
Machine Learning for Graphs based on Kernels @
DaSciM

M. Vazirgiannis & G. Nikolentzos

Data Science and Mining Team (DASCIM), LIX

École Polytechnique
Google Scholar: https://bit.ly/2rwmvQU

Twitter: @mvazirg

December, 2019

1 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

https://bit.ly/2rwmvQU
Michail Vazirgiannis

Graphs Are Everywhere

●

●

●

●

●

●

●

●●●

●

●

●

●

mathemat

aspect

computer−aid

share

trade

problem

statist

analysi

price

probabilist

characterist

seri

method
model

Edge weights

1
2
3
4
5

Mathematical aspects of
computer-aided share trading.
We consider problems of
statistical analysis of share
prices and propose
probabilistic characteristics to
describe the price series. We
discuss three methods of
mathematical modelling of
price series with given
probabilistic characteristics.

Why graphs?

2 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Text Categorization

●

●

●

●

●

●

●

●●●

●

●

●

●

mathemat

aspect

computer−aid

share

trade

problem

statist

analysi

price

probabilist

characterist

seri

method
model

Edge weights

1
2
3
4
5

Mathematical aspects of
computer-aided share trading.
We consider problems of
statistical analysis of share
prices and propose
probabilistic characteristics to
describe the price series. We
discuss three methods of
mathematical modelling of
price series with given
probabilistic characteristics.

Given a text, create a
graph where

- vertices correpond to
terms

- two terms are linked
to each other if they
co-occur within a
fixed-size sliding
window

Rousseau et al. “Text categorization as a graph classification problem.”. ACL’15

3 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Text Categorization

Intuition: documents sharing same subgraphs belong to the same class

Given a set of documents and their graph representations:

Extract frequent subgraphs

- from the set of graphs

or

- from the set of the main cores of the graphs

Then, use frequent subgraphs as features for classification

4 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Use graph kernels to

- measure structural similarity between proteins

- predict the function of proteins

Borgwardt et al. “Protein function prediction via graph kernels”. Bioinformatics 21

5 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Chemical Compound Classification

Represent each chemical compound as a graph

→

Use a frequent subgraph discovery algorithm to discover the substructures that
occur above a certain support constraint

Perform feature selection

Use the remaining substructures as features for classification

Deshpande et al. “Frequent substructure-based approaches for classifying chemical compounds”. TKDE 17(8)

6 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Malware Detection

Given a computer program, create its control flow graph

→

Compare the control flow graph of the problem against the set of control flow
graphs of known malware

If it contains a subgraph isomporphic to these graphs → malicious code inside the
program

Gascon et al. “Structural detection of android malware using embedded call graphs”. In AISec’13
7 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Machine Learning on Graphs

Machine learning tasks on graphs:

Node classification: given a graph with labels on some nodes, provide a high
quality labeling for the rest of the nodes

Graph clustering: given a graph, group its vertices into clusters taking into
account its edge structure in such a way that there are many edges within
each cluster and relatively few between the clusters

Link Prediction: given a pair of vertices, predict if they should be linked with
an edge

Graph classification: given a set of graphs with known class labels for
some of them, decide to which class the rest of the graphs belong

8 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification

Input data G ∈ X

Output y ∈ {−1, 1}

Training set D = {(G1, y1), . . . , (Gn, yn)}

Goal: estimate a function f : X → R to predict y from f (x)

9 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Comparison

Definition (Graph Comparison Problem)

Given two graphs G1 and G2 from the space of graphs G, the problem of graph
comparison is to find a mapping

s : G × G → R

such that s(G1,G2) quantifies the similarity of G1 and G2.

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as clustering
and classification

- Most machine learning algorithms make decisions based on the similarities or
distances between pairs of instances (e.g. k-nn)

10 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete

subgraph isomorphism

finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time

11 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graphs to Vectors

To analyze and extract knowledge from graphs, one needs to perform
machine learning tasks

Most machine learning algorithms require the input to be represented as a
fixed-length feature vector

There is no straightforward way to transform graphs to such a representation

→

?
12 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

What is a Kernel?

Definition (Kernel Function)

The function k : X × X → R is a kernel if it is:

1 symetric: k(x , y) = k(y , x)

2 positive semi-definite: ∀x1, x2, . . . , xn ∈ X , the Gram Matrix K defined by
Kij = k(xi , xj) is positive semi-definite

- If a function satisfies the above two conditions on a set X , it is known that
there exists a map φ : X → H into a Hilbert space H, such that:

k(x , y) = 〈φ(x), φ(y)〉

for all (x , y) ∈ X 2 where 〈·, ·〉 is the inner product in H

- Informally, k(x , y) is a measure of similarity between x and y

13 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Kernels

Definition (Graph Kernel)

A graph kernel k : G × G → R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings φ : X → H of a pair of
graphs into a Hilbert space

- Makes the whole family of kernel methods applicable to graphs

G1

G2

G3

G

H
φ(G1)

φ(G2)
φ(G3)

14 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Kernel Trick

Many machine learning algorithms can be expressed only in terms of inner
products between vectors

Let φ(G1), φ(G2) be vector representations of graphs G1,G2 in a very high
(possibly infinite) dimensional feature space

Computing the explicit mappings φ(G1), φ(G2) and their inner product
〈φ(x), φ(y)〉 for the pair of graphs can be computationally demanding

The kernel trick avoids the explicit mapping by directly computing the inner
product 〈φ(x), φ(y)〉 via the kernel function

15 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

Let X = R2 and
x = [x1, x2]>, y = [y1, y2]> ∈ X

For any x = [x1, x2]> let φ be a map
φ : R2 → R3 defined as:

φ(x) = [x2
1 ,
√

2x1x2, x
2
2]>

Let also k : X ×X → R a kernel defined
as k(x , y) = 〈x , y〉2. Then

k(x , y) = 〈x , y〉2

= (x1y1 + x2y2)2

= x2
1 y

2
1 + 2x1y1x2y2 + x2

2 y
2
2

= 〈φ(x), φ(y)〉

Hence, using the kernel we can compute the inner product 〈φ(x), φ(y)〉 without
computing φ(x) and φ(y)

16 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Classification using SVM

The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D = {(xi , yi)}Ni=1, xi ∈ X , yi ∈ Y = {−1,+1}, learn a classifier f : X → Y
that predicts the class labels of new objects

SVM belongs to the family of large margin classifiers
↪→ it seeks a hyperplane that separates the instances belonging to class −1
from those belonging to class 1

This1leads to the following dual optimization problem:

maximizeα

N∑
i=1

αi −
1

4

N∑
i=1

N∑
j=1

αiαjyiyj〈φ(xi), φ(xj)〉

subject to
N∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i ∈ {1, . . . ,N}
17 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification using SVM

The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D = {(Gi , yi)}Ni=1, Gi ∈ G, yi ∈ Y = {−1,+1}, learn a classifier f : X → Y
that predicts the class labels of new objects

SVM belongs to the family of large margin classifiers
↪→ it seeks a hyperplane that separates the instances belonging to class −1
from those belonging to class 1

This leads to the following dual optimization problem:

maximizeα

N∑
i=1

αi −
1

4

N∑
i=1

N∑
j=1

αiαjyiyj〈φ(Gi), φ(Gj)〉

subject to
N∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i ∈ {1, . . . ,N}

18 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification using SVM

The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D = {(Gi , yi)}Ni=1, Gi ∈ G, yi ∈ Y = {−1,+1}, learn a classifier f : X → Y
that predicts the class labels of new objects

SVM belongs to the family of large margin classifiers
↪→ it seeks a hyperplane that separates the instances belonging to class −1
from those belonging to class 1

This leads to the following dual optimization problem:

maximizeα

N∑
i=1

αi −
1

4

N∑
i=1

N∑
j=1

αiαjyiyjk(Gi ,Gj)

subject to
N∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i ∈ {1, . . . ,N}

19 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Two Simple Kernels

The two kernels assume node/edge-labeled graphs

Vertex histogram kernel:

The vertex label histogram of a graph G is a vector f = [f1, f2, . . . , fd]>,
such that fi = |{v ∈ V : `(v) = i}| for each i ∈ L

The vertex histogram kernel is then defined as:

k(G ,G ′) = 〈f , f ′〉

Edge histogram kernel:

The edge label histogram of a graph G is a vector f = [f1, f2, . . . , fd]>, such
that fi = |{(v , u) ∈ E : `(v , u) = i}| for each i ∈ L.

The edge histogram kernel is then defined as:

k(G ,G ′) = 〈f , f ′〉

20 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Vertex Histogram Kernel

Example

1
2

31
2

G

1
2

4
3

G′
3

3

The vector representations of the two graphs are:

fG = [2, 2, 1, 0]>

fG ′ = [1, 1, 3, 1]>

Hence, the value of the kernel is:

k(G ,G ′) = 〈fG , fG ′〉 = 7

21 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Expressiveness vs Efficiency

Complete Graph Kernels

Definition (Complete Graph Kernel)

A graph kernel k(G1,G2) = 〈φ(G1), φ(G2)〉 is complete if φ is injective

Hence, for complete graph
kernels, φ(G1) = φ(G2) iff G1

and G2 are isomorphic

G1

G2

G3

G

H
φ(G1)

φ(G2)

φ(G3)

How hard is to compute a complete graph kernel?

Proposition

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem

[Gartner et al., COLT/Kernel’03]
23 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Complete Graph Kernels

Clearly, the vertex and edge histogram kernels are not complete

1
2

31
2

G

1
2

3
2

G′
1

The two graphs are not isomorphic. However

fG = fG ′ = [2, 2, 1, 0]>

24 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Expressiveness vs Efficiency

If the kernel is complete:

Computation is at least as hard as the graph isomorphism problem
↪→ No polynomial algorithm for the graph isomorphism problem is known

If the kernel is not complete:

It can be computed efficiently

We can have φ(G1) = φ(G2) even if G1 � G2

↪→ The kernel is not expressive enough

We are interested in kernels that can be computed in polynomial time (with small
degree)

25 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Expressive Power of Graph Kernels

Capitalize on concepts from property testing to measure the expressive power of
graph kernels

Definition
A graph kernel identifies a property if no two graphs are mapped to the same
feature vector unless they both have or both do not have the property (e. g.,
connected vs disconnected)

Property

Kernel Weisfeiler-Lehman Random Walk Shortest Path Graphlet

subtree kernel kernel kernel kernel

Connectivity X X V X

Planarity X X X X

Bipartiteness X X X X

Triangle-freeness X X X V

Well-established kernels fail to identify fundamental properties
↪→ However, still they achieve state-of-the-art results on many datasets

[Kriege et al., IJCAI’18]26 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Early Days of Graph Kernels

Convolution Kernels in a Nutshell

2

1

3

4

1 2 3 4

1 2

2 3

3 4G

1

2

2

1 3

3

2 4

4

3

Decompose structured objects into comparable parts

Aggregate the values of similarity measures for individual parts

[Haussler. Tech Report’99]

28 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

R-Convolution

Let X be a set of composite objects (e.g., cars), and X̄1, . . . , X̄D be sets of
parts (e.g., wheels, brakes, etc.). All sets are assumed countable.

Let R denote the relation “being part of”:

R(x̄1, . . . , x̄D , x) = 1, iff x̄1, . . . , x̄D are parts of x

The inverse relation R−1 is defined as:

R−1(x) = {x̄ : R(x̄, x) = 1}
In other words, for each object x , R−1(x) is a set of component subsets,
that are part of x

We say that R is finite, if R−1 is finite for all x ∈ X

Example

- x is a string

- Subpart relation R(x̄1, x̄2, x) = 1 iif x̄1, x̄2 are
(non-empty) strings such that x = concat(x̄1, x̄2)

x = table

x̄1 = t, x̄2 = able
x̄1 = ta, x̄2 = ble
x̄1 = tab, x̄2 = le
x̄1 = tabl, x̄2 = e

29 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

R-Convolution Kernel

Definition

Let x , y ∈ X and x̄ and ȳ be the corresponding sets of parts. Let Kd(x̄d , ȳd) be a
kernel between the d-th parts of x and y (1 ≤ d ≤ D). Then the convolution
kernel between x and y is defined as:

K (x , y) =
∑

x̄∈R−1(x)

∑
ȳ∈R−1(y)

D∏
d=1

Kd(xd , yd)

30 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Substructures-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

walks

shortest paths

subtree patterns

graphlets

...

These kernels are instance of the R-convolution framework

31 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets

A graphlet corresponds to a small subgraph

- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4:

G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11

[Shervashidze et al., AISTATS’09]

32 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graphlet Kernel

Let G = {graphlet1, graphlet2, . . . , graphletr} be the set of size-k graphlets

Let also fG ∈ Nr be a vector such that its i-th entry is fG ,i = #(graphleti v G)

The graphlet kernel is defined as:

k(G1,G2) = 〈fG1 , fG2〉

Problems:

There are
(
n
k

)
size-k subgraphs in a graph

Exaustive enumeration of graphlets is very expensive

Requires O(nk) time

For labeled graphs, the number of graphlets increases further

33 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

G1 G2

The vector representations of the graphs above according to the set of graphlets
of size 4 is:

fG1 = [0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0]>

fG2 = [0, 0, 0, 2, 1, 5, 0, 4, 0, 3, 0]>

Hence, the value of the kernel is:

k(G1,G2) = 〈fG1 , fG2〉 = 11

34 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Subtree Kernel

Compares subtree patterns in two
graphs

A subtree pattern is a subgraph of a
graph which has

- a root vertex

- no cycles

⇒

Subtree of height 2 rooted at vertex 1

The height of a subtree is the maximum distance between the root and any other node
in the subtree

If there are cycles in the graph, a vertex can appear more than once in a subtree pattern

- it is treated as a distinct vertex such that the pattern is still a cycle-free tree

For all pairs of nodes v from G1 and u from G2:

- Create the subtree patterns of height h rooted at v , u

- Compare v and u via a kernel function

- Recursively compare all vertices of the subtree patterns of v and u via a kernel
function

[Ramon and Gartner. MGTS’03]

35 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Subtree Kernel

Given a pair of graphs G1 = (V1,E1) and G2 = (V2,E2), the subtree kernel of height h is
defined as:

k(G1,G2) =
∑
v1∈V1

∑
v2∈V2

kh(v1, v2)

where

kh(v1, v2) =


δ
(
`(v1) = `(v2)

)
if h = 0

λv1λv2δ
(
`(v1) = `(v2)

) ∑
R∈M(v1,v2)

∏
(w1,w2)∈R

kh−1(w1,w2) if h > 0

where δ(·, ·) is the Kronecker delta function that equals 1 if its arguments are equal, 0
otherwise, λv1 and λv2 are weights associated with nodes v1 and v2, and

M(v1, v2) =
{
R ⊆ N (v1)×N (v2)|

(
∀(u1, u2), (w1,w2) ∈ R : u1 = w1 ⇔ u2 = w2

)
∧
(
∀(u1, u2) ∈ R : `(u1) = `(u2)

)}

36 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

We are given the following graphs

G1 G2

37 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

Below are given the subtrees of G1 and G2 with height 2 rooted at 1 and a
respectively

We will compute k2(1, a)

38 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

We set λv = 1 for all v ∈ V1 ∪ V2 and we have:

k2(1, a) = δ
(
`(1) = `(a)

) ∑
R∈M(1,a)

∏
(v1,v2)∈R

k1(v1, v2)

- δ
(
`(1) = `(a)

)
= 1 since `(1) = `(a) = l1

- M(1, a) =
{
{(2, b)}

}
since `(2) = `(b) = l2

Hence, we will next compute k1(2, b)

k1(2, b) = δ
(
`(2) = `(b)

) ∑
R∈M(2,b)

∏
(v1,v2)∈R

k0(v1, v2)

- δ
(
`(2) = `(b)

)
= 1 since `(2) = `(b) = l2

- M(2, b) =
{
{(1, a), (3, d)}

}
since `(1) = `(a) = l1 and `(3) = `(d) = l2

39 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

At height 0, we have:
k0(1, a) = k0(3, d) = 1

Therefore,
k1(2, b) = k0(1, a)k0(3, d) = 1

And finally,
k2(1, a) = k1(2, b) = 1

Subtree kernel

Pros: Richer representation of graph structure

Cons: Very high complexity

- O(n2h4d) where d is the maximum degree of the pair of graphs

40 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Shortest Path Kernel

Compares the length of shortest-paths of two graphs

- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

Compute the shortest-paths between all pairs of vertices of the input graph
G using some algorithm (i. e. Floyd-Warshall)

Create a shortest-path graph S which contains the same set of nodes as the
input graph G

All nodes which are connected by a walk in G are linked with an edge in S

Each edge in S is labeled by the shortest distance between its endpoints in G

[Borgwardt and Kriegel. ICDM’05]

41 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

Floyd-transformation

→

G S
42 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Shortest Path Kernel

Given the Floyd-transformed graphs S1 = (V1,E1) and S2 = (V2,E2) of G1 and G2, the
shortest path kernel is defined as:

k(G1,G2) =
∑
e1∈E1

∑
e2∈E2

kedge(e1, e2)

where kedge is a kernel on edges

For unlabeled graphs, it can be:

kedge(e1, e2) = δ(`(e1), `(e2)) =

{
1 if `(e1) = `(e2),
0 otherwise

where `(e) gives the label of edge e

For labeled graphs, it can be:

kedge(e1, e2) =

{
1 if `(e1) = `(e2) ∧ `(e1

1) = `(e1
2) ∧ `(e2

1) = `(e2
2),

0 otherwise

where e1, e2 are the two endpoints of e

43 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

Floyd-transformations

⇒

G1 S1

⇒

G2 S2
44 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

In S1 we have:

- 4 edges with label 1

- 4 edges with label 2

- 2 edges with label 3

In S2 we have:

- 4 edges with label 1

- 2 edges with label 2

Hence, the value of the kernel is:

k(G1,G2) =
∑
e1∈E1

∑
e2∈E2

kedge(e1, e2) = 4 · 4 + 4 · 2 = 24

45 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Shortest Path Kernel

Computing the shortest path kernel includes:

- Computing shortest paths for all pairs of vertices in the two graphs: O(n3)

- Comparing all pairs of shortest paths from the two graphs: O(n4)

Hence, runtime is O(n4)

Problems:

- Very high complexity for large graphs

- Shortest-path graphs may lead to memory problems on large graphs

46 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Cyclic Pattern Kernel

The cyclic pattern kernel

decomposes a graph into cyclic and tree patterns

counts the number of common patterns which occur in two graphs

Cycles:

Let S(G) denote the set of cycles of a graph G

Let also π(C) denote the canonical representation of a cycle C

The set of cyclic patterns of G is defined by C(G) = {π(C) : C ∈ S(G)}
Trees:

By removing all the edges of all cycles, the kernel obtains a set of trees

The kernel computes the canonical representation π(T) of each tree T

The set of tree patterns of G is then defined by T (G) = {π(T) : T is a tree}
The cyclic pattern kernel is then defined as

k(G ,G ′) = |C(G) ∩ C(G ′)|+ |T (G) ∩ T (G ′)|
Problems:

- Number of cyclic and tree patterns can be exponential in the number of vertices n

- Computing the cyclic pattern kernel on general graphs is NP-hard

- Can only be applied to graphs where the number of cycles is polynomially bounded
[Horvath et al., KDD’04]

47 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

2

1 4

1

3 2

4

1

3

3

G G′

Extract cyclic and tree patterns from G ,G ′

48 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

2

1 4

1

3 2

4

1

3

3

G G′C1 C ′
1

C(G) = {π(C1)} = {(1, 2, 3)}
C(G ′) = {π(C ′1)} = {(1, 2, 3)}

48 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

2

1 4

1

3

4

1

3

3

G G′

T ′
1

T ′
2

T1

T (G) = {π(T1)} = {(1, 3, 4)}
T (G ′) = {π(T ′1), π(T ′2)} = {(1, 3), (3, 4)}

48 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

2

1 4

1

3 2

4

1

3

3

G G′

Hence, kernel equal to

k(G ,G ′) = |C(G) ∩ C(G ′)|+ |T (G) ∩ T (G ′)| = 1

48 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Random Walk Kernel

Probably the most well-studied family of graph kernels

Counts matching walks in two graphs

Product graph

Given two graphs G1 = (V1,E1) and G2 = (V2,E2), their direct product G× is a graph
with vertex set:

V× = {(v1, v2) : v1 ∈ V1, v2 ∈ V2} for unlabeled graphs

or

V× = {(v1, v2) : v1 ∈ V1, v2 ∈ V2, `(v1) = `(v2)} for labeled graphs

and edge set:

E× = {((v1, v2), (u1, u2)) : (v1, u1) ∈ E1, (v2, u2) ∈ E2}

vertices: pairs of vertices from G1 and G2

draw edge if corresponding vertices of G1 and G2 are adjacent in G1 and G2

[Gartner et al., COLT/Kernel’03]

49 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

(2, 7)

(1, 7)

1

2

3

4

7

5

6

(1, 4) (2, 4) (3, 4)

(3, 6) (2, 6) (1, 6)

(3, 7)

(2, 5)

(3, 5)

(1, 5)

G×

G1 G2

50 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Random Walk Kernel

The k-th power of the adjacency matrix A of G computes walks of length k
↪→ Ak

ij = number of walks of length k from vertex i to vertex j

Performing a random walk on G× is equivalent to performing a simultaneous
random walk on G1 and G2

- Common walks of length k can be computed using Ak
×

For k ∈ N, the k-step random walk kernel is defined as:

K k
×(G1,G2) =

|V×|∑
i,j=1

[k∑
r=0

λrA
r
×

]
ij

where λ0, λ1, . . . , λk positive weights and A0
× = I

51 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Random Walk Kernel

For k →∞, we obtain the geometric random walk kernel K∞× (G1,G2)

If λr = λr , K∞× (G1,G2) can be directly computed as follows:

K∞× (G1,G2) =

|V×|∑
i,j=1

[∞∑
r=0

λrAr
×

]
ij

= e>(I − λA×)−1e

where e the all-ones vector

Problem: computational complexity is O(n6)

Solution: Efficient computation (almost O(n3)) using:

- Sylvester equations

- Conjugate gradient solver

- Fixed-point iterations

- Spectral decompositions

- λ should be non greater than the largest eigenvalue of A×

[Vishwanathan et al., JMLR 11.Apr (2010)]

52 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Neighborhood Aggregation Approaches

Weisfeiler-Lehman Test of Isomorphism

May answer if two graphs are not isomorphic

Run the Weisfeiler-Lehman algorithm for the following pair of graphs

G1 G2

54 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

G1 G2

55 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

Second step: Compress the augmented labels into new, short labels:

o 1, 11 → 2

o 1, 111 → 3

o 1, 1111 → 4

G1 G256 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

Are the label sets of G1 and G2 identical?

G1 G2
Yes!!!

Continue to the next iteration

57 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 2

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

2,34

G1 G2

58 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 2

Second step: Compress the augmented labels into new, short labels:

o 2, 24 → 5

o 2, 33 → 6

o 2, 34 → 7

o 3, 234 → 9

o 4, 2233 → 10

G1 G2
59 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 2

Are the label sets of G1 and G2 identical?

G1 G2
No!!!

Graphs are not isomorphic

60 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Weisfeiler-Lehman Framework

Let G 1,G 2, . . . ,G h be the graphs emerging from graph G at the iteration
1, 2, . . . , h of the Weisfeiler-Lehman algorithm

Then, the Weisfeiler-Lehman kernel is defined as:

kh
WL(G1,G2) = k(G1,G2) + k(G 1

1 ,G
1
2) + k(G 2

1 ,G
2
2) + . . .+ k(G h

1 ,G
h
2)

where k(·, ·) is a base kernel (e.g. subtree kernel, shortest path kernel, . . .)

At each iteration of the Weisfeiler-Lehman algorithm:

run a graph kernel for labeled graphs

the new kernel values are added to the ones of the previous iteration

[Shervashidze et al., JMLR 12.Sep (2011)]

61 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Weisfeiler-Lehman Subtree Kernel

Counts matching pairs of labels in two graphs after each iteration

G1 G2

62 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Initialization

Feature vector for a graph G :

φ(G) = {#nodes with label 1,#nodes with label 2, . . . ,#nodes with label l}

G1 G2

φ(G1) = [1, 2, 1, 1, 1]> φ(G2) = [1, 1, 2, 1, 1]>

k(G1,G2) = 〈φ(G1), φ(G2)〉 = 7

63 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

G1 G2

64 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

Second step: Compress the augmented labels into new, short labels:

o 1, 24 → 6

o 2, 14 → 7

o 2, 1334 → 8

o 2, 3 → 9

o 3, 24 → 10

o 3, 245 → 11

o 3, 25 → 12

o 4, 1235 → 13

o 5, 34 → 14

G1 G2
65 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Iteration 1

Third step: Compute kernel value for iteration h = 1 and add it to previous kernel value

G1 G2

φ(G 1
1) = [1, 1, 0, 1, 0, 1, 0, 1, 1]> φ(G 1

2) = [1, 0, 1, 0, 1, 0, 1, 1, 1]>

k(G 1
1 ,G

1
2) = 〈φ(G 1

1), φ(G 1
2)〉 = 3

k1
WL(G1,G2) = k(G1,G2) + k(G 1

1 ,G
1
2) = 10

66 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Weisfeiler-Lehman Subtree Kernel

Computing the Weisfeiler-Lehman Subtree Kernel takes O(hm) time

- very efficient

Comparison to other well-known kernels

67 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

More Recent Approaches

Lovász ϑ kernel

Compares graphs based on the orthonormal representation associated with the Lovász
number

- the orthonormal representation captures global graph properties

Orthonormal representation of a graph G = (V ,E):

each vertex i ∈ V is assigned a unit vector ui , ||ui || = 1

let UG = {u1, u2, . . . , un} be the set of all vectors

for i , j ∈ V , if (i , j) 6∈ E , then u>i uj = 0

An interesting orthonormal representation is associated with the Lovász number ϑ(G)

Definition (Lovász number)

For a graph G = (V ,E),

ϑ(G) = min
c,UG

max
i∈V

1

(c>ui)2

where the minimization is taken over all orthonormal representations UG and all unit
vectors c

[Johansson et al., ICML’14]

69 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Lovász ϑ kernel

Given a subset of vertices S ⊆ V , the Lovász value of the subgraph induced by S is:

ϑS(G) = min
c

max
ui∈UG|S

1

(c>ui)2

where UG |S = {ui ∈ UG : i ∈ S}

The Lovász kernel is then defined as:

kϑ(G1,G2) =
∑

S1⊆V1

∑
S2⊆V2

|S1|=|S2|

1

Z
k(ϑS1

(G1), ϑS2
(G2))

where Z =
(
n1
d

)(
n2
d

)
, d = |S1| = |S2| and k(·, ·) is a base kernel (e.g. linear, gaussian)

Problem: Computing the Lovász ϑ kernel is very expensive since → requires computing
the Lovász value for all subgraphs of the two graphs

Solution: Sampling
↪→ Evaluate the Lovász value for a smaller number of subgraphs of size d

70 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Ordered Decomposition DAGs Kernel

General idea:

Decomposes graphs into multisets of directed acyclic graphs (DAGs)

Uses existing tree kernels to compare these DAGs

Generates one unordered rooted DAG for each vertex (keeps only edges belonging to the
shortest paths)

a c

b d

−→

a

cb

d
d

b

a cd

c

a b

d

cb

a

(1) (2) (3) (4)

Then, the kernel is defined as:

k(G ,G ′) =
∑

D∈DD(G)

∑
D′∈DD(G ′)

kDAG (D,D ′)

where DD(G) and DD(G ′) are multisets that contain the DAGs extracted from G and
G ′, respectively, and kDAG is a kernel between DAGs

[Da San Martino et al., SDM’12]

71 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Ordered Decomposition DAGs Kernel

DAGs are unordered (i. e. the set of neighbours of each node is unordered)

There is a vast literature on kernels for ordered trees. Hence, the kernel:

transforms the unordered DAGs to ordered DAGs (based on node labels,
outdegrees of nodes, etc.)

projects subdags to a tree space (see Figure below)

applies a kernel for ordered trees

−→

a

cb

a

cb

d d d

a

cb

d d

−→

a

cb

d d

c

d

b

d
d

c

d

b

d
d d

The kernel between two DAGs is computed as
follows:

kDAG (D,D ′) =
∑
v∈VD

∑
v ′∈VD′

ktree
(
root(v), root(v ′)

)
VD , VD′ : sets of vertices of D and D ′

ktree : kernel between ordered trees

72 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Assignment Kernels

Assignment Kernels

Another design paradigm for developing
kernels

Only a few instances in the literature

They compute a matching between
substructures of one object and
substructures of a second object such that
the overall similarity of the two objects is
maximized

Such a matching can reveal structural
correspondences between the two objects

Graph 1

Graph 2

74 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Pyramid Match Kernel

Embed all vertices in the d-dimensional vector space Rd as follows

compute the eigendecomposition of the adjacency matrix

use the eigenvectors of the d largest in magnitude eigenvalues

Such embeddings capture global properties of graphs

Example: eigenvector corresponding to greatest eigenvalue contains eigenvector
centrality scores of vertices → global property

After embedding: each vertex is a point in the d-dimensional unit hypercube

Then, use pyramid match kernel, a kernel function over unordered feature sets:

- Each feature set is mapped to a multiresolution histogram

- The histogram pyramids are then compared using a weighted histogram
intersection computation

[Nikolentzos et al., AAAI’17]

75 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Node Embeddings

Node embeddings: represent nodes as points in
a vector space

Generate embeddings using eigenvectors of
adjacency matrix A = UΛU>

- i th row ui of U corresponds to embedding
of vertex vi

Such embeddings capture global properties
of graphs

Y-
A
xi
s

Y-
A
xi
s

76 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Bag-of-vectors Representation

Graphs represented as bags-of-vectors:

A graph is represented as a set of vectors:
{u1, . . . , un}

Each vector ui ∈ Rd represents the embedding
of the i th node in the d-dimensional space

This is a natural representation

↪→ There is no canonical ordering for the nodes
of a graph

0.7 -0.2 0.04

77 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Pyramid Match Graph Kernel

The Pyramid Match Graph Kernel

partitions feature space into cells

at level l → 2l cells along each dimension

Number of nodes (i.e. embeddings) that match at l :

I (H l
G1
,H l

G2
) =

2ld∑
i=1

min
(
H l

G1
(i),H l

G2
(i)
)

where H l
G (i) is the number of nodes of G that lie in the i th cell

78 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

level 0

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

level 0

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H0
G1
,H0

G2
) = 9 + . . .

level 0

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H0
G1
,H0

G2
) = 9 + . . .

level 0

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H0
G1
,H0

G2
) = 9 + 9 = 18

level 0

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

level 1

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H1
G1
,H1

G2
) = (5 + 4) + . . .

level 1

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H1
G1
,H1

G2
) = (5 + 4) + . . .

level 1

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H1
G1
,H1

G2
) = (5 + 4) + (5 + 4) = 18

level 1

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

level 2

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H2
G1
,H2

G2
) = (2 + 2 + 1 + 3) + . . .

level 2

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H2
G1
,H2

G2
) = (2 + 2 + 1 + 3) + . . .

level 2

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

I (H2
G1
,H2

G2
) = (2 + 2 + 1 + 3) + (2 + 2 + 1 + 2) = 15

level 2

79 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Pyramid Match Graph Kernel

PM takes a weighted sum of the matches that occur at each level (levels 0 to L):

k∆(G1,G2) = I (HL
G1
,HL

G2
) +

L−1∑
l=0

1

2L−l

(
I (H l

G1
,H l

G2
)− I (H l+1

G1
,H l+1

G2
)
)

= 15 +
1

2
(18− 15) +

1

4
(18− 18) = 16.5

Matches within lower levels weighted less

Only new matches are taken into account

Complexity: O(dnL)

80 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Optimal Assignment Kernel

{x1, . . . , xn} are substructures of G , e. g., nodes

{x ′1, . . . , x ′n′} are substructures of G ′, e. g., nodes

κ is a non-negative kernel comparing substructures

π is a permutation of the integers {1, . . . ,min(n, n′)}

Then, the optimal assignment kernel is defined as follows:

k(G ,G ′) =


max
π

n∑
i=1

κ(xi , x
′
π(i)), if n′ > n

max
π

n′∑
j=1

κ(xπ(j), x
′
j), otherwise

However, not positive semidefinite in general

[Frohlich et al., ICML’05]

81 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Optimal Assignment Kernel

{x1, . . . , xn} are substructures of G , e. g., nodes

{x ′1, . . . , x ′n′} are substructures of G ′, e. g., nodes

κ is a non-negative kernel comparing substructures

π is a permutation of the integers {1, . . . ,min(n, n′)}

Then, the optimal assignment kernel is defined as follows:

k(G ,G ′) =


max
π

n∑
i=1

κ(xi , x
′
π(i)), if n′ > n

max
π

n′∑
j=1

κ(xπ(j), x
′
j), otherwise

However, not positive semidefinite in general

[Vert. arXiv:0801.4061]

81 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Valid Optimal Assignment Kernels

Let X be a set, and [X]n denote the set of all n-element subsets of X

Let also X ,X ′ ∈ [X]n for n ∈ N, and B(X ,X ′) denote the set of all
bijections between X and X ′

The optimal assignment kernel on [X]n is defined as

K k
B(X ,X ′) = max

B∈B(X ,X ′)

∑
(x,x′)∈B

k(x , x ′)

where k is a kernel between the elements of X and X ′

The above function KB(X ,X ′) is a valid kernel only if the base kernel k is
strong

Definition (Strong Kernel)

A function k : X × X → R≥0 is called strong kernel if
k(x , y) ≥ min{k(x , z), k(z , y)} for all x , y , z ∈ X .

Strong kernels are equivalent to kernels obtained from a hierarchy defined on set
X

[Kriege et al., NIPS’16]

82 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Frameworks

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

Very large feature space, hence, unlikely that two graphs will contain similar
substructures

However, substructures (i. e. features) often related to each other

Kernel value between pairs of graphs � kernel value between a graph and itself

For example, when the features correspond to large graphlets (e. g., k ≥ 5), two graphs
may be composed of many similar graphlets, but not any identical

g1

g2

g3

g′1

g′2

g′3

g1, g2, g3 extracted from G

g ′1, g
′
2, g
′
3 extracted from G ′

g1 nearly isomorphic to g ′1

g2 nearly isomorphic to g ′2

g3 nearly isomorphic to g ′3

84 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

Very large feature space, hence, unlikely that two graphs will contain similar
substructures

However, substructures (i. e. features) often related to each other

Kernel value between pairs of graphs � kernel value between a graph and itself

This leads to the diagonal dominance problem

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

The resulting kernel matrix is close to the identity matrix

84 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

A Structural Smoothing Framework

To deal with diagonal dominance, it applies smoothing

First construct a Directed Acyclic Graph
(DAG):

each vertex corresponds to a
substructure

for each substructure s of size k
determine all possible substructures of
size k − 1 that s can be reduced into

these correspond to the parents of s

draw a weighted directed edge from
each parent to its children vertices

DAG provides a topological ordering of the
vertices

- all descendants of a given substructure
at depth k − 1 are at depth k

G1 G2 G3 G4

G5 G6 G7

G1

G2 G3

G4 G5 G6 G7

DAG for graphlets of size k ≤ 3

[Yanardag and Vishwanathan, NIPS’15]

85 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

A Structural Smoothing Framework

The structural smoothing for a substructure s at level k is defined as:

Pk
SS(s) =

max(cs − d , 0)

m
+

dmd

m

∑
p∈Ps

Pk−1
SS (p)

wps∑
c∈Cp wpc

where

- cs denotes the number of times substructure s appears in the graph

- m =
∑

i ci denotes the total number of substructures present in the graph

- d > 0 is a discount factor

- md := |{i : ci > d}| is the number of substructures whose counts are larger than d

- wij denotes the weight of the edge connecting vertex i to vertex j

- Ps denotes the parents of vertex s

- Cp the children of vertex p

Even if the graph does not contain a substructure s (cs = 0), its value in the feature
vector can be greater than 0 (PSS(s) > 0)

86 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

⇒

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Kernel matrix before
smoothing

Kernel matrix after
smoothing

87 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Deep Graph Kernels

To deal with diagonal dominance, the deep graph kernels framework computes the
kernel as follows:

k(G ,G ′) = φ(G)> M φ(G ′)

M: a positive semidefinite matrix that encodes the relationships between substructures
Each component of φ(G), φ(G ′) corresponds to a substructure (e. g., the complete
graphlet of size 5)

Matrix M is learned using techniques inspired from the field of natural language
processing:

An embedding for each substructure is generated using the CBOW or Skip-gram
model

Then M corresponds to the inner products of these embeddings

However, unlike words in documents, substructures of graphs do not have a linear
co-occurrence relationship

Such co-occurrence relationships are manually defined for 3 kernels:
(1) the Weisfeiler-Lehman subtree kernel
(2) the graphlet kernel
(3) the shortest path kernel

[Yanardag and Vishwanathan, KDD’15]

88 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

A Degeneracy Framework for Graph Comparison

Definition (k-core)

The k-core of a graph is defined as a maximal subgraph in which every vertex is
connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

3-core

2-core

1-core

0-core

The set of all k-cores forms a nested se-
quence of subgraphs

The degeneracy δ∗(G) is defined as the maximum k for which graph G contains a
non-empty k-core subgraph

[Nikolentzos et al., IJCAI’18]

89 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Degeneracy Framework for Graph Comparison

Idea: use the nested sequence of subgraphs generated by k-core decomposition
to capture structure at multiple different scales

The core variant of the base kernel k is defined as:

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + . . .+ k(Cδ∗min

,C ′δ∗min
)

where δ∗min is the minimum of the degeneracies of the two graphs, and
C0,C1, . . . ,Cδ∗min

and C ′0,C
′
1, . . . ,C

′
δ∗min

are the 0-core, 1-core,. . ., δ∗min-core

subgraphs of G and G ′, respectively

The degeneracy framework can:

increase the expressive power of existing algorithms

be applied to any algorithm that compares graphs

90 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

G G ′

kc(G ,G ′) = k(C0,C
′
0)

91 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

C0 C ′0

kc(G ,G ′) = k(C0,C
′
0)

91 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

C1 C ′1

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1)

91 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

C2 C ′2

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2)

91 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

C3 C ′3

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2) + k(C3,C

′
3)

91 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Successive Embeddings

Graph kernels compute implicitly the inner product between the representations of
input graphs in H

- Equivalent to computing the
linear kernel on feature space H

- Linear kernel limits
expressiveness of derived
representations

G1

G2

G3

G

H
φ(G1)

φ(G2)
φ(G3)

Idea: Obtain complex kernels by stacking simpler kernels on top of one another

[Nikolentzos et al., CIKM’18]

92 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Successive Embeddings

Embedding 1: Embed graphs in a Hilbert space H1 using a graph kernel k

Embedding 2: Embed emerging representations φ(G), φ(G ′) into another
Hilbert space H2 using kernels for vector data:

1 Polynomial kernel : kP(φ(G), φ(G ′)) =
(
〈φ(G), φ(G ′)〉

)d
, d ∈ N

2 Gaussian kernel : kG (φ(G), φ(G ′)) = exp
(
− ||φ(G)−φ(G ′)||2

2σ2

)
, σ > 0

Problem: Usually φ(G) and φ(G ′) not computed explicitly. How to apply
Embedding 2?
↪→ Use an implicit computation scheme

The two kernels for vector data can be computed as:

1 Polynomial kernel :

kP(φ(G), φ(G ′)) =
(
〈φ(G), φ(G ′)〉

)d
=
(
k(G ,G ′)

)d
, d ∈ N

2 Gaussian kernel :
kG (φ(G), φ(G ′)) = exp

(
− k(G ,G)−2k(G ,G ′)+k(G ′,G ′)

2σ2

)
, σ > 0

where k is the employed graph kernel (i.e. the first kernel in the sequence)

93 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Successive Embeddings Example

Figure below illustrates a sequence of two embeddings

Separation of the data points associated with the two classes progressively
increased

H1 H2

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ2

φ

94 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Applications of Graph Kernels

Applications

Bioinformatics [Borgwardt et al., Bioinformatics 21(suppl 1); Borgwardt et al., PSB’07;

Sato et al., BMC bioinformatics 9(1)]

Chemoinformatics [Swamidass et al., Bioinformatics 21(suppl 1); Ralaivola et al., Neural

Networks 18(8); Mahé et al., JCIM 45(4); Ceroni et al., Bioinformatics 23(16); Mahé and

Vert, Machine Learning 75(1)]

Computer Vision [Harchaoui and Bach, CVPR’07; Bach, ICML’08; Wang and Sahbi.

CVPR’13; Stumm et al., CVPR’16]

Cybersecurity [Anderson et al., JCV 7(4); Gascon et al., AISec’13; Narayanan et al.,

IJCNN’16]

Natural Language Processing [Glavas and Snajder, ACL’13; Bleik et al., TCBB 10(5);

Nikolentzos et al., EMNLP’17]

Social Networks [Yanardag and Vishwanathan, KDD’15]

...

96 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Perform graph classification to predict the
function of proteins

[Borgwardt et al., Bioinformatics 21(suppl 1)]97 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Chemical Compound Classification

Represent each chemical compound as a graph

⇒

Perform graph classification to predict if a
chemical compound displays the desired behavior
against the specific biomolecular target or not

[Mahé et al., JCIM 45(4)]

98 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Malware Detection

Given a computer program, create its control flow graph

Perform graph classification to predict if there
is malicious code inside the program or not

[Anderson et al., JCV 7(4)]
99 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph-Of-Words

Each document is represented as a graph
G = (V ,E) consisting of a set V of vertices and
a set E of edges between them

vertices → unique terms

edges → co-occurrences within a fixed-size
sliding window

no edge weight

no edge direction

Graph representation more flexible than n-grams. Takes into account

word inversion

subset matching

e. g., “article about news” vs. “news article”

[Rousseau and Vazirgiannis., CIKM’13]
100 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Custom Shortest Path Kernel

Transforms the original graphs into shortest-paths graphs
↪→ Edges correspond to shortest paths of length at most d in original graph

Given the SP-transformed graphs C1 = (V1,E1) and C2 = (V2,E2) of G1 and G2, the
shortest path kernel is defined as:

k(G1,G2) =

∑
v1∈V1,v2∈V2

knode(v1, v2) +
∑

e1∈E1,e2∈E2
k (1)
walk(e1, e2)

norm

where knode is a kernel for comparing two vertices, k (1)
walk a kernel on edge walks of length

1 and norm a normalization factor. Specifically:

knode(v1, v2) =

{
1 if `(v1) = `(v2),
0 otherwise

k (1)
walk(e1, e2) = knode(u1, u2) kedge(e1, e2) knode(v1, v2)

kedge(e1, e2) =

{
`(e1) `(e2) if e1 ∈ E1 ∧ e2 ∈ E2,

0 otherwise

[Nikolentzos et al., EMNLP’17]

101 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

d1: “barclays bank cut its base lending rate”

d2: “base rate of barclays bank dropped”

cut

bank

barclays rate

base

lending

its
barclays

bank

dropped

of

rate

base

G1 G2

102 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

SP-transformation (d = 2)

cut

bank

barclays rate

base

lending

its

1

1

1
1

1

1

1
2

1
2

1
2

1
2

1
2

barclays

bank

dropped

of

rate

base

1

1

1

1

1

1
2

1
2

1
2

1
2

C1 C2

102 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

∑
v1∈V1,v2∈V2

knode(v1, v2) = 4

cut

bank

barclays rate

base

lending

its

1

1

1
1

1

1

1
2

1
2

1
2

1
2

1
2

barclays

bank

dropped

of

rate

base

1

1

1

1

1

1
2

1
2

1
2

1
2

C1 C2

102 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

∑
e1∈E1,e2∈E2

k
(1)
walk(e1, e2) = 1 + 1

2 = 3
2

cut

bank

barclays rate

base

lending

its

1

1

1
1

1

1

1
2

1
2

1
2

1
2

1
2

barclays

bank

dropped

of

rate

base

1

1

1

1

1

1
2

1
2

1
2

1
2

C1 C2

102 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Example

norm = 13.07

k(G1,G2) =
4+ 3

2

13.07 = 0.42

cut

bank

barclays rate

base

lending

its

1

1

1
1

1

1

1
2

1
2

1
2

1
2

1
2

barclays

bank

dropped

of

rate

base

1

1

1

1

1

1
2

1
2

1
2

1
2

C1 C2

102 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Text Categorization

Method

Dataset WebKB News Subjectivity Amazon Polarity

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

n = 1 90.26 89.23 81.10 77.64 89.92 89.92 91.88 91.88 76.27 76.26

Dot n = 2 90.47 89.50 80.91 77.32 91.01 91.01 92.00 92.02 77.46 77.45

product n = 3 90.26 89.17 80.72 77.10 90.90 90.90 91.81 91.85 77.41 77.40

n = 4 89.40 88.13 80.31 76.51 90.39 90.39 91.31 91.33 77.19 77.18

Cosine

n = 1 92.48 91.88 81.17 77.66 90.03 90.02 94.00 94.00 76.70 76.69

n = 2 93.05 92.75 81.49 77.97 90.94 90.94 94.13 94.13 77.56 77.56

n = 3 92.98 92.59 80.97 77.38 90.99 90.99 94.19 94.18 77.65 77.65

n = 4 92.48 92.08 80.76 77.09 90.76 90.75 94.13 94.13 77.53 77.53

Tanimoto

n = 1 90.62 89.83 81.55 78.15 90.94 90.93 92.25 92.26 77.49 77.48

n = 2 90.40 89.45 80.75 77.00 90.61 90.60 91.81 91.85 77.35 77.35

n = 3 92.41 91.80 79.80 75.75 90.21 90.20 93.44 93.47 76.48 76.48

n = 4 91.76 90.84 78.99 74.83 89.53 89.52 93.00 93.00 75.86 75.86

DCNN 89.18 87.99 79.91 76.15 90.26 90.26 91.81 91.81 73.26 73.26

CNN
static,rand > 1 day 77.57 73.37 87.16 87.15 88.81 88.82 71.50 71.50

non-static,rand > 1 day 81.13 77.49 89.61 89.60 93.56 93.56 76.54 76.53

SPGK

d = 1 93.27 92.78 81.04 77.49 91.48 91.48 94.00 94.01 77.76 77.75

d = 2 93.70 93.36 80.89 77.29 91.46 91.46 94.13 94.13 77.89 77.88

d = 3 92.91 92.33 80.78 77.03 91.37 91.37 94.44 94.44 77.61 77.60

d = 4 92.91 92.23 80.97 77.30 91.18 91.18 94.63 94.63 77.80 77.80

103 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Image Classification

Represent each image as a graph based on its segmentation mosaic

Perform graph classification to categorize
images

[Harchaoui and Bach, CVPR’07]

104 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Experimental Evaluation

GraKeL

Python library for graph kernels

Contains implementations of a large
number of graph kernels

Compatible with scikit-learn

Project repository:
https://github.com/ysig/GraKeL

[Siglidis et al., arXiv:1806.02193]

106 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

https://github.com/ysig/GraKeL

Evaluation

Standard datasets from graph classification containing:

unlabeled graphs

node-labeled graphs

node-attributed graphs

Classification using:

SVM → precompute kernel matrix

Hyperparameters of both SVM (i. e. C) and graph kernels optimized on training
set using cross-validation

Perform 10 times 10-fold cross validation and report:

Average accuracy over the 10 repetitions

Standard deviation over the 10 repetitions

107 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification (Node-Labeled Graphs)

Kernels
DATASETS

MUTAG ENZYMES NCI1 PTC-MR

Vertex Histogram 71.87 (± 1.83) 16.87 (± 1.56) 56.09 (± 0.35) 58.09 (± 0.62)
Random Walk 82.24 (± 2.87) 12.90 (± 1.42) TIMEOUT 51.26 (± 2.30)
Shortest Path 82.54 (± 1.00) 40.13 (± 1.34) 72.25 (± 0.28) 59.26 (± 2.34)
WL Subtree 84.00 (± 1.25) 53.15 (± 1.22) 85.03 (± 0.20) 63.28 (± 1.34)
WL Shortest Path 82.29 (± 1.93) 28.23 (± 1.00) 61.43 (± 0.32) 55.51 (± 1.68)
WL Pyramid Match 88.60 (± 0.95) 57.72 (± 0.84) 85.31 (± 0.42) 64.52 (± 1.36)
Neighborhood Hash 87.74 (± 1.17) 43.43 (± 1.45) 74.81 (± 0.37) 60.50 (± 2.10)
Neighborhood Subgraph Pairwise Distance 82.46 (± 1.55) 41.97 (± 1.66) 74.36 (± 0.31) 60.04 (± 1.15)
Ordered DAGs Decomposition 79.01 (± 2.04) 31.87 (± 1.35) 75.03 (± 0.45) 59.08 (± 1.85)
Pyramid Match 84.72 (± 1.67) 42.67 (± 1.78) 73.11 (± 0.49) 57.99 (± 2.45)
GraphHopper 82.11 (± 2.13) 36.47 (± 2.13) 71.36 (± 0.13) 55.64 (± 2.03)
Subgraph Matching 84.04 (± 1.55) 35.68 (± 0.80) TIMEOUT 57.91 (± 1.73)
Propagation 77.23 (± 1.22) 44.48 (± 1.63) 82.12 (± 0.22) 59.30 (± 1.24)
Multiscale Laplacian 86.11 (± 1.60) 53.08 (± 1.53) 79.40 (± 0.47) 59.95 (± 1.71)
CORE WL 85.90 (± 1.44) 52.37 (± 1.29) 85.12 (± 0.21) 63.03 (± 1.67)
CORE Shortest Path 85.13 (± 2.46) 41.55 (± 1.66) 73.87 (± 0.19) 58.21 (± 1.87)

Kernels
DATASETS

Avg.
D&D PROTEINS AIDS Rank

Vertex Histogram 74.83 (± 0.40) 70.93 (± 0.28) 79.78 (± 0.13) 13.7
Random Walk OUT-OF-MEM 69.31 (± 0.29) 79.52 (± 0.58) 15.0
Shortest Path 78.93 (± 0.53) 75.92 (± 0.35) 99.41 (± 0.12) 6.7
WL Subtree 78.88 (± 0.46) 75.45 (± 0.33) 98.51 (± 0.05) 4.8
WL Shortest Path 75.66 (± 0.42) 71.88 (± 0.22) 99.36 (± 0.02) 11.8
WL Pyramid Match OUT-OF-MEM 75.63 (± 0.49) 99.37 (± 0.04) 2.1
Neighborhood Hash 76.02 (± 0.94) 75.55 (± 1.00) 99.54 (± 0.02) 5.0
Neighborhood Subgraph Pairwise Distance 78.76 (± 0.56) 73.17 (± 0.76) 98.04 (± 0.20) 8.0
Ordered DAGs Decomposition 75.82 (± 0.54) 70.49 (± 0.64) 90.75 (± 0.30) 11.4
Pyramid Match 76.98 (± 0.84) 71.90 (± 0.79) 99.56 (± 0.08) 8.2
GraphHopper TIMEOUT 74.19 (± 0.42) 99.57 (± 0.02) 9.6
Subgraph Matching OUT-OF-MEM OUT-OF-MEM 91.96 (± 0.18) 11.2
Propagation 78.43 (± 0.55) 72.71 (± 0.62) 96.51 (± 0.38) 8.4
Multiscale Laplacian 78.28 (± 0.99) 73.89 (± 0.93) 98.48 (± 0.12) 6.0
CORE WL 78.91 (± 0.50) 75.46 (± 0.38) 98.70 (± 0.09) 4.1
CORE Shortest Path 79.33 (± 0.65) 76.31 (± 0.40) 99.47 (± 0.05) 5.5

[Nikolentzos et al., arXiv:1904.12218]
108 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Running Time (Node-Labeled Graphs)

Kernels
DATASETS

MUTAG ENZYMES NCI1 PTC-MR

Vertex Histogram 0.01s 0.04s 0.84s 0.02s
Random Walk 1m 46.86s 4h 24m 16.26s TIMEOUT 6m 41.20s
Shortest Path 0.92s 11.03s 1m 9.69s 1.52s
WL Subtree 0.21s 3.81s 7m 5.33s 0.55s
WL Shortest Path 7.02s 1m 27.07s 15m 29.50s 12.55s
WL Pyramid Match 3m 42.07s 1h 5m 37.26s 13h 31m 34.36s 11m 8.16s
Neighborhood Hash 0.40s 11.17s 7m 4.54s 1.31s
Neighborhood Subgraph Pairwise Distance 4.05s 27.02s 6m 9.81s 7.66s
Ordered DAGs Decomposition 1.54s 50.05s 46m 2.13s 4.03s
Pyramid Match 2.59s 31.38s 37m 37.50s 11.35s
GraphHopper 24.70s 15m 38.33s 3h 45m 8.31s 1m 33.90s
Subgraph Matching 1m 57.25s 3h 25m 43.59s TIMEOUT 4m 19.80s
Propagation 0.48s 12.05s 10m 27.83s 1.81s
Multiscale Laplacian 10m 3.15s 56m 43.76s 5h 30m 56.29s 19m 22.43s
CORE WL 0.55s 12.52s 14m 30.56s 17m 2.27s
CORE Shortest Path 2.69s 48.02s 3m 16.54s 3.97s

Kernels
DATASETS

Avg.
D&D PROTEINS AIDS Rank

Vertex Histogram 0.24s 0.10s 0.25s 1.0
Random Walk OUT-OF-MEM 51m 10.11s 1h 51m 56.47s 13.6
Shortest Path 55m 58.79s 1m 18.91s 13.93s 4.4
WL Subtree 5m 52.96s 32.48s 40.49s 2.8
WL Shortest Path 7h 27m 21.90s 8m 3.68s 1m 33.46s 10.1
WL Pyramid Match OUT-OF-MEM 5h 37m 10.33s 5h 55m 20.37s 14.6
Neighborhood Hash 6m 17.21s 41.81s 33.30s 3.5
Neighborhood Subgraph Pairwise Distance 4h 36m 28.97s 9m 9.80s 1m 12.31s 8.1
Ordered DAGs Decomposition 27m 59.18s 4m 7.81s 2m 5.32s 8.7
Pyramid Match 5m 48.51s 1m 26.82s 2m 48.04s 8.0
GraphHopper TIMEOUT 3h 43m 1.54s 38m 51.78s 12.1
Subgraph Matching OUT-OF-MEM OUT-OF-MEM 4h 26m 46.71s 14.0
Propagation 9m 34.30s 51.20s 1m 43.62s 5.5
Multiscale Laplacian 3h 40m 30.72s 2h 20m 39.57s 1h 11m 58.23s 13.2
CORE WL 17m 2.27s 1m 16.74s 54.79s 7.2
CORE Shortest Path 5h 2m 39.71s 3m 31.97s 40.11s 7.2

[Nikolentzos et al., arXiv:1904.12218]
109 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification (Unlabeled Graphs)

Kernels

DATASETS
Avg.

IMDB IMDB REDDIT REDDIT REDDIT
COLLAB Rank

BINARY MULTI BINARY MULTI-5K MULTI-12K

Vertex Histogram 46.54 (± 0.80) 29.59 (± 0.40) 47.32 (± 0.66) 17.92 (± 0.42) 21.73 (± 0.00) 52.00 (± 0.00) 12.4

Random Walk 63.87 (± 1.06) 45.75 (± 1.03) TIMEOUT TIMEOUT OUT-OF-MEM 68.00 (± 0.07) 7.6

Shortest Path 55.18 (± 1.23) 39.37 (± 0.84) 81.67 (± 0.23) 47.90 (± 0.13) TIMEOUT 58.80 (± 0.08) 8.3

Graphlet 65.19 (± 0.97) 39.82 (± 0.89) 76.80 (± 0.27) 34.06 (± 0.38) 23.08 (± 0.11) 70.63 (± 0.25) 7.0

WL Subtree 72.47 (± 0.50) 50.76 (± 0.30) 67.96 (± 1.01) OUT-OF-MEM OUT-OF-MEM 78.12 (± 0.17) 4.2

WL Shortest Path 55.87 (± 1.19) 39.63 (± 0.68) TIMEOUT TIMEOUT TIMEOUT 58.80 (± 0.06) 10.8

Neighborhood Hash 73.34 (± 0.98) 50.68 (± 0.50) 81.65 (± 0.28) 49.36 (± 0.18) 39.62 (± 0.19) 79.99 (± 0.39) 2.3

Neighborhood Subgraph Pairwise Distance 68.81 (± 0.71) 45.10 (± 0.63) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 7.5

Lovász-ϑ 49.21 (± 1.33) 39.33 (± 0.95) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 15.0

SVM-ϑ 51.35 (± 1.54) 38.40 (± 0.60) 74.54 (± 0.27) 29.65 (± 0.53) 23.04 (± 0.18) 55.72 (± 0.31) 10.1

Ordered DAGs Decomposition 64.70 (± 0.73) 46.80 (± 0.51) 50.61 (± 1.06) 42.99 (± 0.09) 29.83 (± 0.08) 52.00 (± 0.00) 7.5

Pyramid Match 66.67 (± 1.45) 45.25 (± 0.79) 86.77 (± 0.42) 48.22 (± 0.29) 41.15 (± 0.17) 74.57 (± 0.34) 4.1

GraphHopper 57.69 (± 1.31) 40.04 (± 0.91) TIMEOUT TIMEOUT TIMEOUT 60.21 (± 0.10) 9.3

Subgraph Matching TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT –

Propagation 51.15 (± 1.67) 33.15 (± 1.08) 63.41 (± 0.77) 34.32 (± 0.61) 24.07 (± 0.11) 58.67 (± 0.15) 10.1

Multiscale Laplacian 70.94 (± 0.93) 47.92 (± 0.87) 89.44 (± 0.30) 35.01 (± 0.65) OUT-OF-MEM 75.29 (± 0.49) 3.8

CORE WL 73.31 (± 1.06) 50.79 (± 0.54) 72.82 (± 1.05) OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 3.8

CORE Shortest Path 69.37 (± 0.68) 50.79 (± 0.57) 90.76 (± 0.14) TIMEOUT OUT-OF-MEM TIMEOUT 2.5

[Nikolentzos et al., arXiv:1904.12218]

110 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Running Time (Unlabeled Graphs)

Kernels

DATASETS
Avg.

IMDB IMDB REDDIT REDDIT REDDIT
COLLAB Rank

BINARY MULTI BINARY MULTI-5K MULTI-12K

Vertex Histogram 0.07s 0.15s 0.67s 2.20s 6.37s 1.12s 1.0

Random Walk 7m 20.94s 13m 40.75s TIMEOUT TIMEOUT TIMEOUT 13h 38m 11.49s 13.6

Shortest Path 11.51s 7.92s 4h 48m 11.19s 12h 40m 19.50s TIMEOUT 1h 9m 5.50s 7.0

Graphlet 22m 45.89s 21m 44.30s 44m 45.42s 44m 6.52s 53m 14.22s 2h 58m 1.14s 9.5

WL Subtree 4.49s 6.16s 16m 2.65s OUT-OF-MEM OUT-OF-MEM 38m 42.24s 4.2

WL Shortest Path 1m 32.66s 1m 40.46s TIMEOUT TIMEOUT TIMEOUT 10h 27m 41.97s 10.3

Neighborhood Hash 21.83s 26.07s 23m 3.42s 2h 44m 44.66s 9h 11m 23.67s 35m 49.96s 6.3

Neighborhood Subgraph Pairwise Distance 4m 18.12s 2m 49.45s TIMEOUT TIMEOUT TIMEOUT TIMEOUT 12.5

Lovász-ϑ 5h 19m 27.17s 6h 33m 6.55s TIMEOUT TIMEOUT TIMEOUT TIMEOUT 17.0

SVM-ϑ 39.40s 1m 0.57s 19m 24.73s 23m 14.31s 52m 10.36s 5m 57.31s 5.3

Ordered DAGs Decomposition 4.47s 4.85s 1m 53.50s 4m 48.92s 8m 20.66s 2h 1m 9.55s 3.1

Pyramid Match 1m 28.02s 2m 13.01s 10m 9.24s 51m 45.10s 3h 50m 38.60s 36m 26.14s 7.0

GraphHopper 2m 11.15s 2m 3.71s TIMEOUT TIMEOUT TIMEOUT 5h 51m 32.27s 10.3

Subgraph Matching TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT –

Propagation 7.41s 14.26s 1m 23.42s 5m 49.01s 20m 41.73s 4m 34.26s 3.1

Multiscale Laplacian 1h 22m 6.04s 1h 41m 13.74s 8h 21m 18.76s 47m 51.91s OUT-OF-MEM 9h 24m 15.22s 10.0

CORE WL 36.74s 1m 1.82s 45m 1.09s OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 8.0

CORE Shortest Path 3m 58.29s 4m 29.55s 10h 37m 3.94s TIMEOUT OUT-OF-MEM TIMEOUT 12.3

[Nikolentzos et al., arXiv:1904.12218]

111 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Graph Classification (Node-Attributed Graphs)

Kernels

DATASETS
Avg.

ENZYMES PROTEINS full SYNTHETICnew Synthie BZR Rank

Shortest Path TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –

Subgraph Matching TIMEOUT OUT-OF-MEM TIMEOUT TIMEOUT 80.52 (± 0.43) 3.0

GraphHopper 66.25 (± 1.24) 72.49 (± 0.34) 76.43 (± 1.97) 71.75 (± 1.65) 82.58 (± 1.05) 1.0

Propagation 15.42 (± 1.00) 59.56 (± 0.01) 47.90 (± 3.26) 48.90 (± 2.05) 78.76 (± 0.02) 3.0

Multiscale Laplacian 65.55 (± 0.93) 70.55 (± 0.99) 47.90 (± 2.13) 69.42 (± 1.98) 82.33 (± 1.29) 2.0

[Nikolentzos et al., arXiv:1904.12218]

112 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Running Time (Node-Attributed Graphs)

Kernels

DATASETS
Avg.

ENZYMES PROTEINS full SYNTHETICnew Synthie BZR Rank

Shortest Path TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT –

Subgraph Matching TIMEOUT OUT-OF-MEM TIMEOUT TIMEOUT 8h 2m 3.79s 4.0

GraphHopper 16m 36.12s 5h 16m 46.48s 13m 54.36s 24m 20.00s 4m 24.79s 2.6

Propagation 15.85s 1m 43.58s 13.44s 34.68s 10.40s 1.0

Multiscale Laplacian 26.05s 4h 29m 35.69s 2h 54m 31.22s 15m 11.29s 49m 33.60s 2.4

[Nikolentzos et al., arXiv:1904.12218]

113 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

THANK YOU !
http://www.lix.polytechnique.fr/dascim/

Software and data sets:
http://www.lix.polytechnique.fr/dascim/software datasets/

Preprint available at: https://arxiv.org/pdf/1904.12218.pdf

114 / 125 M. Vazirgiannis & G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

http://www.lix.polytechnique.fr/dascim/
https://arxiv.org/pdf/1904.12218.pdf

	Expressiveness vs Efficiency
	Early Days of Graph Kernels
	Neighborhood Aggregation Approaches
	More Recent Approaches
	Assignment Kernels
	Kernels for Graphs with Continuous Attributes
	Frameworks
	Applications
	Experimental Evaluation

