimization model to obtain the VNF allocation that
maximizes the continuous available time of the SFCs by avoid-
ing service interruptions caused by different VNF allocations
between adjacent time slots [11], [12] and VNF allocations to
unavailable nodes under a given availability schedule. In [9],
[10], two metrics are defined for evaluating the period of sta-
ble service: service continuous available time (SCAT) and the
shortest SCAT (SSCAT).

However, in most cases, we cannot know an exact availabil-
ity schedule whose positions and time of unavailabilities are
all deterministic. The actual availability schedule may have
some gaps with the maintenance schedule. The starting time
of maintenance may be delayed due to the delay of pream-
ble maintenance. The scheduled duration of maintenance may
be longer than the real one since conservative estimates are
used. The scheduled duration of maintenance may be shorter
than the real one since the occurrence of unexpected failures.
As a result, availability schedule may mark an availability
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as unavailability, and vice versa, which influences the VNF
allocation. When the results of the maintenance schedule are
not credible, we need a model to obtain the VNF alloca-
tion with uncertain availability schedules. We incorporate the
uncertainty in the model with deterministic availability sched-
ules in order to make it robust against uncertain availability
schedules.

This paper proposes a robust optimization model to obtain
the VNF allocation that maximizes SSCAT in the network
under an uncertain availability schedule. We consider the
uncertain start time slot and period of unavailability on each
node in availability schedules. The uncertainty set of avail-
ability schedule is given. The robustness of the solution can
be controlled. The proposed model obtains the solution by
traversing and comparing all possible choices in the uncer-
tainty set limited by the given robustness. We formulate the
problem to maximize SSCAT over the given uncertainty set
as one mixed integer linear programming (MILP) problem,
which provides different levels of robustness against uncer-
tain availability schedule. The model handles the uncertainty
set and provides an exact solution under the worst-case con-
dition. Numerical results compare the proposed model with
three baseline models. In addition, we provide a heuristic
algorithm to speed up the computation process and intro-
duce an extension for supporting parallelization acceleration.
Compared with the existing researches [7], [13], [14], the
proposed model provides an exact solution of the problem
under the uncertainty set.

The remainder of the paper is organized as follows.
Section II describes the application scenario and the selec-
tion of metrics in the proposed model. Section III describes
the proposed model. Section IV introduces a heuristic algo-
rithm for large size networks. Section V presents numerical
results that show the performance of the proposed model in
different cases. Section VI discusses the influence of limited
maintenance ability on the proposed model, and an extension
of the proposed model for supporting multiple unavailable time
periods on each node. Section VII gives several directions to
extend the proposed model. Section VIII introduces some past
works related to this paper. Section IX summarizes the key
points of this paper.

II. MOTIVATION AND APPLICABILITY

A. Motivation

An availability schedule from a maintenance schedule [15]
has the locations of unavailable VMs in the network during a
period of time. The availability in the paper is not a metric. It
is a state or event of a node, i.e., the node is able or unable to
allocate a VNF. Our model is based on a motivation that the
starting and stop times of a machine is given and the normal
running time of services is what we value. The model is not
designed for the environment where we do not care about
the running time and the total availability evaluated by the
probability is the objective. If the operation time cannot be
estimated, the proposed model cannot be applied, either. The
allocation of VNFs before service running can suppress the
interruptions caused by unavailabilities and reallocations with

Fig. 1. Demonstration of the impact of uncertain available schedule.

a given availability schedule during the given period of time
so that SSCAT can be increased.

The scheduled maintenance may not be sometimes followed
and is not usually exact on the time and locations. A source
of availability schedules is predictive maintenance. A machine
should be maintained after it continuously works [16]. The
duration of a maintenance activity may vary according to
some schedule-dependent factors, e.g., the starting time [17]
and workload [18]. It is a common case that the duration
of unavailability is longer than the duration in the plan. The
unavailability can start a little earlier or later than the time
given by availability schedules; for example, the constraint of
starting time of maintenance activity is only a deadline in [17].
We can rely on recovery mechanisms [19] in the unavailable
periods of nodes. This paper does not concern the details of the
mechanisms. The model fully believes the estimated availabil-
ity schedules provided by administrators. If a node is marked
as available, we consider that it is available. The availability is
ensured by the other protection systems. However, the protec-
tion system cannot be fully believed in practice, which causes
the uncertainty of the availability schedules.

We care about the exact running time of services instead of
the mean time or probability of the normal running. As a con-
dition of applying this model, the administrator or system must
provide the time information of service starting and stopping.

A demonstration of the impact of availability schedule
is shown in Fig. 1. An availability schedule including four
unavailable periods is given in Fig. 1(a). Based on this avail-
ability schedule, an allocation of four SFCs is given in
Fig. 1(c). The expected SSCAT is three. However, the given
availability schedule is not exact. The unavailable periods on
nodes 6 and 7 are longer than the estimation as shown in
Fig. 1(b). so that the actual SSCAT of the calculated alloca-
tion decreases from three to two. It is necessary to design a
robust model against the influences from these gaps. The chal-
lenge is how to design a robust model to maximize SSCAT
against the uncertain availability schedules.

B. Applicability

The proposed model is designed for the initial allocation of
VNFs in SFCs. SPs store the relative information including the
availability schedules, VNFs, services, and network devices in
the database. A computation element in the network, which
is an independent node or a node with VNFs, calculates the
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allocation with these information. The allocation result is sent
to each corresponding node. The nodes run the corresponding
functions or the containers in the nodes by pulling the cor-
responding images from repositories. A demonstration of the
application of allocation models was introduced in [20], which
is not specified to the proposed model. The proposed model
is designed to determine the locations of disturbance sensi-
tive functions in the network, where the available schedule is
uncertain and the number of available VMs for functions is
limited.

In the real deployment of VNFs, the container or VM of
the VNF must be placed to a node which is determined by an
orchestration engine such as Kubernetes [21]. The proposed
model works as a scoring mechanism in scheduler [22] in the
engine. The placement is decided by the score provided by
the model. Based on the information provided by administers
including availability schedules and the information collected
by the system including the nodes, the model calculates the
suitable locations for each VNF and gives the highest score
for the location.

We usually have several replicas of a VNF in deployment
for reliability and redundancy. For a VNF, the nodes can be
divided into three types according to the state of the replica
on the node: the replica is active, the image of the VNF is
pulled but not active, and the image does not exist on the
node. Without loss of generality, we assume that only one node
where the replica is active for each VNF at the same time. We
give a direction of the assumption in Section VII. For state-
less applications, the interruptions come from the download
of VNF images and data redirection from the failed repli-
cas to other replicas. For stateful applications, an additional
interruption comes from the status data synchronization. The
interruptions periods are estimated by the administrators and
turned to the number of time slots used in the availability
schedules.

III. PROBLEM FORMULATION

A. Formulation With Deterministic Unavailability Periods

The model with given deterministic availability schedules
was introduced in [9], [10]. It considered each unavailability
marked in the availability schedule independently even on the
same node.

This paper assumes that the unavailabilities on a node can
be continuous from one time slot to another time slot, i.e.,
form a period that can be one or more time slots, which is
called unavailability period. We assume that there is at most
one unavailability period on each node in the given T. We give
a future discussion on multiple unavailability periods on each
node in Section VI-B.

We use a binary decision variable ent to express elements
in the availability schedule; if node n ∈ N is unavailable
at time slot t, ent = 1, and otherwise 0. For node n ∈ N ,
the period starts at time slot sn ∈ T and lasts for another
fn ∈ [0, |T | − sn ] continuous time slots, i.e., ends at time slot
sn + fn ∈ T , as shown in Fig. 2. If there is no unavailability
marked in availability schedule at node n, fn is set to 0 and sn
is set to a positive integer value BS which is larger than |T |.

Fig. 2. Unavailability period. “×” means unavailability.

The values of ent , t ∈ T ,n ∈ N , can be obtained from sn
and fn given by:

If sn ≤ t ≤ sn + fn then

ent = 1

Else

ent = 0 (1a)

ent ∈ {0, 1}, ∀n ∈ N , t ∈ T . (1b)

Based on the unavailability period, we introduce the uncertain-
ties of the beginning time slots and durations of unavailability
periods in Section III-B and propose the model considering
the uncertain availability schedule. The other definitions and
formulations in this subsection are the same with those in [9],
[10] except for (2) and (3) because ent is a variable in this
paper.

Consider a virtual network as directed graph G(N, L), which
consists of a set of virtual nodes, N, and a set of directed virtual
links connecting these nodes, L. We consider a set of different
types of resources S for each node, such as CPU, memory,
and storage. Node n ∈ N at time slot t ∈ T has csnt units of
available resources of resource s ∈ S in total.

R is the set of SFCs, which represent SPs’ requirements.
Without loss of generality, we assume that one request cor-
responds to one SFC. Each SFC contains several VNFs.
According to the SPs’ requirements, VNFs are allocated to
physical nodes and connected to each other in some specified
orders. Let Kr be the set of ordered VNFs in chain r ∈ R,
each of which is associated with an index in the range of
[1, |Kr |]. Instances of any VNF type can be deployed in a VM.
The VNF instance of the k ∈ Kr th function of request r ∈ R
placed on a VM occupies qrks units of resource s ∈ S . Several
different functions from different requests can be assigned to
the same node, each of which utilizes certain computing.

We divide the continuous time into discrete time slots. A
set of time slots is represented by T = [1, |T |]. Let Ti =
[1, |T | − i + 1] ⊆ T , i ∈ [1, |T |], be a set of time slots from
1 to |T | − i + 1.

The decision variables in the problem are represented as
follows. We use binary decision variable x rktn to represent the
allocation; x rktn is set to 1 if the kth function of request r is
assigned to node n at time slot t, and 0 otherwise.

An interruption occurs when a function is allocated to an
unavailable node or the location of a function is changed
between two adjacent time slots. To count SSCAT, we intro-
duce a binary decision variable ort , which indicates whether
there is an interruption of request r ∈ R at time slot t ∈ T .
If the allocation of at least one VNF in request r is changed
between time slot t −1 and time slot t or any VNF of request
r at time slot t or t − 1 is allocated to an unavailable node,
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ort is set to 0, and otherwise 1. If t = 1, ort = 0; otherwise,
ort can be expressed by:

ort =
∏

k∈Kr

∏

n∈N

((
x rktn � x rkt−1,n

)
∧
(
1− x rktn ∧ ent

)

∧
(
1− x rkt−1,n ∧ ent−1

))
,

∀r ∈ R, t ∈ T\{1}. (2)

Here � expresses exclusive NOR operation between two
binary variables whose operations are: 1 � 1 = 1, 0 � 0 =
1, 1�0 = 0, 0�1 = 0. ∧ expresses the multiplication between
two binary variables whose operations are: 1∧ 1 = 1, 0∧ 0 =
0, 1 ∧ 0 = 0, 0 ∧ 1 = 0.

To count the continuous available time slots of each request,
we introduce two binary decision variables, z jri , i ∈ T , j ∈
Ti , r ∈ R and yrj , j ∈ T , r ∈ R. If allocations of request r
from i to i + j − 1 are consecutively unchanged, or j con-
secutive ort are all 1 from t = i to t = i + j − 1, z jri is
set to 1, and otherwise 0. If the allocations are consecutively
unchanged during j time slots existing in T, yrj is set to 1, and

otherwise 0. z jri and yrj are constrained as [10, eqs. (2)–(5)].
βr ∈ [1, |T |], r ∈ R, is an integer variable that rep-

resents the SCAT of request r, i.e., the maximum number
of continuous available time slots in request r. βr is given
by [10, eq. (6)].
λ ∈ [1, |T |] is an integer variable that represents SSCAT,

i.e., the minimum number of longest continuous available time
slots among all requests. λ is constrained by [10, eq. (7)].

The objective function under deterministic availability
schedules is given in [9], [10], [10, eq. (8)].

In this problem, the solution that maximizes the sum of
continuous available time slots for all requests,

∑
r∈R βr , is

chosen when there are multiple solutions that maximize λ.
Therefore, a sufficiently small number, ε, is multiplied by the
second term so that the first term can be prioritized over the
second term. ε is given by 1

|R|·|T | .
The node capacity constraint is given by [10, eq. (9)].

Each node, because of the computational resource lim-
itation, can carry only a limited number of functions.
Reference [10, eq. (9)] ensures that each node’s computational
resources must not exceed its capacity during allocation.

The assignment constraints are given by (10)-(11) in [10].
Reference [10, eq. (10)] assumes that one service chain
does not allocate multiple VNFs in this chain on one VM
to avoid the influence of the reallocation of VMs [23].
Reference [10, eq. (11)] ensures that all functions are allo-
cated in the network. We assume that there is only one VNF
is active for each function in [10, eq. (11)].

If it is necessary to avoid allocating functions to unavailable
nodes, we add the following constraint:

x rktn ∧ ent = 0, ∀r ∈ R, t ∈ T ,n ∈ N , k ∈ Kr . (3)

The notations used in this subsection are summarized in
Table I.

According to the linearization process in [9] and
Appendix A, (1) is linearized to (29a)-(29h), [10, eq. (6)] is

TABLE I
NOTATIONS USED IN SECTION III-A

linearized to (30a)-(30f), and (2) is linearized to (31a)-(31w)
with some auxiliary variables in Appendix B.

In summary, the following model is given for VNF alloca-
tion with considering the deterministic availability schedule:

max λ+ ε
∑

r∈R
βr

s.t. (2)-(5), (7), (9)-(11) in [10], (29a)-(31w),

βr , λ ∈ [1, |T |], ∀r ∈ R, i ∈ T , j ∈ Ti ,

z jri ∈ {0, 1}, ∀r ∈ R, i ∈ T , j ∈ Ti .

B. Formulation With Uncertain Unavailability Periods

In Section III-A, sn and fn are deterministic. This sub-
section considers the uncertainty caused by an uncertain
beginning time slot and an uncertain duration of each node,
as shown in Fig. 3. The uncertainty set of sn is symmet-
ric about s̄n and that of fn is symmetric about f̄n , i.e.,
sn ∈ [s̄n− ŝn , s̄n+ ŝn ] and fn ∈ [f̄n− f̂n , f̄n+ f̂n ], respectively,
where sn , sn + fn ∈ T . If there is no unavailability marked in
availability schedule on node n ∈ N , the corresponding s̄n is
set to BS; ŝn f̄n , and f̂n are set to 0.

In (29a)-(29d), sn and fn are uncertain. We model an robust
optimization problem which can control the degree of robust-
ness against uncertainties and conservation of solutions. We
define ΓS

n as the degree of robustness of sn ,n ∈ N and
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Fig. 3. Type of uncertainty. “×” means unavailability.

ΓF
n ∈ [−1, 1] as the degree of robustness of fn ,n ∈ N . The

larger ΓS
n or ΓF

n is, the higher the level of robustness is.
ΓS
n controls the size of uncertainty set of beginning time

slots Pn on node n. The larger ΓS
n is, the more the considered

possible beginning time slots of unavailability period on node
n are. We choose �ΓS

n · (2 · ŝn + 1)	 different beginning time
slots from [s̄n − ŝn , s̄n + ŝn ] and forms a set which is an
element in Pn . Pn contains all possible choices. The size of

Pn is |Pn | =
(

2 · ŝn + 1

�ΓS
n · (2 · ŝn + 1)	

)
. Since the size of each

element in Pn is at least 1, i.e., �ΓS
n · (2 · ŝn +1)	 ≥ 1, ΓS

n ∈
[ 1
2·ŝn+1 , 1]. The uncertainty set for all nodes is denoted by
P = {P1,P2, . . . ,P|N |}. One element in P is a combination
of one element in each Pn . The size of P is |P| = |P1| ·
|P2| · · · · · |P|N ||. Let p denote an element in P; pn denote
the selected set from Pn ; pqn denote the qth element in pn .

ΓF
n controls the considered length of the duration of unavail-

ability period on node n, which is f̄n + f̂n · �ΓF
n	.

To deal the uncertain unavailability periods, we develop an
MILP formulation in terms of ΓSn and ΓF

n . For the unavail-
ability period on each node n under the uncertainty of P,
we consider the worst case. The objective of the considered
problem is presented by:

max min
p∈P

{
λp + ε

∑

r∈R
βpr

}
. (4)

Here, λp means the value of λ under the uncertainty set p ∈ P.
βpr means the value of βr under the uncertainty set p ∈ P.
The selected set of beginning time slots pn contains one or
more time slot. Equations (29a)-(29h) are transformed to:

t − pqn + ε1 ≤ ηqtn · B , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (5a)

t − pqn + ε1 ≥
(
η
q
tn − 1

) · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], (5b)

pqn + f̄n + ΓF
n · f̂n − t + ε1 ≤ ρqtn · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], (5c)

pqn + f̄n + ΓF
n · f̂n − t + ε1 ≥

(
ρqtn − 1

) · B ,
∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (5d)

τqtn ≤ ηqtn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (5e)

τ
q
tn ≤ ρqtn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (5f)

τqtn ≥ ηqtn + ρqtn − 1, ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (5g)

τ
q
tn , η

q
tn , ρ

q
tn ∈ [0, 1], ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |]. (5h)

The above equations use τ
q
tn to replace ent in (29a)-(29h).

If node n is unavailable at time slot t when the beginning
time slot q is considered, τqtn is set to 1, and otherwise 0.

ent ∈ [0, 1], t ∈ T ,n ∈ N , is expressed by:

ent = ∨q∈[1,|pn |]τqtn , ∀t ,∈ T ,n ∈ N . (6)

Here ∨ means OR operation between two binary variables
whose operations are: 0∨0 = 0, 0∨1 = 1, 1∨0 = 1, 1∨1 = 1.
According to the linearization process in Appendix A, (6) can
be linearized to:

ent ≥
1

|pn | ·
∑

q∈[1,|pn |]
τqtn , ∀t ,∈ T ,n ∈ N , (7a)

ent ≤
∑

q∈[1,|pn |]
τqtn , ∀t ,∈ T ,n ∈ N . (7b)

According to the linearization process in Appendix A, the
objective function (13) can be linearized to:

max Λ (8a)

s. t. Λ ≤ λp + ε
∑

r∈R
βpr + (1− δpo ) · BO, ∀p ∈ P, (8b)

Λ ≥ λp + ε
∑

r∈R
βpr − (1− δpo ) · BO, ∀p ∈ P, (8c)

λp + ε
∑

r∈R
βpr ≤ (1− δpo ) · BO + λp

′
+ ε

∑

r∈R
βp

′
r ,

∀p ∈ P, p′ ∈ P\p, (8d)∑

p∈P
δpo = 1, (8e)

Λ ≤ λp + ε
∑

r∈R
βpr , ∀p ∈ P, (8f)

δpo ∈ [0, 1], ∀p ∈ P. (8g)

Here, BO is a given integer which is larger than λp +
ε
∑

r∈R β
p
r . The minimum of BO can be taken to be |T |+2.

To calculate the objective values in element
p ∈ P, we perform the following transformations.
Reference [10, eqs. (2)–(5)] are transformed to (32a)-
(32d) by replacing ort , z

jr
i , y

r
j to orpt , z jrpi , yrpj , respectively.

Reference [10, eq. (7)] is transformed to (33a) by replacing
λ, βr to λp , β

p
r , respectively. Reference [10, eqs. (9)–

(11)] are transformed to (34a)-(34c) by replacing x rktn to
x
rkp
tn , respectively. Equations (30a)-(31w) are transformed

to (35a)-(36w) by replacing βr , y
r
j , δ

r
j , φ

rk
tn , x

rk
tn , h

rk
tn , α

rk
tn ,

θrktn , π
rk
tn , w

rk
t , ort to β

p
r , y

rp
j , δ

rp
j , φ

rkp
tn , x

rkp
tn , h

rkp
tn , α

rkp
tn ,

θ
rkp
tn , π

rkp
tn , w

rkp
t , o

rp
t , respectively. Equations (5a)-(5h) are

transformed to (37a)-(37h) by replacing ent , η
q
tn , ρ

q
tn , τ

q
tn to

enpt , ηqptn , ρ
qp
tn , τ

qp
tn , respectively. Equations (7a)-(7b) are trans-

formed to (38a)-(38b) by replacing ent to e
np
t , respectively.

The new objective function and constraints are expressed in
Appendix C.

In summary, the robust optimization problem is given by:

max Λ (9a)

s.t. (8b)-(8g), (32a)-(32b), (9b)

Λ ∈ [1, |T |], (9c)

βpr , λ
p ∈ [1, |T |], ∀r ∈ R, i ∈ T , j ∈ Ti , p ∈ P, (9d)

z jrpi ∈ {0,1}, ∀r ∈ R, i ∈ T , j ∈ Ti , p ∈ P. (9e)
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TABLE II
PARAMETERS IN ALGORITHM

IV. HEURISTIC ALGORITHM

As the size of the ILP problem in Section II increases, the
problem becomes difficult to solve in practical time. This paper
introduces a heuristic algorithm based on the genetic algo-
rithm [24]. To accelerate the computation process, this paper
introduces an extension of this algorithm by using CPU and
GPU acceleration [25].

A. Framework

The framework of this heuristic algorithm is shown in
Algorithm 1. We set some parameters shown in Table II. The
set of possible beginning time slots and the length of con-
sidered unavailability period are calculated. The availability
schedule is given by using (1) under a combination of possible
beginning time set p in line 5. A set of initial feasible solutions
whose size is IP is given by Algorithm 2 in lines 6-7. From
line 8 to line 31, the heuristic algorithm enters a loop that has
MG cycles. In each cycle, the heuristic algorithm explores new
feasible solutions by performing internal crossover (see func-
tion cross_in in Algorithm 3), external crossover (see function
cross_out in Algorithm 3), and mutation (see Algorithm 4)
according to three probabilities, IC, EC, and MP, respectively.
Newly generated solutions at lines 12, 17, and 22 are stored in
the new feasible solution set Sn once. They are added to the
feasible solution set at a time in line 25. The heuristic algo-
rithm calculates the fitness for each solution (see Algorithm 5).
The heuristic algorithm finds the solution with the highest fit-
ness score and stores it. Finally, if the size of the feasible
solution set exceeds UP, the heuristic algorithm chooses UP
feasible solutions as a new set of feasible solutions according
to the roulette gambler (see Algorithm 6).

B. Initial Solution Generation

The heuristic algorithm generates a set of initial feasi-
ble solutions by using Algorithm 2. Based on this set, more
feasible solutions can be generated by Algorithms 3 and 4.

In the heuristic algorithm, each solution is a
three-dimensional matrix. The first dimension represents
time slots, the second one represents requests and the third

Algorithm 1 Framework

Input: N, T, R, Kr , csnt ∈ C , s̄n , ŝn , f̄n , f̂n , ΓS
n , ΓF

n , IP, MG,
EC, IC, MP, UP

Output: allocation for all functions
1: fn ← f̄n + ΓF

n · f̂n
2: Calculate the possible choices of sn by ΓS

n , s̄n , ŝn and
stored in Pn

3: Calculate different combinations of Pn on all nodes and
store them in set P

4: for p ∈ P do
5: Calculate the value of ent according to (1) by using p

and fn
6: Define Sp as the feasible solution set for the possible

uncertainty set p
7: Sp ← Generate set of initial feasible solutions by

using function init_chromos in Algorithm 2
8: for step = 1→MG do
9: Define Sp

n as the new feasible solution set
10: for each solution in Sp do
11: if a random number in [0, 1] >1- IC then
12: Sp

n ←Generate a non-redundant and
mutant solution by using function cross_in in Algorithm 3
whose inputs are the selected solution in Sp and random
time slot t

13: end if
14: end for
15: for each solution in Sp except for the first one do
16: if a random number [0, 1] >1- EC then
17: Sp

n ←Generate a non-redundant and
mutant solution by using function cross_out in
Algorithm 3 whose inputs are the selected solution
and its previous solution in S

18: end if
19: end for
20: for each solution in Sp do
21: if a random number [0, 1] >1- MP then
22: S

p
n ←Generate a non-redundant and

mutant solution by using function mutation in Algorithm 4
whose input is the selected solution in Sp

23: end if
24: end for
25: Integrate S

p
n into S

26: Calculate the fitness score of the solutions in Sp

by using function calc_fin_ness in Algorithm 5
27: Store the solution with the highest fitness score
28: if size of Sp > UP then
29: Reduce the size of the set to UP by using

function roulette_gambler in Algorithm 6
30: end if
31: end for
32: Output the solution which has the smallest objective

value among Sp , p ∈ P
33: end for

one represents functions. The value of an element whose
location is (t, r, k) is the allocation of the kth function of
request r at time slot t, which belongs to N.
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Algorithm 2 Initial Solution
1: function INIT_CHROMOS(E)
2: Set of initial solutions s ← φ
3: Sort requests in R in a non-increasing order of Kr

4: for each time slot in T do
5: Sort nodes in N in a non-increasing order of time

from time slot t to a time slot in which a node becomes
unavailable. If the above values are the same for some
n, sort them in a non-increasing order of time from time
slot t to a time slot in which a node becomes unavailable
secondly. If the above values are the same for some n, sort
them in a non-increasing order of time from time slot t to
the last time slot in which a node becomes unavailable.

6: for r ∈ R do
7: for f = 1→ Kr do
8: for n ∈ N do
9: if used capacity of n is less than ctn

AND any other functions in r were not allocated to n
then

10: Allocate the f th function in SFC r
to n

11: Break
12: else
13: Continue
14: end if
15: end for
16: end for
17: end for
18: Store the allocation to s
19: end for
20: Duplicate a solution iteratively until the number of

solutions in s becomes IP
21: return s
22: end function

Algorithm 2 reorders set R according to the corresponding
Kr from long to short first (line 3). Then, it performs func-
tion allocation one by one (lines 4-19). At each time slot,
the heuristic algorithm reorders set N according to the occur-
rence of unavailabilities from late to early (line 5). Then the
heuristic algorithm allocates the functions to physical nodes
according to these new orders (lines 9-13). Finally, the heuris-
tic algorithm duplicates a solution iteratively until the number
of solutions becomes IP (line 20).

C. New Solution Generation

There are three methods for generating new solutions in the
heuristic algorithm.

The internal crossover, function cross_in in Algorithm 3,
crosses adjacent time slots in the same solution. The aim of
cross_in is to suppress the reallocations of VNFs between
adjacent time slots.

The external crossover, function cross_out in Algorithm 3,
crosses the same time slot between two solutions in the fea-
sible solution set. A new solution is generated by modifying
the VNF allocation in a randomly selected time slot of one
solution based on that of another solution.

Algorithm 3 Crossover
1: function CROSS_IN(s ← the selected solution , t ← the

random time)
2: s [t ]← s [t + 1]
3: return s
4: end function
5: function CROSS_OUT(s1, s2)
6: location ← a random integer in [1, |T |]
7: sc ← s1
8: sc [location]← s2[location]
9: return sc

10: end function

Algorithm 4 Mutation
1: function MUTATION(s ← the selected solution, E)
2: Calculate the SCAT for all SFCs in solution s
3: Sort requests in R in a weighted randomized order. The

larger the SCAT, the higher the order of the corresponding
r.

4: Sort nodes in N in a weighted randomized order. The
larger the time from the first time slot to a time slot where
a node becomes unavailable, the higher the order of the
corresponding n.

5: for r ∈ R do
6: for f = 1→ Kr of request r do
7: for n ∈ N do
8: if used capacity of n is less than ctn AND

any other functions in r were not allocated to n then
9: Allocate the f th function in SFC r to n

10: Break
11: else
12: Continue
13: end if
14: end for
15: end for
16: end for
17: return new solution
18: end function

Algorithm 5 Fitness Calculation
1: function CALC_FIN_NESS(s ← the selected solution, E)
2: Calculate the SCAT for all SFCs in solution s
3: return min(SCAT ) + sum(SCAT )/(|T | × |R|)
4: end function

The other function for generating new solutions is function
mutation in Algorithm 4. init_chromos function in Algorithm 2
generates the initial solution set based on the length of each
SFC. On the other hand, mutation function generates a new
solution based on the SCAT of each SFC.

D. Calculation of Fitness

The algorithm computes the fitness score for each solution
by using the objective function.
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Algorithm 6 Choice
1: function ROULETTE_GAMBLER(fit_pros, chroms)
2: pick ← a random number in [0, 1]
3: for j = 1→ |chroms | do
4: pick ← pick − fit_pros [j ]/sum(fit_pros)
5: if pick ≤ 0 then
6: return j
7: end if
8: end for
9: return |chroms | − 1

10: end function
11: function CHOICE(chroms ,fit_pros)
12: choice_gens ← φ
13: for i = 1→ min(|chroms |,UP) do
14: j ← ROULETTE_GAMBLER(fit_pros, chroms)
15: append chroms[j] to choice_gens
16: end for
17: return choice_gens
18: end function

E. Choice of Solutions

The heuristic algorithm uses roulette wheel selection to
create a new feasible solution set by choosing UP solutions
from the feasible solution set.

In the roulette_gambler and choice functions in
Algorithm 6, input chroms is the set of solutions and
fit_pros is the set of the fitness scores of the corresponding
solutions in chroms.

F. Parallelization Acceleration

In lines 4-33 of Algorithm 1, the algorithm calculates the
allocation under different set P. These calculations can be par-
allelized. The algorithm initializes |P | threads and performs
the calculations at the same time. |P | results can be obtained.
The final result is the smallest one among these results.

In order to further reduce the calculation time, we can also
make the parallelization of the functions called in the heuris-
tic algorithm. The loops in lines 10-24 of Algorithm 1 can be
parallelized. Each thread contains the cross and mutation of
one solution in Sp . The new generated solutions are collected
and merged into set S in line 25 of Algorithm 1. However,
the number of solutions required to be processed in parallel is
greater than the number of cores in a CPU. If we apply CPU
threads on the parallelization, the time consumed by thread
switching slows down the computation time. A method to
reduce the overhead time and the overall computation time
is to apply GPU acceleration on these functions instead of
CPU multi-threading [25].

V. NUMERICAL EVALUATIONS

A. Comparison With Other Models

In this subsection, we compare the proposed model with a
persistence allocation model, a single-slot allocation model,
and a double-slot allocation model with deterministic and
uncertain availability schedules in two tests, respectively. The

given conditions ŝn and f̂n are set to 0 in the tests considering
deterministic availability schedules.

The persistence allocation model does not consider the ser-
vice interruptions caused by node unavailabilities. This model
maximizes SSCAT by suppressing the interruptions caused by
reallocations of VNFs. It determines a node to which each
VNF is allocated randomly and keeps this allocation from the
first time slot to the last one. This model has no ability to
avoid unavailable nodes.

The single-slot allocation model considers the service
interruptions caused by node unavailabilities at each time slot,
regardless of VNF reallocations between all adjacent time
slots. This model minimizes the number of VNFs allocated
to unavailable nodes at each time slot. This model indepen-
dently determines VNF allocation of each time slot. This
model tries to avoid allocating VNFs to unavailable nodes
according to the availability schedule. However, this model
does not consider the relationship between VNF allocations at
adjacent time slots; different allocations at adjacent time slots
cause service interruptions. For each t ∈ T , the optimization
problem of single-slot allocation model is formulated as an
ILP problem by:

min
∑

r∈R

∑

k∈Kr

∑

n∈N
x rktn ent

s.t. (9)-(11) in [10] . (10)

The double-slot allocation model is an improvement of the
single-slot allocation model. This model computes the VNF
allocation at time slot t by considering that in the last
time slot, x rkt−1,n , ∀n ∈ N , r ∈ R, k ∈ Kr . The solution
that minimizes the differences between time slots t and
t − 1 is chosen when there are multiple solutions that
minimize

∑
r∈R

∑
k∈Kr

∑
n∈N x rktn ent . For each t ∈ T ,

the optimization problem of double-slot allocation model is
formulated by:

min
∑

r∈R

∑

k∈Kr

∑

n∈N

(
x rktn ent + ε3x

rk
tn � x rkt−1,n

)

s.t. (9)-(11) in [10] . (11)

A small number, ε3, is multiplied to the second term to pri-
oritize the first term over the second term. ε3 is given by

1
|N ||R|maxr∈R{Kr} .

The proposed model, the single-slot allocation model, and
the double-slot allocation model are solved by the IBM ILOG
CPLEX Interactive Optimizer with version 12.7.1 [26], using
Intel Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory.
The persistence allocation model is implemented by Python
3.7 and runs on the same hardware.

In the first test, we compare the proposed model with the
three baseline models considering deterministic availability
schedules in terms of the objective value. Seven cases are
examined in this situation. The conditions of these cases are
shown in Table III. In this table, Nodes means the number of
nodes; Capacity means the capacity of each node at each time
slot; Requests means the number of functions in each request;
Functions means the number of functions in each request;
Time slots means the number of time slots; Unavailability
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TABLE III
EVALUATION CONDITIONS IN TEST 1

TABLE IV
EVALUATION RESULTS OF TEST 2

Fig. 4. Evaluation results of test 1.

parameters shows the beginning time slot and duration of each
unavailability period. The results are shown in Fig. 4. It shows
that the proposed model outperforms the three baseline mod-
els when availability schedule is deterministic in terms of the
objective value.

In the second test, we compare the proposed model with
the three baseline models considering uncertain availability
schedule in terms of the objective value. The three baseline
models obtain the value of ent by using (5a)-(5h), and (7a)-(7b)
and consider the worst case in uncertainty set P. We consider
two cases in this text. In the first case, a four-node network is
considered. We determine the allocation of functions among
six time slots in two requests. The lengths of two requests
are two and three, respectively. The uncertainty set is given

by: s̄1 = 2, ŝ1 = 1, f̄1 = 1, s̄2 = 2, f̄2 = 2, f̂2 = 1, other
s̄ are BS, and ŝ , f̄ , and f̂ are zero. In the second case, a
ten-node network is considered. We determine the allocation
of functions among seven time slots in three requests. The
lengths of three requests are two, three and five, respectively.
The uncertainty set is given by: s̄1 = 3, f̄1 = 1, f̂1 = 1, s̄2 =
2, f̄2 = 2, s̄3 = 6, f̄3 = 1, s̄5 = 4, ŝ5 = 1, f̄5 = 1, f̂5 = 1, s̄6 =
2, ŝ6 = 1, s̄7 = 5, f̄7 = 1, s̄9 = 1, other s̄ are BS, and ŝ , f̄ ,
and f̂ are zero. We evaluate the SSCAT values and the sum
of SCATs of all requests in different ΓFn and ΓS

n . The result
is shown in Table IV.

Table IV shows that the proposed model outperforms the
three baseline models under all levels of robustness in terms
of the objective value. With the increasing of the level of
robustness of the solution, the objective value decreases. By
comparing the results between the proposed model and the
three baseline models, we observe that the allocation consid-
ering availability schedule provides higher SSCAT than the
allocation without considering availability schedule and the
longer time slots the model considers, the allocation with
higher SSCAT the model provides.

B. Evaluation of Different Uncertainty Sets

In this subsection, we evaluate the influences of different
uncertainty sets with the same graph and robustness level.
Because the durations of unavailability periods fn ,n ∈ N are
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Fig. 5. Possible locations of unavailabilities in four availability schedules.
If “P” is marked in a time slot, it is a possible location of an unavailability,
and otherwise it is available.

Fig. 6. Worst case availability schedule in four tests. If “U” is marked in a
time slot, it is unavailable, and otherwise available.

determined after the robustness levels ΓF
n are given. We force

on the influence of fn ,n ∈ N on the objective values. The
evaluation is performed in a graph which has five nodes whose
capacities are two. Three requests need to be allocated in the
graph in seven time slots, whose lengths are two, two, three,
respectively. There are four tests with different s̄n and ŝn . The
parameters and availability schedules are shown in Fig. 5.

We evaluate the relationship between different shapes of
availability schedules and the objective values under the same
value of ΓS

n ,n ∈ N , which is 1
ŝn

. The objective values and
the availability schedule under the worst case in each test are
shown in Fig. 6. We observe that when unavailabilities are
concentrated in the middle of the availability schedule, it is
most likely to be the availability schedule under the worst
case as shown in Fig. 6(a), 6(b), and 6(c). When the unavail-
abilities are distributed among nodes in different time slots, it
is most likely to be the availability schedule under the worst
case as shown in Fig. 6(a) and 6(b). By taking advantage of
this observation, a number of possible choices, such as the
availability schedule with the unavailabilities concentrated in
one time slot, can be removed and the computational time can
be reduced. The worst case availability schedules in Fig. 5(a)
and Fig. 5(c) are the same, which is Fig. 6(a). We can reduce
the input parameters of Fig. 5(a) to those of Fig. 5(c) in order
to reduce the size of the uncertainty set.

TABLE V
UNCERTAIN CONDITIONS IN TEST 3

TABLE VI
PARAMETER SETTING

C. Effect of Heuristic Algorithm

We evaluate the performance of the heuristic algorithm in
terms of the objective value and the computation time, which
is called test 3. We use cases 1, 4, and 6 in Table III in this
evaluation with uncertain parameters in Table V. In each case,
we randomly set several different values of ΓF

n and ΓS
n for

each case. We compute the allocations with these different
robustnesses by using the heuristic algorithm and the MILP
approach. Table VI shows the parameter setting used in this
evaluation. The heuristic algorithm is implemented by C++
15, compiled by Microsoft Visual C++ 2017 v15.9.16, using
Intel Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory.

Table VII compares the results of each test obtained by
using the heuristic algorithm with those obtained by the MILP
approach. We observe that the objective values obtained by
the heuristic algorithm have smaller differences with those of
the MILP approach, as the size of the network is smaller or the
number of unavailabilities is smaller. We note that, when the
size of the network is larger or the number of unavailabilities is
larger, the difference becomes large; they are 13.79% in rows
7 and 8 of case 4 and 24.41% in row 3 of case 6 in Table VII.
The difference in test 3 between the MILP approach and the
heuristic algorithm is 3.37% on average.

Table VIII shows the average computation times for the
MILP approach, the heuristic algorithm, and the CPU accel-
erated heuristic algorithm for each case. We observe that
the heuristic algorithm without CPU-accumulation reduces
the computation time by 99.47% compared with the MILP
approach on average; the larger the problem size is, the
more the computation time of the heuristic algorithm is
reduced compared with that of the MILP approach. The CPU-
accumulation reduces the computation time by 71.07% com-
pared with the heuristic algorithm without CPU-accumulation.

D. Large-Scale Evaluation

We compare the proposed model with the baseline models
with larger test cases in this subsection. The MILP approach
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TABLE VII
COMPARISON OF OBJECTIVE VALUES IN TEST 3

TABLE VIII
COMPARISON OF AVERAGE COMPUTATION TIMES IN TEST 3

spends so much time that it cannot be applied in large-scale
tests cases as shown in Table VIII. We compare the results
obtained from the heuristic algorithm and three baseline mod-
els. The parameters of the algorithm are shown in Table VI.
We prepare four test cases with different given conditions as
shown in Table IX.

We calculate the allocation of VNFs with given conditions
by using the heuristic algorithm and three baseline models.
The objective values of the above four methods are shown in
Table X. We obverse that allocations obtained from the heuris-
tic algorithm have larger objective values than those from the
compared baseline models, especially in cases 9 and 10, where
the available space for functions is large and the number of
functions is small. Even if there are performance gaps between
the results obtained from the heuristic algorithm and those
from the proposed model, the results of the heuristic algorithm
are still better than those of the baseline models in examined
cases.

VI. DISCUSSION

A. Maintenance Ability

Sometimes the maintenance ability of SP is limited. The
number of unavailable nodes in one time slot is limited. This
section assumes that the maintenance ability on time slot t is

Algorithm 7 Uncertainty Set Reduction by Using
Maintenance Ability

Input: M L
t , MU

t , P, ΓF
n , s̄n , ŝn , f̄n , f̂n , T, N

Output: new uncertainty set
1: for p ∈ P do
2: Calculate the value of ent according to (1) by using p

and fn
3: for t ∈ T do
4: if

∑
n∈N ent < M L

t or
∑

n∈N ent > MU
t then

5: Delete the current p from P
6: end if
7: end for
8: end for

limited from M L
t to MU

t , where M L
t ≤

∑
n∈N etn ≤ MU

t .
By using the known maintenance ability, the size of the uncer-
tainty set Pn can be reduced to reduce the computation time.
The reduction is performed by using the following algorithm
which is applied before Algorithm 1.

If the MILP approach is applied to solve this model, we
add the following equations to reduce the number of possi-
ble choices and computational time by using the maintenance
ability:

If M L
t ≤

∑

n∈N
enpt ≤ MU

t then

Δ
p
t = 1

Else

Δ
p
t = 0, (12a)

Δ
p
t ∈ {0, 1}, ∀p ∈ P, t ∈ T , (12b)

which can be linearized by using Appendix A is changed to:

max min
p∈P

{(
λp + ε

∑

r∈R
βpr

)
·
∑

t∈T

{
Δ

p
t · B

}
}
. (13)

Here, B is a large constant which is larger than (|R|+1) · |T |.

B. More Than One Unavailability Period Per Node

1) Deterministic Unavailability Period: the model in
Section III assumes that there is at most one unavailability
period on each node. Let us give an extension for support-
ing more than one unavailability period on each node in this
model.
An is a set for unavailability periods on node n ∈ N . san

is the starting time slot of the ath unavailability period in set
An . f an is the duration of the ath unavailability period in set
An . Equation (1) is replaced by:

If san ≤ t ≤ san + f an then

eatn = 1

Else

eatn = 0, (14a)
ent = ∨a∈An

eatn , ∀n ∈ N , t ∈ T , (14b)
eatn ∈ {0, 1}, ∀n ∈ N , t ∈ T , a ∈ An , (14c)
ent ∈ {0, 1}, ∀n ∈ N , t ∈ T . (14d)
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TABLE IX
EVALUATION CONDITIONS IN SECTION V-D

TABLE X
EVALUATION RESULTS IN SECTION V-D

According to the linearization process in [9] and
Appendix A, (14) is linearized and (29a)-(29h) are replaced
by the following equations:

t − san + ε1 ≤ ηatn · B , ∀t ∈ T ,n ∈ N , a ∈ An , (15a)

t − san + ε1 ≥ (ηatn − 1) · B , ∀t ∈ T ,n ∈ N , a ∈ An , (15b)

san + f an − t + ε1 ≤ ρatn · B , ∀t ∈ T ,n ∈ N , a ∈ An , (15c)

san + f an − t + ε1 ≥ (ρatn − 1) · B , ∀t ∈ T ,n ∈ N , a ∈ An ,

(15d)

e ′atn ≤ ηatn , ∀t ∈ T ,n ∈ N , a ∈ An , (15e)

e ′atn ≤ ρatn , ∀t ∈ T ,n ∈ N , a ∈ An , (15f)

e ′atn ≥ ηatn + ρatn − 1, ∀t ∈ T ,n ∈ N , a ∈ An , (15g)

ent ≥
1

|An | ·
∑

a∈An

e ′atn , ∀t ∈ T ,n ∈ N , (15h)

ent ≤
∑

a∈An

e ′atn , ∀t ∈ T ,n ∈ N , (15i)

e ′atn , ηatn , ρatn ∈ [0, 1], ∀t ∈ T ,n ∈ N , a ∈ An , (15j)

ent ∈ {0, 1}, ∀n ∈ N , t ∈ T . (15k)

2) Uncertain Unavailability Period: Confronted with
uncertain unavailability periods and multiple unavailability
periods, ΓS

n still controls the size of uncertainty set of begin-
ning time slots Pn on node n. The larger ΓSn is, the more
the considered possible beginning time slots of unavailability
periods on node n are. For unavailability period a ∈ An , we
choose �ΓSn · (2 · ŝan + 1)	 different beginning time slots from
[s̄an − ŝan , s̄

a
n + ŝan ] and form a set which is an element in Pan .

Pan contains all possible choices of uncertainty period a on

node n. The size of Pan is |Pan | =
(

2 · ŝan + 1

�ΓS
n · (2 · ŝan + 1)	

)
.

The uncertainty set for all nodes is denoted by P =

{{P11, . . . ,P|An |
1 }, {P12, . . . , }, . . . , {, . . . ,P|An |

|N | }}. One ele-
ment in P is a combination of one element in each Pn . One
element in Pn is a combination of one element in each Pan .
Let p denote an element in P; pn denotes the selected set
from Pn ; pqn denotes the qth element in pn ; pqan denotes the
selected starting time slot of ath unavailability period in the
element in pqn .
ΓF
n controls the considered length of the duration of unavail-

ability period on node n, which is ¯f an + ˆf an · �ΓF
n	.
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Equations (5a)-(5h) are replaced by:

t − pqan + ε1 ≤ ηqatn · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], a ∈ An , (16a)

t − pqan + ε1 ≥
(
ηqatn − 1

) · B , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |],
a ∈ An , (16b)

pqan + f̄ an + ΓF
n · f̂ an − t + ε1 ≤ ρqatn · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], a ∈ An , (16c)

pqan + f̄ an + ΓF
n · f̂ an − t + ε1 ≥

(
ρ
qa
tn − 1

) · B ,
∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], a ∈ An , (16d)

τ ′tnqa ≤ ηqatn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], a ∈ An , (16e)

τ ′tnqa ≤ ρqatn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], a ∈ An , (16f)

τ ′tnqa ≥ ηqatn + ρ
qa
tn − 1, ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], a ∈ An , (16g)

τqtn ≥
1

|An | ·
∑

a∈An

τ ′tnqa , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (16h)

τ
q
tn ≤

∑

a∈An

τ ′tnqa , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], (16i)

τ ′tnqa , η
qa
tn , ρ

qa
tn ∈ [0, 1], ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], a ∈ An , (16j)

τqtn ∈ [0, 1], ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |]. (16k)

C. Unpredictable Unavailabilities

We assume that the availability schedules used in the
proposed model are known by maintenance schedules in
the proposed model. In maintenance schedules, the locations
of availabilities and unavailabilities are given so that the
availability schedules can be expressed by binary matrixes.
By comparison, there are some availabilities and unavail-
abilities whose locations cannot be specified, such as burst
unavailabilities and probabilistic unavailabilities.

Burst unavailabilities are caused by burst hardware and
software failures of servers. The influences of burst unavail-
abilities cannot be avoided by the scheduling of the proposed
model. The common ways to suppress the influence of the
burst unavailabilities are backup and replication. Probabilistic
unavailabilities from prediction systems give probabilistic
results instead of the exact results. If we want to use the
probabilistic results as binary availability schedules, quanti-
zation of the probabilistic results are necessary, which will
bring extra uncertainty. If the administrators consider that the
cost is acceptable, they can set a threshold of probability. If
the probability exceeds the threshold, it is considered to be
one; otherwise, zero.

VII. DIRECTIONS TO EXTEND PROPOSED MODEL

A. Separate Request From SFC

We assume that one request corresponds to one SFC in
Section III. We do not consider sharing VNFs among dif-
ferent SFCs in the proposed model. We give a direction on
how to separate the requests from the SFCs in this subsec-
tion. We redefine the requests, SFCs, and VNFs to replace

the definitions in paragraph 5 of Section III-A. The definition
of decision variable x rktn in paragraph 7 of Section III-A is
changed as follows.

R represents the set of requests from the users. C represents
the set of SFCs waiting for provisions. Each SFC is an ordered
set of VNFs. F is the set of functions. F c ⊆ F is the ordered
set of VNFs used in SFC c ∈ C . Binary given parameter ψfc
is set to 1 if function f ∈ F is used in SFC c ∈ C . Binary
given parameter γcr , r ∈ R, c ∈ C , is set to 1 if request r
requests SFC c; 0 otherwise. Given parameter q

f
s represents

the amount of resource s ∈ S which function f ∈ F requires.
We use binary decision variable x

f
tn to represent the allo-

cation; x ftn is set to 1 if function f ∈ F is assigned to node
n ∈ N at time slot t ∈ T , and 0 otherwise.

According to the above redefinitions, we give a new version
of the related parameters and constraints as follows.

ort =
∏

n∈N

⎧
⎨

⎩

⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcr

(
x ftn � x ft−1,n

)
⎞

⎠

∧
⎛

⎝1−
⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcrx
f
tn

⎞

⎠ ∧ ent

⎞

⎠

∧
⎛

⎝1−
⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcrx
f
t−1,n

⎞

⎠ ∧ ent−1

⎞

⎠

⎫
⎬

⎭,

∀r ∈ R, t ∈ T\{1}, (17a)∑

f ∈F
x
f
tnq

f
s ≤ csnt , ∀n ∈ N , t ∈ T , s ∈ S , (17b)

∑

f ∈F c

x
f
tn ≤ 1, ∀c ∈ C ,n ∈ N , t ∈ T , (17c)

∑

n∈N
x ftn = 1, ∀f ∈ F , t ∈ T , (17d)

x ftn ∧ ent = 0, ∀t ∈ T ,n ∈ N , f ∈ F . (17e)

Equation (17a) replaces x rktn in (2) with
∏

c∈C
∏

f ∈F c ψfc

γcrx
f
tn . Equation (17b) replaces [10, eq. (9)] and ensures

that each node’s computational resources must not
exceed its capacity during allocation. Equation (17c)
replaces [10, eq. (10)] and assumes that one service chain
does not allocate multiple VNFs in this chain on one VM
to avoid the influence of the reallocation of VMs [23].
Equation (17d) replaces [10, eq. (11)] and ensures that all
functions are allocated in the network.

B. Multiple Active Replicas for a VNF

We assume that only one replica is active for each VNF at
the same time regardless of the required processing abilities of
requests and the processing abilities which can be provided by
VNFs in Section III. Actually, multiple replicas can be active
at the same time and the processing abilities of the active
replicas need to meet the required processing abilities of the
requests. Based on Section VII-A, we introduce the following
parameters about replicas and constraints.

Each VNF f ∈ F can be replaced by a pool of Af replica
VNFs, each of which requires different capacities with an extra
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overhead on capacity but behaves collectively as the original
one; the capacity of each replica VNF can be different from
each other associated with the same original VNF. pfa repre-
sents the processing ability of the ath replica of VNF f ∈ F .
q
fs
s represents the resource requirement of the ath replica of

VNF f ∈ F for resource s ∈ S . The required processing
ability of request r ∈ R is denoted by gr , which is a given
parameter. We use binary decision variable x

fa
tn to represent

the allocation; x
fa
tn is set to 1 if the ath replica of function

f ∈ F is assigned to node n ∈ N at time slot t ∈ T , and 0
otherwise.

ort =
∏

n∈N

⎧
⎨

⎩

⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcr
∏

a∈Af

(
x fatn � x fat−1,n

)
⎞

⎠

∧
⎛

⎝1−
⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcr
∏

a∈Af

x fatn

⎞

⎠ ∧ ent

⎞

⎠

∧
⎛

⎝1−
⎛

⎝
∏

c∈C

∏

f ∈F c

ψfcγcr
∏

a ′∈Af

x fat−1,n

⎞

⎠

∧ent−1

⎞

⎠

⎫
⎬

⎭, ∀r ∈ R, t ∈ T\{1}, (18a)

∑

f ∈F

∑

a∈Af

x
fa
tn q

fa
s ≤ csnt , ∀n ∈ N , t ∈ T , s ∈ S , (18b)

∑

a∈Af

x
fa
tn ≤ 1, ∀c ∈ C ,n ∈ N , t ∈ T , f ∈ F , (18c)

x fatn ∧ ent = 0, ∀t ∈ T ,n ∈ N , f ∈ F , a ∈ Af , (18d)
∑

n∈N

∑

a∈Af

pfax
fa
tn ≥

∑

c∈C
ψfc

∑

r∈R
γcrgr , ∀t ∈ T , f ∈ F .

(18e)

Equations (17a)-(17e) are replaced by (18a)-(18d).
Equation (18b) ensures that each node’s computational
resources must not exceed its capacity during allocation.
Equation (18c) ensures that the replicas of the same VNF
cannot be assigned to the same node. Equation (18e) ensures
that the sum of the processing abilities of the replicas of
each VNF meets the required processing abilities from the
requirements at each time slot.

C. Network-Aware Placement

The proposed model does not consider the routing between
VNFs in the same SFC or the recovery path from the unavail-
able VNFs to their new locations. In a real deployment,
some paths cannot be chosen because of the limitation of the
characteristic of links, such as bandwidth and latency. This
subsection gives a direction on how to handle the routing prob-
lems by taking advantage of the network topology. Each virtual
link (i , j ) ∈ L corresponds to a connection between two VMs
with transmission resource bij and length lij . The transmission
resources demanded by request r ∈ R is dr . The latency of
request r ∈ R is required to be less than ιr .

1) Routing of SFCs: We present the following constraints
to compute the VNF allocation and the routes of all SFCs.

The flow constraint of SFC paths is given by: ∀w ∈ N , r ∈
R, k ∈ Kr , t ∈ T ,

∑

(i ,j )∈L
αw ,ij ρ

k ,ij
rt =

⎧
⎪⎨

⎪⎩

−1, if x rktw = 1 (19a)

1, if x r ,k+1
tw = 1 (19b)

0, if x rktw = x r ,k+1
tw = 0. (19c)

For each request, there are three types of nodes: source
node (a node at which the first function of a request is allo-
cated), destination node (a node at which the last function
of a request is allocated), and others. We define indicator
αw ,ij ,w ∈ N , (i , j ) ∈ L, to represent the adjacency of nodes
on directed graph G, where αw ,ij = 1 if node w is the tail
of the directed link (i, j), i.e., w = j; αw ,ij = −1 if node w
is the head of the directed link (i, j), i.e., w = i; αw ,ij = 0

otherwise. We use binary variable ρk ,ijrt to express the route.
If link (i, j) is a segment link between the kth function and
the k + 1th function of request r ∈ R at time slot t ∈ T ,
ρk ,ijrt = 1, and 0 otherwise. We have the following constraints.
According to [10, eq. (10)], x rktw and x r ,k+1

tw cannot be 1 at the
same time. Thus (19a), (19b), and (19c) can be simplified to:

∑

(i ,j )∈L
αw ,ij ρ

k ,ij
rt = −x rktw + x

r ,k+1
tw ,

∀k ∈ Kr\{|Kr |}, r ∈ R,

t ∈ T ,w ∈ N . (20)

The link capacity constraint is given by:
∑

r∈R

∑

k∈Kr

ρk ,ijrt dr ≤ bij , ∀(i , j ) ∈ L, t ∈ T , (21)

which ensures that each link’s transmission resource is not
overused. The latency constraint is given by:

∑

t∈T

∑

k∈Kr

∑

(i ,j )∈L
lij ρ

k ,ij
rt ≤ ιr , ∀r ∈ R, (22)

which ensures that each request meets the requirement of
latency.

2) Routing During Recovery: For stateful application, the
state information needs to be synchronized between the old
and new nodes, which consumes the transmission resource
of links. The flow constraint of recovery is given by: ∀w ∈
N , r ∈ R, k ∈ Kr , t ∈ T\{1},

∑

(i ,j )∈L
αw ,ij τ

k ,ij
rt =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if x rkt−1,w = 1 (23a)

1, if x r ,ktw = 1 (23b)

0, if x rkt−1,w = x r ,ktw = 0. (23c)

We use binary variable τk ,ijrt to express the route. If link (i,
j) is a segment link between the nodes where the kth function
of request r ∈ R is allocated at time slot t ∈ T\{1} and
time slot t − 1, τk ,ijrt = 1, and 0 otherwise. The link capacity
constraint except for the first time slot is given by:
∑

r∈R

∑

k∈Kr

(
ρk ,ijrt + τk ,ijrt

)
dr ≤ bij , ∀(i , j ) ∈ L, t ∈ T\{1}.

(24)
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D. Backup Functions

We focus on the primary function allocation in the proposed
model. The proposed model suppresses the interruptions which
decrease SSCAT with determining a suitable allocation of
VNFs. If we take backup functions into consideration, the
interruptions can be avoided and continuous available time
slots of SFCs can be extended. Moreover, we assume that
the availability schedules provided by the administrators are
relatively believable regardless of the detailed recovery mech-
anism. As a direction of progress, the recovery mechanism
during unavailable periods is worthy to be studied. The work
in [27] addressed a primary and backup VNF placement model
for improving the continuous available time of SFCs by avoid-
ing the interruptions caused by unavailable nodes and function
reallocations.

VIII. RELATED WORK

This paper addresses the uncertainty of availability sched-
ule in the proposed model. In the past researches, robust
techniques were applied to deal with uncertainty in the prob-
lems. To deal with the data uncertainty in linear programming,
Soyster [28] introduced a linear optimization model to con-
struct a solution that is feasible for all data that belong to
a convex set, which is too conservative and gives up much
of the optimality for the problem. To overcome the over-
conservation, Ben-Tal et al. [29] introduced less conservative
models by considering uncertain linear problems with ellip-
soidal uncertainties. However, the above models are designed
for convex uncertainty sets. In our model, the uncertainty
set is not a convex set, which is discrete. To deal with the
robust discrete optimization problem, Bertsimas and Sim [30]
introduced an approach for robust linear optimization problem
based on [28]; it offers an ability to control the degree of
conservatism for each constraint.

Robust optimization techniques have been applied to differ-
ent network design problems. By using the approach in [30],
[31] introduced a robust integer programming problem with
the data uncertainty in network flow problems and solved the
minimum cost flow problems. The work in [13] introduced
a problem of backup network design for general link loads,
where the uncertainty is the number of primary links that fail.
The work in [32] applied the robust optimization to primary
and backup allocation problem, where the number of failing
PMs is given but which PM fails is uncertain. The work in [14]
adopted the robust optimization technique on minimizing the
required backup capacity with probabilistic protection against
multiple PM failures, where the uncertainty of capacity was
considered. The above researches consider the discrete uncer-
tainty sets and provide an approximate solution. Our model
provides an exact solution without gaps by taking advantage
of the limited size of uncertainty set in the proposed model.

Various studies have considered the impact of service
interruptions on VNF allocation problems. The work in [33]
concerned the low reliability of softwarized networks caused
by service interruptions. The model presented in [23]
addressed to minimize the cost of migration which is evaluated
by the number of migrations. The work in [34] introduced a

model of the adaptive and dynamic VNF allocation problem
considering the interruptions caused by VNF migration. The
work in [35] introduced a model for dynamic VNF placement
under changing traffic load. A static placement decreases the
operation cost. Reconfiguration causes service interruption and
the operation cost increases. Compared with existing mod-
els which also care about the interruptions of services, the
proposed model does not need extra server resources includ-
ing storage and computation resources with a specific aim of
continuous available time. The proposed model considers a
sequence of time slots at one time so that the model only cal-
culates the placement at the beginning of service deployments
instead of at each time slot.

In the evaluations presented in Section V, by considering
the availability schedule, we use the three baseline models,
which are different from the previous models mentioned above
and have different objective functions without considering the
availability schedule. Several works introduced their suitable
benchmark models by capturing the features of each evaluation
scenario. The work in [13] considered three protection types
of links: cycle protection, two-hop protection, and one-hop
protection, which were used to be compared with the intro-
duced model. The work in [14] formulated a conventional
deterministic-capacity model, which was compared with the
three introduced models. The work in [23] presented a com-
parison among three different application conditions of the
introduced model with considering the case that only migra-
tions are used, the case that only replications are used, and
the case that both migrations and replication can be used. The
authors in [32] evaluated their introduced model under differ-
ent failure probabilities with guaranteeing different availability
probabilities. The work in [33] developed three algorithms for
bench-marking purposes. The authors in [34] compared their
developed heuristic algorithm and the introduced model with
three different objective functions.

The features of the existing models mentioned in
Section VIII and the proposed model are summarized in
Table XI.

IX. CONCLUSION

This paper proposed a robust VNF allocation model for
improving the continuous available time of service function
chains with considering the uncertain availability schedule.
We formulated the proposed model as an MILP problem.
Numerical results showed that the proposed model improves
the continuous available time of SFCs, compared with the
persistent allocation model, the single-slot allocation model,
and the double-slot allocation model in both deterministic and
uncertain availability schedules. In the cases examined, the
proposed model can provide longer continuous available time
slots compared with the three baseline models under differ-
ent levels of the robustness of uncertain availability schedule.
The developed heuristic algorithm reduces the computation
time by 99.85% compared with the MILP approach with a
limited performance penalty by 3.37% in our evaluations. We
evaluated the relationship between availability schedules and
objective values. The size of the uncertainty set can be reduced
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TABLE XI
COMPARISON OF EXISTING MODELS IN SECTION VIII AND PROPOSED MODEL

according to our observations. We gave two discussions of the
proposed model: one for maintenance ability and the other for
multiple unavailability periods on each node. In addition, we
provided four directions to extend the proposed model.

APPENDIX A
LINEARIZATION OF PROPOSED MODEL

We introduce the following linearization process for the
proposed model given in Section III. x = mini{yi} can be
expressed in linear form by:

x = min
i
{yi} ⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ≤ yi + (1− δi ) · B , ∀i ∈ Y (25a)

x ≥ yi − (1− δi ) · B , ∀i ∈ Y (25b)

yi ≤ (1− δi ) · B + yj , ∀i ∈ Y ,

j ∈ Y \{i} (25c)∑

i∈Y
δi = 1 (25d)

x ≤ yi , ∀i ∈ Y (25e)

δi ∈ {0, 1}, ∀i ∈ Y , (25f)

where B is sufficiently large to ensure that its value is larger
than yi , i ∈ Y .

For binary decision variables yi ∈ Y , the operation x =
∨i∈Y yi = y1∨y2∨· · ·∨y|Y | can be expressed in linear form
as follows:

x = ∨i∈Y yi ⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ≥ 1

|Y | ·
∑

i∈Y
yi (26a)

x ≤
∑

i∈Y
yi (26b)

x , yi ∈ {0, 1}, ∀i ∈ Y . (26c)

The relationship

If a ≤ x ≤ b then

e = 1

Else

e = 0 (27a)

e ∈ [0, 1] (27b)

x ∈ Z. (27c)
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can be linearized by using the following equations:

x − a + ε ≤ α · B (28a)

x − a + ε ≥ (α− 1) · B (28b)

b − x + ε ≤ β · B (28c)

b − x + ε ≥ (β − 1) · B (28d)

e ≤ α (28e)

e ≤ β (28f)

e ≥ α+ β − 1 (28g)

e, α, β ∈ [0, 1] (28h)

x ∈ Z. (28i)

a, b are given integer parameters. ε is a given positive param-
eter: 0 < ε < 1. B is a number which is larger than x − a + ε
and b − x + ε.

APPENDIX B
LINEARIZATION IN SECTION III-A

t − sn + ε1 ≤ ηnt · B , ∀t ∈ T ,n ∈ N , (29a)

t − sn + ε1 ≥ (ηnt − 1) · B , ∀t ∈ T ,n ∈ N , (29b)

sn + fn − t + ε1 ≤ ρnt · B , ∀t ∈ T ,n ∈ N , (29c)

sn + fn − t + ε1 ≥ (ρnt − 1) · B , ∀t ∈ T ,n ∈ N , (29d)

ent ≤ ηnt , ∀t ∈ T ,n ∈ N , (29e)

ent ≤ ρnt , ∀t ∈ T ,n ∈ N , (29f)

ent ≥ ηnt + ρnt − 1, ∀t ∈ T ,n ∈ N , (29g)

ent , η
n
t , ρ

n
t ∈ [0, 1], ∀t ∈ T ,n ∈ N , (29h)

βr − 1 ≤ jyrj +
(
1− δrj

)
· B , ∀j ∈ T , r ∈ R, (30a)

βr − 1 ≥ jyrj −
(
1− δrj

)
· B , ∀j ∈ T , r ∈ R, (30b)

jyrj ≥
(
δrj − 1

)
· B + yrj ′ , ∀j ∈ T , j ′ ∈ T\{j}, r ∈ R,

(30c)
∑

j∈T
δrj = 1, ∀r ∈ R, (30d)

βr − 1 ≥ jyrj , ∀j ∈ T , r ∈ R, (30e)

δrj ∈ {0,1}, ∀j ∈ T , r ∈ R, (30f)

φrktn = 1− x rktn − x rkt−1,n + 2 · hrktn , ∀r ∈ R, t ∈ T\{1},
k ∈ Kr ,n ∈ N , (31a)

hrktn ≤ x rktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31b)

hrktn ≤ x rkt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31c)

hrktn ≥ x rktn + x rkt−1,n − 1, ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

n ∈ N , (31d)

αrktn ≤ x rktn , ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N , (31e)

αrktn ≤ ent , ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N , (31f)

αrktn ≥ x rktn + ent − 1, ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N , (31g)

θrktn ≤ φrktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31h)

θrktn ≤ 1− αrktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31i)

θrktn ≥ φrktn − αrktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31j)

πrktn ≤ θrktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31k)

πrktn ≤ 1− αrkt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N ,

(31l)

πrktn ≥ θrktn − αrkt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N ,

(31m)

wrk
t ≤ πrktn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (31n)

wrk
t ≥

∑

n∈N
πrktn − |N |+ 1, ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

(31o)

ort ≤ wrk
t , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr , (31p)

ort ≥
∑

k∈Kr

wrk
t − |Kr |+ 1, ∀r ∈ R, t ∈ T\{1}, (31q)

or1 = 0, ∀r ∈ R, (31r)

ort ∈ {0,1}, ∀r ∈ R, t ∈ T , (31s)

yrj ∈ {0,1}, ∀r ∈ R, j ∈ T , (31t)

wrk
t ∈ {0,1}, ∀r ∈ R, k ∈ Kr , t ∈ T\{1}, (31u)

φrktn , h
rk
tn , θ

rk
tn , π

rk
tn ∈ {0,1}, ∀r ∈ R, k ∈ Kr , t ∈ T\{1},

n ∈ N , (31v)

αrktn , x
rk
tn ,∈ {0,1}, ∀r ∈ R, k ∈ Kr , t ∈ T ,n ∈ N . (31w)

In the above equations, ε1, ε2, and B are given parameters,
where 0 < ε1 < 1

sn+fn
, 0 < ε2 < 1, and B is larger than

sn + fn + 1 − t , t − sn + ε2,n ∈ N , t ∈ T , and 1. The
minimum of B can be taken to be |T |+ 2.

APPENDIX C
OBJECTIVE FUNCTION AND CONSTRAINTS UNDER

UNCERTAINTY SET p ∈ P IN SECTION III-B

⎛

⎝
i+j−1∑

t=i

orpt

⎞

⎠− j + 1 ≤ z jrpi , ∀i ∈ T , j ∈ Ti ,

r ∈ R, p ∈ P, (32a)

z
jrp
i ≤

∑i+j−1
t=i o

rp
t

j
, ∀i ∈ T , j ∈ Ti , r ∈ R, p ∈ P, (32b)

z jrpi ≤ yrpj , ∀i ∈ T , j ∈ Ti , r ∈ R, p ∈ P, (32c)

yrpj ≤
|T |−j+1∑

t=1

z jrpt , ∀j ∈ T , r ∈ R, p ∈ P, (32d)

λp ≤ βpr , ∀r ∈ R, p ∈ P, (33a)∑

r∈R

∑

k∈Kr

x
rkp
tn ≤ csnt , ∀n ∈ N , t ∈ T , p ∈ P, s ∈ S , (34a)

∑

k∈Kr

x
rkp
tn ≤ 1, ∀r ∈ R,n ∈ N , t ∈ T , p ∈ P, (34b)

∑

n∈N
x
rkp
tn = 1, ∀r ∈ R, k ∈ Kr , t ∈ T , p ∈ P, (34c)

βpr − 1 ≤ jy
rp
j +

(
1− δrpj

)
· B , ∀j ∈ T , r ∈ R, p ∈ P,

(35a)
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βpr − 1 ≥ jy
rp
j −

(
1− δrpj

)
· B , ∀j ∈ T , r ∈ R, p ∈ P,

(35b)

jy
rp
j ≥

(
δ
rp
j − 1

)
· B + y

rp
j ′ , ∀j ∈ T , j ′ ∈ T\{j}, r ∈ R,

p ∈ P, (35c)∑

j∈T
δrpj = 1, ∀r ∈ R, p ∈ P, (35d)

βpr − 1 ≥ jy
rp
j , ∀j ∈ T , r ∈ R, p ∈ P, (35e)

δ
rp
j ∈ {0, 1}, ∀j ∈ T , r ∈ R, p ∈ P, (35f)

φrkptn = 1− x rkptn − x rkpt−1,n + 2 · hrkptn , ∀r ∈ R, t ∈ T\{1},
k ∈ Kr ,n ∈ N , p ∈ P, (36a)

h
rkp
tn ≤ x

rkp
tn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , (36b)

hrkptn ≤ x rkpt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

n ∈ N , p ∈ P, (36c)

hrkptn ≥ x rkptn + x rkpt−1,n − 1, ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

n ∈ N , p ∈ P, (36d)

α
rkp
tn ≤ x

rkp
tn , ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N , p ∈ P, (36e)

αrkptn ≤ enpt , ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N , p ∈ P, (36f)

α
rkp
tn ≥ x

rkp
tn + e

np
t − 1, ∀r ∈ R, t ∈ T , k ∈ Kr ,n ∈ N ,

p ∈ P, (36g)

θrkptn ≤ φrkptn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , p ∈ P,
(36h)

θrkptn ≤ 1− αrkptn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

n ∈ N , p ∈ P, (36i)

θ
rkp
tn ≥ φrkptn − αrkptn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N ,

p ∈ P, (36j)

πrkptn ≤ θrkptn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , p ∈ P,
(36k)

πrkptn ≤ 1− αrkpt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N ,

p ∈ P, (36l)

π
rkp
tn ≥ θrkptn − αrkpt−1,n , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N ,

p ∈ P, (36m)

w
rkp
t ≤ πrkptn , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,n ∈ N , p ∈ P,

(36n)

w
rkp
t ≥

∑

n∈N
π
rkp
tn − |N |+ 1, ∀r ∈ R, t ∈ T\{1}, k ∈ Kr ,

p ∈ P, (36o)

o
rp
t ≤ w

rkp
t , ∀r ∈ R, t ∈ T\{1}, k ∈ Kr , p ∈ P, (36p)

orpt ≥
∑

k∈Kr

wrkp
t − |Kr |+ 1, ∀r ∈ R, t ∈ T\{1}, p ∈ P,

(36q)

orp1 = 0, ∀r ∈ R, p ∈ P, (36r)

o
rp
t ∈ {0,1}, ∀r ∈ R, t ∈ T , p ∈ P, (36s)

y
rp
j ∈ {0,1}, ∀r ∈ R, j ∈ T , p ∈ P, (36t)

wrkp
t ∈ {0,1}, ∀r ∈ R, k ∈ Kr , t ∈ T\{1}, p ∈ P, (36u)

φ
rkp
tn , h

rkp
tn , θ

rkp
tn , π

rkp
tn ∈ {0,1}, ∀r ∈ R, k ∈ Kr , t ∈ T\{1},

n ∈ N , p ∈ P, (36v)

α
rkp
tn , x

rkp
tn ,∈ {0,1}, ∀r ∈ R, k ∈ Kr ,

t ∈ T ,n ∈ N , p ∈ P, (36w)

t − pqpn + ε1 ≤ ηqptn · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], p ∈ P (37a)

t − pqpn + ε1 ≥
(
η
qp
tn − 1

) · B , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |],
p ∈ P (37b)

pqpn + f̄n + ΓF
n · f̂n − t + ε1 ≤ ρqptn · B , ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], p ∈ P (37c)

pqpn + f̄n + ΓF
n · f̂n − t + ε1 ≥

(
ρ
qp
tn − 1

) · B ,
∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], p ∈ P (37d)

τqptn ≤ ηqptn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], p ∈ P (37e)

τ
qp
tn ≤ ρqptn , ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |], p ∈ P (37f)

τqptn ≥ ηqptn + ρqptn − 1, ∀t ∈ T ,n ∈ N ,

q ∈ [1, |pn |], p ∈ P (37g)

enpt , ηqptn , ρ
qp
tn , τ

qp
tn ∈ [0, 1], ∀t ∈ T ,n ∈ N , q ∈ [1, |pn |],

p ∈ P (37h)

enpt ≥ 1

|pn | ·
∑

q∈[1,|pn |]
τqptn , ∀t ,∈ T ,n ∈ N , p ∈ P, (38a)

enpt ≤
∑

q∈[1,|pn |]
τqptn , ∀t ,∈ T ,n ∈ N , p ∈ P. (38b)

From (32a) to (38b), a variable with the subscript p means the
value of this variable under the uncertainty set p ∈ P.
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