Machine Learning for Graphs based on Kernels © DaSciM

M. Vazirgiannis \& G. Nikolentzos
Google Scholar: https://bit.ly/2rwmvQU
Twitter: @mvazirg

December, 2019

Graphs Are Everywhere

Why graphs?

Motivation - Text Categorization

Given a text, create a graph where
 - vertices correpond to terms

- two terms are linked to each other if they co-occur within a fixed-size sliding window

[^0]3/125 M. Vazirgiannis \& G. Nikolentzos Machine Learning for Graphs based on Kernels @ DaSciM

Motivation - Text Categorization

Intuition: documents sharing same subgraphs belong to the same class

Given a set of documents and their graph representations:

Extract frequent subgraphs

- from the set of graphs
or
- from the set of the main cores of the graphs

Then, use frequent subgraphs as features for classification

Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

- structure
- sequence
- chemical properties

Use graph kernels to

- measure structural similarity between proteins
- predict the function of proteins

Borgwardt et al. "Protein function prediction via graph kernels". Bioinformatics 21

Motivation - Chemical Compound Classification

Represent each chemical compound as a graph

\rightarrow

Use a frequent subgraph discovery algorithm to discover the substructures that occur above a certain support constraint

Perform feature selection
Use the remaining substructures as features for classification

Motivation - Malware Detection

Given a computer program, create its control flow graph
processed_paǵes.append(pröcessed_page)
visited +=1
links = extract_links(html_code)
for link in links:
if link not in visited links:
links_to_visit.append (link)
return create vocabulary(processed_pages)
def parse page(html code):
punct $=$ re.compile $\left(r^{\prime}\left(\text { /^A-Za-Z0-9] }^{\prime}\right)^{\prime}\right)$
soup $=$ BeautifulSoup(html_code, 'html. parser')
text $=$ soup.get text()
processed text $=$ punct. sub (" " ", text)
tokens $=$ processed_text.split()
tokens $=$ [token.lower() for token in tokens]
return tokens
def create vocabulary(processed_pages) :
vocabuTary $=\{ \}$
for processed page in processed pages:
for token in processed page:
if token in vocabulary:
vocabulary[token] $+=1$
else:
vocabulary[token] = 1
return vocabulary

Compare the control flow graph of the problem against the set of control flow graphs of known malware

If it contains a subgraph isomporphic to these graphs \rightarrow malicious code inside the program

Gascon et al. "Structural detection of android malware using embedded call graphs". In AISec'13
$7 / 125 \quad$ M. Vazirgiannis \& G. Nikolentzos \quad Machine Learning for Graphs based on Kernels @ DaSciM

Machine Learning on Graphs

Machine learning tasks on graphs:

- Node classification: given a graph with labels on some nodes, provide a high quality labeling for the rest of the nodes
- Graph clustering: given a graph, group its vertices into clusters taking into account its edge structure in such a way that there are many edges within each cluster and relatively few between the clusters
- Link Prediction: given a pair of vertices, predict if they should be linked with an edge
- Graph classification: given a set of graphs with known class labels for some of them, decide to which class the rest of the graphs belong

Graph Classification

- Input data $G \in \mathcal{X}$
- Output $y \in\{-1,1\}$
- Training set $\mathcal{D}=\left\{\left(G_{1}, y_{1}\right), \ldots,\left(G_{n}, y_{n}\right)\right\}$
- Goal: estimate a function $f: \mathcal{X} \rightarrow \mathbb{R}$ to predict y from $f(x)$

Graph Comparison

Definition (Graph Comparison Problem)

Given two graphs G_{1} and G_{2} from the space of graphs \mathcal{G}, the problem of graph comparison is to find a mapping

$$
s: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}
$$

such that $s\left(G_{1}, G_{2}\right)$ quantifies the similarity of G_{1} and G_{2}.

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as clustering and classification
- Most machine learning algorithms make decisions based on the similarities or distances between pairs of instances (e.g. k-nn)

Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete

- subgraph isomorphism
- finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between two graphs in polynomial time

Graphs to Vectors

- To analyze and extract knowledge from graphs, one needs to perform machine learning tasks
- Most machine learning algorithms require the input to be represented as a fixed-length feature vector
- There is no straightforward way to transform graphs to such a representation

$?$

What is a Kernel?

Definition (Kernel Function)

The function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel if it is:
(1) symetric: $k(x, y)=k(y, x)$
(2) positive semi-definite: $\forall x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$, the Gram Matrix \mathbf{K} defined by $\mathbf{K}_{i j}=k\left(x_{i}, x_{j}\right)$ is positive semi-definite

- If a function satisfies the above two conditions on a set \mathcal{X}, it is known that there exists a map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ into a Hilbert space \mathcal{H}, such that:

$$
k(x, y)=\langle\phi(x), \phi(y)\rangle
$$

for all $(x, y) \in \mathcal{X}^{2}$ where $\langle\cdot, \cdot\rangle$ is the inner product in \mathcal{H}

- Informally, $k(x, y)$ is a measure of similarity between x and y

Graph Kernels

Definition (Graph Kernel)

A graph kernel $k: \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$ is a kernel function over a set of graphs \mathcal{G}

- It is equivalent to an inner product of the embeddings $\phi: \mathcal{X} \rightarrow \mathcal{H}$ of a pair of graphs into a Hilbert space
- Makes the whole family of kernel methods applicable to graphs

Kernel Trick

- Many machine learning algorithms can be expressed only in terms of inner products between vectors
- Let $\phi\left(G_{1}\right), \phi\left(G_{2}\right)$ be vector representations of graphs G_{1}, G_{2} in a very high (possibly infinite) dimensional feature space
- Computing the explicit mappings $\phi\left(G_{1}\right), \phi\left(G_{2}\right)$ and their inner product $\langle\phi(x), \phi(y)\rangle$ for the pair of graphs can be computationally demanding
- The kernel trick avoids the explicit mapping by directly computing the inner product $\langle\phi(x), \phi(y)\rangle$ via the kernel function

Example

Let $\mathcal{X}=\mathbb{R}^{2}$ and
$x=\left[x_{1}, x_{2}\right]^{\top}, y=\left[y_{1}, y_{2}\right]^{\top} \in \mathcal{X}$

For any $x=\left[x_{1}, x_{2}\right]^{\top}$ let ϕ be a map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined as:

$$
\phi(x)=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right]^{\top}
$$

Let also $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a kernel defined as $k(x, y)=\langle x, y\rangle^{2}$. Then

$$
\begin{aligned}
k(x, y) & =\langle x, y\rangle^{2} \\
& =\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2} \\
& =x_{1}^{2} y_{1}^{2}+2 x_{1} y_{1} x_{2} y_{2}+x_{2}^{2} y_{2}^{2} \\
& =\langle\phi(x), \phi(y)\rangle
\end{aligned}
$$

Classification using SVM

- The standard SVM classifier addresses the following problem:

Given a set of N training objects along with their class labels $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}, x_{i} \in \mathcal{X}, y_{i} \in \mathcal{Y}=\{-1,+1\}$, learn a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ that predicts the class labels of new objects

- SVM belongs to the family of large margin classifiers
\hookrightarrow it seeks a hyperplane that separates the instances belonging to class -1 from those belonging to class 1
- This1leads to the following dual optimization problem:

$$
\begin{aligned}
\operatorname{maximize}_{\alpha} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{4} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0 \quad \forall i \in\{1, \ldots, N\}
\end{aligned}
$$

Graph Classification using SVM

- The standard SVM classifier addresses the following problem: Given a set of N training objects along with their class labels $\mathcal{D}=\left\{\left(G_{i}, y_{i}\right)\right\}_{i=1}^{N}, G_{i} \in \mathcal{G}, y_{i} \in \mathcal{Y}=\{-1,+1\}$, learn a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ that predicts the class labels of new objects
- SVM belongs to the family of large margin classifiers \hookrightarrow it seeks a hyperplane that separates the instances belonging to class -1 from those belonging to class 1
- This leads to the following dual optimization problem:

$$
\begin{array}{ll}
\text { maximize }_{\alpha} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{4} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\phi\left(G_{i}\right), \phi\left(G_{j}\right)\right\rangle \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0 \quad \forall i \in\{1, \ldots, N\}
\end{array}
$$

Graph Classification using SVM

- The standard SVM classifier addresses the following problem: Given a set of N training objects along with their class labels $\mathcal{D}=\left\{\left(G_{i}, y_{i}\right)\right\}_{i=1}^{N}, G_{i} \in \mathcal{G}, y_{i} \in \mathcal{Y}=\{-1,+1\}$, learn a classifier $f: \mathcal{X} \rightarrow \mathcal{Y}$ that predicts the class labels of new objects
- SVM belongs to the family of large margin classifiers \hookrightarrow it seeks a hyperplane that separates the instances belonging to class -1 from those belonging to class 1
- This leads to the following dual optimization problem:

$$
\begin{array}{ll}
\text { maximize }_{\alpha} & \sum_{i=1}^{N} \alpha_{i}-\frac{1}{4} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(G_{i}, G_{j}\right) \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0 \\
& C \geq \alpha_{i} \geq 0 \quad \forall i \in\{1, \ldots, N\}
\end{array}
$$

Two Simple Kernels

The two kernels assume node/edge-labeled graphs

Vertex histogram kernel:

- The vertex label histogram of a graph G is a vector $f=\left[f_{1}, f_{2}, \ldots, f_{d}\right]^{\top}$, such that $f_{i}=|\{v \in V: \ell(v)=i\}|$ for each $i \in \mathcal{L}$
- The vertex histogram kernel is then defined as:

$$
k\left(G, G^{\prime}\right)=\left\langle f, f^{\prime}\right\rangle
$$

Edge histogram kernel:

- The edge label histogram of a graph G is a vector $f=\left[f_{1}, f_{2}, \ldots, f_{d}\right]^{\top}$, such that $f_{i}=|\{(v, u) \in E: \ell(v, u)=i\}|$ for each $i \in \mathcal{L}$.
- The edge histogram kernel is then defined as:

$$
k\left(G, G^{\prime}\right)=\left\langle f, f^{\prime}\right\rangle
$$

Vertex Histogram Kernel

Example

The vector representations of the two graphs are:

$$
\begin{aligned}
f_{G} & =[2,2,1,0]^{\top} \\
f_{G^{\prime}} & =[1,1,3,1]^{\top}
\end{aligned}
$$

Hence, the value of the kernel is:

$$
k\left(G, G^{\prime}\right)=\left\langle f_{G}, f_{G^{\prime}}\right\rangle=7
$$

Expressiveness vs Efficiency

Complete Graph Kernels

Definition (Complete Graph Kernel)

A graph kernel $k\left(G_{1}, G_{2}\right)=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle$ is complete if ϕ is injective

Hence, for complete graph kernels, $\phi\left(G_{1}\right)=\phi\left(G_{2}\right)$ iff G_{1} and G_{2} are isomorphic

How hard is to compute a complete graph kernel?

Proposition

Computing any complete graph kernel is at least as hard as the graph isomorphism problem

Complete Graph Kernels

Clearly, the vertex and edge histogram kernels are not complete

G^{\prime}

The two graphs are not isomorphic. However

$$
f_{G}=f_{G^{\prime}}=[2,2,1,0]^{\top}
$$

Expressiveness vs Efficiency

If the kernel is complete:

- Computation is at least as hard as the graph isomorphism problem \hookrightarrow No polynomial algorithm for the graph isomorphism problem is known

If the kernel is not complete:

- It can be computed efficiently
- We can have $\phi\left(G_{1}\right)=\phi\left(G_{2}\right)$ even if $G_{1} \not \approx G_{2}$ \hookrightarrow The kernel is not expressive enough

We are interested in kernels that can be computed in polynomial time (with small degree)

Expressive Power of Graph Kernels

Capitalize on concepts from property testing to measure the expressive power of graph kernels

Definition

A graph kernel identifies a property if no two graphs are mapped to the same feature vector unless they both have or both do not have the property (e.g., connected vs disconnected)

Property	Kernel	Weisfeiler-Lehman subtree kernel	Random Walk kernel	Shortest Path kernel	Graphlet kernel
Connectivity	X	X	V	X	
Planarity	X	X	X	X	
Bipartiteness	X	X	X	X	
Triangle-freeness	X	X	X	V	

Well-established kernels fail to identify fundamental properties \hookrightarrow However, still they achieve state-of-the-art results on many datasets

Early Days of Graph Kernels

Convolution Kernels in a Nutshell

(1) (2) 4

- Decompose structured objects into comparable parts
- Aggregate the values of similarity measures for individual parts
[Haussler. Tech Report'99]

R-Convolution

- Let X be a set of composite objects (e.g., cars), and $\bar{X}_{1}, \ldots, \bar{X}_{D}$ be sets of parts (e.g., wheels, brakes, etc.). All sets are assumed countable.
- Let R denote the relation "being part of":

$$
R\left(\bar{x}_{1}, \ldots, \bar{x}_{D}, x\right)=1 \text {, iff } \bar{x}_{1}, \ldots, \bar{x}_{D} \text { are parts of } x
$$

- The inverse relation R^{-1} is defined as:

$$
R^{-1}(x)=\{\overline{\mathbf{x}}: R(\overline{\mathbf{x}}, x)=1\}
$$

In other words, for each object $x, R^{-1}(x)$ is a set of component subsets, that are part of x

- We say that R is finite, if R^{-1} is finite for all $x \in X$

Example

$-x$ is a string

$$
\text { - Subpart relation } R\left(\bar{x}_{1}, \bar{x}_{2}, x\right)=1 \text { iif } \bar{x}_{1}, \bar{x}_{2} \text { are }
$$

$$
\text { (non-empty) strings such that } x=\operatorname{concat}\left(\bar{x}_{1}, \bar{x}_{2}\right)
$$

$$
\begin{aligned}
& x=\text { table } \\
& \bar{x}_{1}=\mathrm{t}, \bar{x}_{2}=\text { able } \\
& \bar{x}_{1}=\text { ta, } \bar{x}_{2}=\text { ble } \\
& \bar{x}_{1}=\text { tab, } \bar{x}_{2}=\mathrm{le} \\
& \bar{x}_{1}=\text { tabl, } \bar{x}_{2}=\mathrm{e}
\end{aligned}
$$

R-Convolution Kernel

Definition

Let $x, y \in X$ and $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$ be the corresponding sets of parts. Let $K_{d}\left(\bar{x}_{d}, \overline{y_{d}}\right)$ be a kernel between the d-th parts of x and $y(1 \leq d \leq D)$. Then the convolution kernel between x and y is defined as:

$$
K(x, y)=\sum_{\overline{\mathbf{x}} \in R^{-1}(x)} \sum_{\overline{\mathbf{y}} \in R^{-1}(y)} \prod_{d=1}^{D} K_{d}\left(x_{d}, y_{d}\right)
$$

Substructures-based Kernels

A large number of graph kernels compare substructures of graphs that are computable in polynomial time:

- walks
- shortest paths
- subtree patterns
- graphlets

These kernels are instance of the R-convolution framework

Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets
A graphlet corresponds to a small subgraph

- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4:

G_{1}

G_{2}

G_{3}

G_{4}

G_{5}

G_{6}

G_{7}

G_{8}

G_{9}

G_{10}

G_{11}
[Shervashidze et al., AISTATS'09]

Graphlet Kernel

Let $\mathcal{G}=\left\{\right.$ graphlet $_{1}$, graphlet $_{2}, \ldots$, graphlet $\left._{r}\right\}$ be the set of size- k graphlets

Let also $f_{G} \in \mathbb{N}^{r}$ be a vector such that its i-th entry is $f_{G, i}=\#\left(\right.$ graphlet $\left._{i} \sqsubseteq G\right)$

The graphlet kernel is defined as:

$$
k\left(G_{1}, G_{2}\right)=\left\langle f_{G_{1}}, f_{G_{2}}\right\rangle
$$

Problems:

- There are $\binom{n}{k}$ size- k subgraphs in a graph
- Exaustive enumeration of graphlets is very expensive

$$
\text { Requires } O\left(n^{k}\right) \text { time }
$$

- For labeled graphs, the number of graphlets increases further

Example

The vector representations of the graphs above according to the set of graphlets of size 4 is:

$$
\begin{aligned}
f_{G_{1}} & =[0,0,2,0,1,2,0,0,0,0,0]^{\top} \\
f_{G_{2}} & =[0,0,0,2,1,5,0,4,0,3,0]^{\top}
\end{aligned}
$$

Hence, the value of the kernel is:

$$
k\left(G_{1}, G_{2}\right)=\left\langle f_{G_{1}}, f_{G_{2}}\right\rangle=11
$$

Subtree Kernel

Compares subtree patterns in two graphs

A subtree pattern is a subgraph of a graph which has

- a root vertex
- no cycles

Subtree of height 2 rooted at vertex 1

The height of a subtree is the maximum distance between the root and any other node in the subtree

If there are cycles in the graph, a vertex can appear more than once in a subtree pattern

- it is treated as a distinct vertex such that the pattern is still a cycle-free tree

For all pairs of nodes v from G_{1} and u from G_{2} :

- Create the subtree patterns of height h rooted at v, u
- Compare v and u via a kernel function
- Recursively compare all vertices of the subtree patterns of v and u via a kernel function

Subtree Kernel

Given a pair of graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the subtree kernel of height h is defined as:

$$
k\left(G_{1}, G_{2}\right)=\sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} k_{h}\left(v_{1}, v_{2}\right)
$$

where

$$
k_{h}\left(v_{1}, v_{2}\right)= \begin{cases}\delta\left(\ell\left(v_{1}\right)=\ell\left(v_{2}\right)\right) & \text { if } h=0 \\ \lambda_{v_{1}} \lambda_{v_{2}} \delta\left(\ell\left(v_{1}\right)=\ell\left(v_{2}\right)\right) \sum_{R \in \mathcal{M}\left(v_{1}, v_{2}\right)} \prod_{\left(w_{1}, w_{2}\right) \in R} k_{h-1}\left(w_{1}, w_{2}\right) & \text { if } h>0\end{cases}
$$

where $\delta(\cdot, \cdot)$ is the Kronecker delta function that equals 1 if its arguments are equal, 0 otherwise, $\lambda_{v_{1}}$ and $\lambda_{v_{2}}$ are weights associated with nodes v_{1} and v_{2}, and

$$
\begin{aligned}
\mathcal{M}\left(v_{1}, v_{2}\right)=\left\{R \subseteq \mathcal{N}\left(v_{1}\right) \times \mathcal{N}\left(v_{2}\right) \mid\right. & \left(\forall\left(u_{1}, u_{2}\right),\left(w_{1}, w_{2}\right) \in R: u_{1}=w_{1} \Leftrightarrow u_{2}=w_{2}\right) \\
& \left.\wedge\left(\forall\left(u_{1}, u_{2}\right) \in R: \ell\left(u_{1}\right)=\ell\left(u_{2}\right)\right)\right\}
\end{aligned}
$$

Example

We are given the following graphs

G_{1}
G_{2}

Example

Below are given the subtrees of G_{1} and G_{2} with height 2 rooted at 1 and a respectively

We will compute $k_{2}(1, a)$

Example

We set $\lambda_{v}=1$ for all $v \in V_{1} \cup V_{2}$ and we have:

$$
k_{2}(1, a)=\delta(\ell(1)=\ell(a)) \sum_{R \in \mathcal{M}(1, a)} \prod_{\left(v_{1}, v_{2}\right) \in R} k_{1}\left(v_{1}, v_{2}\right)
$$

- $\delta(\ell(1)=\ell(a))=1$ since $\ell(1)=\ell(a)=/ 1$
- $\mathcal{M}(1, a)=\{\{(2, b)\}\}$ since $\ell(2)=\ell(b)=/ 2$

Hence, we will next compute $k_{1}(2, b)$

$$
k_{1}(2, b)=\delta(\ell(2)=\ell(b)) \sum_{R \in \mathcal{M}(2, b)} \prod_{\left(v_{1}, v_{2}\right) \in R} k_{0}\left(v_{1}, v_{2}\right)
$$

- $\delta(\ell(2)=\ell(b))=1$ since $\ell(2)=\ell(b)=/ 2$
- $\mathcal{M}(2, b)=\{\{(1, a),(3, d)\}\}$ since $\ell(1)=\ell(a)=/ 1$ and $\ell(3)=\ell(d)=/ 2$

Example

At height 0 , we have:

$$
k_{0}(1, a)=k_{0}(3, d)=1
$$

Therefore,

$$
k_{1}(2, b)=k_{0}(1, a) k_{0}(3, d)=1
$$

And finally,

$$
k_{2}(1, a)=k_{1}(2, b)=1
$$

Subtree kernel
Pros: Richer representation of graph structure
Cons: Very high complexity

- $\mathcal{O}\left(n^{2} h 4^{d}\right)$ where d is the maximum degree of the pair of graphs

Shortest Path Kernel

Compares the length of shortest-paths of two graphs

- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

- Compute the shortest-paths between all pairs of vertices of the input graph G using some algorithm (i.e. Floyd-Warshall)
- Create a shortest-path graph S which contains the same set of nodes as the input graph G
- All nodes which are connected by a walk in G are linked with an edge in S
- Each edge in S is labeled by the shortest distance between its endpoints in G

Example

Floyd-transformation

Shortest Path Kernel

Given the Floyd-transformed graphs $S_{1}=\left(V_{1}, E_{1}\right)$ and $S_{2}=\left(V_{2}, E_{2}\right)$ of G_{1} and G_{2}, the shortest path kernel is defined as:

$$
k\left(G_{1}, G_{2}\right)=\sum_{e_{1} \in E_{1}} \sum_{e_{2} \in E_{2}} k_{\text {edge }}\left(e_{1}, e_{2}\right)
$$

where $k_{\text {edge }}$ is a kernel on edges

- For unlabeled graphs, it can be:

$$
k_{\text {edge }}\left(e_{1}, e_{2}\right)=\delta\left(\ell\left(e_{1}\right), \ell\left(e_{2}\right)\right)=\left\{\begin{array}{lr}
1 & \text { if } \ell\left(e_{1}\right)=\ell\left(e_{2}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\ell(e)$ gives the label of edge e

- For labeled graphs, it can be:

$$
k_{\text {edge }}\left(e_{1}, e_{2}\right)=\left\{\begin{array}{lr}
1 & \text { if } \ell\left(e_{1}\right)=\ell\left(e_{2}\right) \wedge \ell\left(e_{1}^{1}\right)=\ell\left(e_{2}^{1}\right) \wedge \ell\left(e_{1}^{2}\right)=\ell\left(e_{2}^{2}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

where e^{1}, e^{2} are the two endpoints of e

Example

Floyd-transformations

\Rightarrow
G_{1}

G_{2}

S_{1}

S_{2}

Example

In S_{1} we have:

- 4 edges with label 1
- 4 edges with label 2
- 2 edges with label 3

In S_{2} we have:

- 4 edges with label 1
- 2 edges with label 2

Hence, the value of the kernel is:

$$
k\left(G_{1}, G_{2}\right)=\sum_{e_{1} \in E_{1}} \sum_{e_{2} \in E_{2}} k_{\text {edge }}\left(e_{1}, e_{2}\right)=4 \cdot 4+4 \cdot 2=24
$$

Shortest Path Kernel

Computing the shortest path kernel includes:

- Computing shortest paths for all pairs of vertices in the two graphs: $\mathcal{O}\left(n^{3}\right)$
- Comparing all pairs of shortest paths from the two graphs: $\mathcal{O}\left(n^{4}\right)$

Hence, runtime is $\mathcal{O}\left(n^{4}\right)$

Problems:

- Very high complexity for large graphs
- Shortest-path graphs may lead to memory problems on large graphs

Cyclic Pattern Kernel

The cyclic pattern kernel

- decomposes a graph into cyclic and tree patterns
- counts the number of common patterns which occur in two graphs

Cycles:

- Let $\mathcal{S}(G)$ denote the set of cycles of a graph G
- Let also $\pi(C)$ denote the canonical representation of a cycle C
- The set of cyclic patterns of G is defined by $\mathcal{C}(G)=\{\pi(C): C \in \mathcal{S}(G)\}$ Trees:
- By removing all the edges of all cycles, the kernel obtains a set of trees
- The kernel computes the canonical representation $\pi(T)$ of each tree T
- The set of tree patterns of G is then defined by $\mathcal{T}(G)=\{\pi(T): T$ is a tree $\}$ The cyclic pattern kernel is then defined as

$$
k\left(G, G^{\prime}\right)=\left|\mathcal{C}(G) \cap \mathcal{C}\left(G^{\prime}\right)\right|+\left|\mathcal{T}(G) \cap \mathcal{T}\left(G^{\prime}\right)\right|
$$

Problems:

- Number of cyclic and tree patterns can be exponential in the number of vertices n
- Computing the cyclic pattern kernel on general graphs is NP-hard
- Can only be applied to graphs where the number of cycles is polynomially bounded [Horvath et al., KDD’04]

Example

Extract cyclic and tree patterns from G, G^{\prime}

Example

C_{1}^{\prime}

$$
\begin{aligned}
\mathcal{C}(G) & =\left\{\pi\left(C_{1}\right)\right\}=\{(1,2,3)\} \\
\mathcal{C}\left(G^{\prime}\right) & =\left\{\pi\left(C_{1}^{\prime}\right)\right\}=\{(1,2,3)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
\mathcal{T}(G) & =\left\{\pi\left(T_{1}\right)\right\}=\{(1,3,4)\} \\
\mathcal{T}\left(G^{\prime}\right) & =\left\{\pi\left(T_{1}^{\prime}\right), \pi\left(T_{2}^{\prime}\right)\right\}=\{(1,3),(3,4)\}
\end{aligned}
$$

Example

Hence, kernel equal to

$$
k\left(G, G^{\prime}\right)=\left|\mathcal{C}(G) \cap \mathcal{C}\left(G^{\prime}\right)\right|+\left|\mathcal{T}(G) \cap \mathcal{T}\left(G^{\prime}\right)\right|=1
$$

Random Walk Kernel

- Probably the most well-studied family of graph kernels
- Counts matching walks in two graphs

Product graph

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, their direct product G_{\times}is a graph with vertex set:

$$
\begin{aligned}
& \qquad V_{\times}=\left\{\left(v_{1}, v_{2}\right): v_{1} \in V_{1}, v_{2} \in V_{2}\right\} \text { for unlabeled graphs } \\
& \text { or } \\
& \qquad V_{\times}=\left\{\left(v_{1}, v_{2}\right): v_{1} \in V_{1}, v_{2} \in V_{2}, \ell(v 1)=\ell(v 2)\right\} \text { for labeled graphs }
\end{aligned}
$$

and edge set:

$$
E_{\times}=\left\{\left(\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right)\right):\left(v_{1}, u_{1}\right) \in E_{1},\left(v_{2}, u_{2}\right) \in E_{2}\right\}
$$

- vertices: pairs of vertices from G_{1} and G_{2}
- draw edge if corresponding vertices of G_{1} and G_{2} are adjacent in G_{1} and G_{2}
[Gartner et al., COLT/Kernel'03]

Example

Random Walk Kernel

The k-th power of the adjacency matrix A of G computes walks of length k $\hookrightarrow A_{i j}^{k}=$ number of walks of length k from vertex i to vertex j

Performing a random walk on G_{\times}is equivalent to performing a simultaneous random walk on G_{1} and G_{2}

- Common walks of length k can be computed using A_{\times}^{k}

For $k \in \mathbb{N}$, the k-step random walk kernel is defined as:

$$
K_{\times}^{k}\left(G_{1}, G_{2}\right)=\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\sum_{r=0}^{k} \lambda_{r} A_{\times}^{r}\right]_{i j}
$$

where $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$ positive weights and $A_{\times}^{0}=I$

Random Walk Kernel

For $k \rightarrow \infty$, we obtain the geometric random walk kernel $K_{\times}^{\infty}\left(G_{1}, G_{2}\right)$
If $\lambda_{r}=\lambda^{r}, K_{\times}^{\infty}\left(G_{1}, G_{2}\right)$ can be directly computed as follows:

$$
K_{\times}^{\infty}\left(G_{1}, G_{2}\right)=\sum_{i, j=1}^{\left|V_{\times}\right|}\left[\sum_{r=0}^{\infty} \lambda^{r} A_{\times}^{r}\right]_{i j}=e^{\top}\left(I-\lambda A_{\times}\right)^{-1} e
$$

where e the all-ones vector
Problem: computational complexity is $\mathcal{O}\left(n^{6}\right)$
Solution: Efficient computation (almost $\mathcal{O}\left(n^{3}\right)$) using:

- Sylvester equations
- Conjugate gradient solver
- Fixed-point iterations
- Spectral decompositions
- λ should be non greater than the largest eigenvalue of A_{\times}
[Vishwanathan et al., JMLR 11.Apr (2010)]

Neighborhood Aggregation Approaches

Weisfeiler-Lehman Test of Isomorphism

May answer if two graphs are not isomorphic
Run the Weisfeiler-Lehman algorithm for the following pair of graphs

$G 1$

G_{2}

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring vertices

G_{1}

G_{2}

Iteration 1

Second step: Compress the augmented labels into new, short labels:

- $1,11 \rightarrow 2$
- $1,1111 \rightarrow 4$
- $1,111 \rightarrow 3$

G1

G2

Iteration 1

Are the label sets of G_{1} and G_{2} identical?

G_{1}

G_{2}

Yes!!!
Continue to the next iteration

Iteration 2

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring vertices

3,224

$G 2$

Iteration 2

Second step: Compress the augmented labels into new, short labels:

- $2,24 \rightarrow 5$
- $3,234 \rightarrow 9$
- $2,33 \rightarrow 6$
- $2,34 \rightarrow 7$

G_{1}

Iteration 2

Are the label sets of G_{1} and G_{2} identical?

G_{1}

G_{2}

No!!!
Graphs are not isomorphic

Weisfeiler-Lehman Framework

Let $G^{1}, G^{2}, \ldots, G^{h}$ be the graphs emerging from graph G at the iteration $1,2, \ldots, h$ of the Weisfeiler-Lehman algorithm

Then, the Weisfeiler-Lehman kernel is defined as:

$$
k_{W L}^{h}\left(G_{1}, G_{2}\right)=k\left(G_{1}, G_{2}\right)+k\left(G_{1}^{1}, G_{2}^{1}\right)+k\left(G_{1}^{2}, G_{2}^{2}\right)+\ldots+k\left(G_{1}^{h}, G_{2}^{h}\right)
$$

where $k(\cdot, \cdot)$ is a base kernel (e.g. subtree kernel, shortest path kernel, ...)

At each iteration of the Weisfeiler-Lehman algorithm:

- run a graph kernel for labeled graphs
- the new kernel values are added to the ones of the previous iteration

Weisfeiler-Lehman Subtree Kernel

Counts matching pairs of labels in two graphs after each iteration

G1

G_{2}

Initialization

Feature vector for a graph G :
$\phi(G)=\{\#$ nodes with label $1, \#$ nodes with label $2, \ldots, \#$ nodes with label $I\}$

G_{1}

G_{2}

$$
\begin{aligned}
\phi\left(G_{1}\right)= & {[1,2,1,1,1]^{\top} \quad \phi\left(G_{2}\right)=[1,1,2,1,1]^{\top} } \\
& k\left(G_{1}, G_{2}\right)=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle=7
\end{aligned}
$$

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of neighbouring vertices

G_{1}

G_{2}

Iteration 1

Second step: Compress the augmented labels into new, short labels:

- $1,24 \rightarrow 6$
- $2,14 \rightarrow 7$
o $2,1334 \rightarrow 8$
- $2,3 \rightarrow 9$
- $3,25 \rightarrow 12$
- $3,24 \rightarrow 10$
- $4,1235 \rightarrow 13$
o $3,245 \rightarrow 11$
o $5,34 \rightarrow 14$

G_{1}

G_{2}

Iteration 1

Third step: Compute kernel value for iteration $h=1$ and add it to previous kernel value

G_{1}

G_{2}

$$
\begin{gathered}
\phi\left(G_{1}^{1}\right)=[1,1,0,1,0,1,0,1,1]^{\top} \quad \phi\left(G_{2}^{1}\right)=[1,0,1,0,1,0,1,1,1]^{\top} \\
k\left(G_{1}^{1}, G_{2}^{1}\right)=\left\langle\phi\left(G_{1}^{1}\right), \phi\left(G_{2}^{1}\right)\right\rangle=3 \\
k_{W L}^{1}\left(G_{1}, G_{2}\right)=k\left(G_{1}, G_{2}\right)+k\left(G_{1}^{1}, G_{2}^{1}\right)=10
\end{gathered}
$$

Weisfeiler-Lehman Subtree Kernel

Computing the Weisfeiler-Lehman Subtree Kernel takes $\mathcal{O}(h m)$ time

- very efficient

Comparison to other well-known kernels

More Recent Approaches

Lovász ϑ kernel

Compares graphs based on the orthonormal representation associated with the Lovász number

- the orthonormal representation captures global graph properties

Orthonormal representation of a graph $G=(V, E)$:

- each vertex $i \in V$ is assigned a unit vector $u_{i},\left\|u_{i}\right\|=1$
- let $U_{G}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the set of all vectors
- for $i, j \in V$, if $(i, j) \notin E$, then $u_{i}^{\top} u_{j}=0$

An interesting orthonormal representation is associated with the Lovász number $\vartheta(G)$

Definition (Lovász number)

For a graph $G=(V, E)$,

$$
\vartheta(G)=\min _{c, U_{G}} \max _{i \in V} \frac{1}{\left(c^{\top} u_{i}\right)^{2}}
$$

where the minimization is taken over all orthonormal representations U_{G} and all unit vectors c
[Johansson et al., ICML'14]

Lovász ϑ kernel

Given a subset of vertices $S \subseteq V$, the Lovász value of the subgraph induced by S is:

$$
\vartheta_{S}(G)=\min _{c} \max _{u_{i} \in U_{G \mid S}} \frac{1}{\left(c^{\top} u_{i}\right)^{2}}
$$

where $U_{G \mid S}=\left\{u_{i} \in U_{G}: i \in S\right\}$

The Lovász kernel is then defined as:

$$
k_{\vartheta}\left(G_{1}, G_{2}\right)=\sum_{\substack{S_{1} \subseteq V_{1} \\\left|S_{1}\right|=\left|S_{2}\right|}} \sum_{S_{2} \subseteq V_{2}} \frac{1}{Z} k\left(\vartheta_{S_{1}}\left(G_{1}\right), \vartheta_{S_{2}}\left(G_{2}\right)\right)
$$

where $Z=\binom{n_{1}}{d}\binom{n_{2}}{d}, d=\left|S_{1}\right|=\left|S_{2}\right|$ and $k(\cdot, \cdot)$ is a base kernel (e.g. linear, gaussian)

Problem: Computing the Lovász ϑ kernel is very expensive since \rightarrow requires computing the Lovász value for all subgraphs of the two graphs
Solution: Sampling
\hookrightarrow Evaluate the Lovász value for a smaller number of subgraphs of size d

Ordered Decomposition DAGs Kernel

General idea:

- Decomposes graphs into multisets of directed acyclic graphs (DAGs)
- Uses existing tree kernels to compare these DAGs

Generates one unordered rooted DAG for each vertex (keeps only edges belonging to the shortest paths)

(1)

(2)

(4)

Then, the kernel is defined as:

$$
k\left(G, G^{\prime}\right)=\sum_{D \in D D(G)} \sum_{D^{\prime} \in D D\left(G^{\prime}\right)} k_{D A G}\left(D, D^{\prime}\right)
$$

where $D D(G)$ and $D D\left(G^{\prime}\right)$ are multisets that contain the DAGs extracted from G and G^{\prime}, respectively, and $k_{D A G}$ is a kernel between DAGs
[Da San Martino et al., SDM'12]

Ordered Decomposition DAGs Kernel

DAGs are unordered (i. e. the set of neighbours of each node is unordered)
There is a vast literature on kernels for ordered trees. Hence, the kernel:

- transforms the unordered DAGs to ordered DAGs (based on node labels, outdegrees of nodes, etc.)
- projects subdags to a tree space (see Figure below)
- applies a kernel for ordered trees
The kernel between two DAGs is computed as
follows:
$k_{D A G}\left(D, D^{\prime}\right)=\sum_{v \in V_{D}} \sum_{v^{\prime} \in V_{D^{\prime}}} k_{t r e e}\left(\operatorname{root}(v), \operatorname{root}\left(v^{\prime}\right)\right)$

Assignment Kernels

Assignment Kernels

- Another design paradigm for developing kernels
- Only a few instances in the literature
- They compute a matching between substructures of one object and substructures of a second object such that the overall similarity of the two objects is maximized

- Such a matching can reveal structural correspondences between the two objects

Pyramid Match Kernel

Embed all vertices in the d-dimensional vector space \mathbb{R}^{d} as follows

- compute the eigendecomposition of the adjacency matrix
- use the eigenvectors of the d largest in magnitude eigenvalues

Such embeddings capture global properties of graphs
Example: eigenvector corresponding to greatest eigenvalue contains eigenvector centrality scores of vertices \rightarrow global property

After embedding: each vertex is a point in the d-dimensional unit hypercube

Then, use pyramid match kernel, a kernel function over unordered feature sets:

- Each feature set is mapped to a multiresolution histogram
- The histogram pyramids are then compared using a weighted histogram intersection computation
[Nikolentzos et al., AAAI'17]

Node Embeddings

Node embeddings: represent nodes as points in a vector space

- Generate embeddings using eigenvectors of adjacency matrix $A=U \wedge U^{\top}$
- $i^{\text {th }}$ row u_{i} of U corresponds to embedding of vertex v_{i}
- Such embeddings capture global properties
 of graphs

Bag-of-vectors Representation

Graphs represented as bags-of-vectors:

- A graph is represented as a set of vectors: $\left\{u_{1}, \ldots, u_{n}\right\}$
- Each vector $u_{i} \in \mathbb{R}^{d}$ represents the embedding of the $i^{\text {th }}$ node in the d-dimensional space
- This is a natural representation
\hookrightarrow There is no canonical ordering for the nodes of a graph

Pyramid Match Graph Kernel

The Pyramid Match Graph Kernel

- partitions feature space into cells
- at level $I \rightarrow 2^{\prime}$ cells along each dimension

Number of nodes (i.e. embeddings) that match at I :

$$
I\left(H_{G_{1}}^{\prime}, H_{G_{2}}^{\prime}\right)=\sum_{i=1}^{2^{\prime} d} \min \left(H_{G_{1}}^{\prime}(i), H_{G_{2}}^{\prime}(i)\right)
$$

where $H_{G}^{\prime}(i)$ is the number of nodes of G that lie in the $i^{\text {th }}$ cell

Example

Example

Example

$$
I\left(H_{G_{1}}^{0}, H_{G_{2}}^{0}\right)=9+\ldots
$$

Example

$$
I\left(H_{G_{1}}^{0}, H_{G_{2}}^{0}\right)=9+\ldots
$$

Example

$$
I\left(H_{G_{1}}^{0}, H_{G_{2}}^{0}\right)=9+9=18
$$

Example

Example

$$
I\left(H_{G_{1}}^{1}, H_{G_{2}}^{1}\right)=(5+4)+\ldots
$$

Example

$$
I\left(H_{G_{1}}^{1}, H_{G_{2}}^{1}\right)=(5+4)+\ldots
$$

Example

$$
I\left(H_{G_{1}}^{1}, H_{G_{2}}^{1}\right)=(5+4)+(5+4)=18
$$

Example

Example

$$
I\left(H_{G_{1}}^{2}, H_{G_{2}}^{2}\right)=(2+2+1+3)+\ldots
$$

level 2

Example

$$
I\left(H_{G_{1}}^{2}, H_{G_{2}}^{2}\right)=(2+2+1+3)+\ldots
$$

level 2

Example

$$
I\left(H_{G_{1}}^{2}, H_{G_{2}}^{2}\right)=(2+2+1+3)+(2+2+1+2)=15
$$

level 2

Pyramid Match Graph Kernel

PM takes a weighted sum of the matches that occur at each level (levels 0 to L):

$$
\begin{aligned}
k_{\Delta}\left(G_{1}, G_{2}\right) & =I\left(H_{G_{1}}^{L}, H_{G_{2}}^{L}\right)+\sum_{I=0}^{L-1} \frac{1}{2^{L-I}}\left(I\left(H_{G_{1}}^{\prime}, H_{G_{2}}^{\prime}\right)-I\left(H_{G_{1}}^{I+1}, H_{G_{2}}^{I+1}\right)\right) \\
& =15+\frac{1}{2}(18-15)+\frac{1}{4}(18-18)=16.5
\end{aligned}
$$

- Matches within lower levels weighted less
- Only new matches are taken into account

Complexity: $\mathcal{O}(d n L)$

Optimal Assignment Kernel

- $\left\{x_{1}, \ldots, x_{n}\right\}$ are substructures of G, e.g., nodes
- $\left\{x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}\right\}$ are substructures of G^{\prime}, e.g., nodes
- κ is a non-negative kernel comparing substructures
- π is a permutation of the integers $\left\{1, \ldots, \min \left(n, n^{\prime}\right)\right\}$
- Then, the optimal assignment kernel is defined as follows:

$$
k\left(G, G^{\prime}\right)= \begin{cases}\max _{\pi} \sum_{i=1}^{n} \kappa\left(x_{i}, x_{\pi(i)}^{\prime}\right), & \text { if } n^{\prime}>n \\ \max _{\pi} \sum_{j=1}^{n^{\prime}} \kappa\left(x_{\pi(j)}, x_{j}^{\prime}\right), & \text { otherwise }\end{cases}
$$

Optimal Assignment Kernel

- $\left\{x_{1}, \ldots, x_{n}\right\}$ are substructures of G, e. g., nodes
- $\left\{x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}\right\}$ are substructures of G^{\prime}, e. g., nodes
- κ is a non-negative kernel comparing substructures
- π is a permutation of the integers $\left\{1, \ldots, \min \left(n, n^{\prime}\right)\right\}$
- Then, the optimal assignment kernel is defined as follows:

$$
k\left(G, G^{\prime}\right)= \begin{cases}\max _{\pi} \sum_{i=1}^{n} \kappa\left(x_{i}, x_{\pi(i)}^{\prime}\right), & \text { if } n^{\prime}>n \\ \max _{\pi} \sum_{j=1}^{n^{\prime}} \kappa\left(x_{\pi(j)}, x_{j}^{\prime}\right), & \text { otherwise }\end{cases}
$$

- However, not positive semidefinite in general

Valid Optimal Assignment Kernels

- Let \mathcal{X} be a set, and $[\mathcal{X}]^{n}$ denote the set of all n-element subsets of \mathcal{X}
- Let also $X, X^{\prime} \in[\mathcal{X}]^{n}$ for $n \in \mathbb{N}$, and $\mathfrak{B}\left(X, X^{\prime}\right)$ denote the set of all bijections between X and X^{\prime}
- The optimal assignment kernel on $[\mathcal{X}]^{n}$ is defined as

$$
K_{\mathfrak{B}}^{k}\left(X, X^{\prime}\right)=\max _{B \in \mathfrak{B}\left(X, X^{\prime}\right)} \sum_{\left(x, x^{\prime}\right) \in B} k\left(x, x^{\prime}\right)
$$

where k is a kernel between the elements of X and X^{\prime}

- The above function $K_{\mathfrak{B}}\left(\mathcal{X}, \mathcal{X}^{\prime}\right)$ is a valid kernel only if the base kernel k is strong

Definition (Strong Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$ is called strong kernel if $k(x, y) \geq \min \{k(x, z), k(z, y)\}$ for all $x, y, z \in \mathcal{X}$.

Strong kernels are equivalent to kernels obtained from a hierarchy defined on set

Frameworks

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

- Very large feature space, hence, unlikely that two graphs will contain similar substructures
- However, substructures (i.e. features) often related to each other
- Kernel value between pairs of graphs \ll kernel value between a graph and itself

For example, when the features correspond to large graphlets (e.g., $k \geq 5$), two graphs may be composed of many similar graphlets, but not any identical

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

- Very large feature space, hence, unlikely that two graphs will contain similar substructures
- However, substructures (i.e. features) often related to each other
- Kernel value between pairs of graphs \ll kernel value between a graph and itself

This leads to the diagonal dominance problem

The resulting kernel matrix is close to the identity matrix

A Structural Smoothing Framework

To deal with diagonal dominance, it applies smoothing
First construct a Directed Acyclic Graph (DAG):

- each vertex corresponds to a substructure
- for each substructure s of size k determine all possible substructures of size $k-1$ that s can be reduced into

- these correspond to the parents of s
- draw a weighted directed edge from each parent to its children vertices

DAG provides a topological ordering of the vertices

- all descendants of a given substructure at depth $k-1$ are at depth k

DAG for graphlets of size $k \leq 3$
[Yanardag and Vishwanathan, NIPS'15]

A Structural Smoothing Framework

The structural smoothing for a substructure s at level k is defined as:

$$
P_{S S}^{k}(s)=\frac{\max \left(c_{s}-d, 0\right)}{m}+\frac{d m_{d}}{m} \sum_{p \in \mathcal{P}_{s}} P_{S S}^{k-1}(p) \frac{w_{p s}}{\sum_{c \in \mathcal{C}_{p}} w_{p c}}
$$

where

- c_{s} denotes the number of times substructure s appears in the graph
- $m=\sum_{i} c_{i}$ denotes the total number of substructures present in the graph
- $d>0$ is a discount factor
- $m_{d}:=\left|\left\{i: c_{i}>d\right\}\right|$ is the number of substructures whose counts are larger than d
- $w_{i j}$ denotes the weight of the edge connecting vertex i to vertex j
- \mathcal{P}_{s} denotes the parents of vertex s
- \mathcal{C}_{p} the children of vertex p

Even if the graph does not contain a substructure $s\left(c_{s}=0\right)$, its value in the feature vector can be greater than $0\left(P_{S S}(s)>0\right)$

Example

Deep Graph Kernels

To deal with diagonal dominance, the deep graph kernels framework computes the kernel as follows:

$$
k\left(G, G^{\prime}\right)=\phi(G)^{\top} M \phi\left(G^{\prime}\right)
$$

M : a positive semidefinite matrix that encodes the relationships between substructures Each component of $\phi(G), \phi\left(G^{\prime}\right)$ corresponds to a substructure (e.g., the complete graphlet of size 5)

Matrix M is learned using techniques inspired from the field of natural language processing:

- An embedding for each substructure is generated using the CBOW or Skip-gram model
- Then M corresponds to the inner products of these embeddings

However, unlike words in documents, substructures of graphs do not have a linear co-occurrence relationship

Such co-occurrence relationships are manually defined for 3 kernels:
(1) the Weisfeiler-Lehman subtree kernel
(2) the graphlet kernel
(3) the shortest path kernel
[Yanardag and Vishwanathan, KDD'15]

A Degeneracy Framework for Graph Comparison

Definition (k-core)

The k-core of a graph is defined as a maximal subgraph in which every vertex is connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

The set of all k-cores forms a nested sequence of subgraphs

The degeneracy $\delta^{*}(G)$ is defined as the maximum k for which graph G contains a non-empty k-core subgraph
[Nikolentzos et al., IJCAI'18]

Degeneracy Framework for Graph Comparison

Idea: use the nested sequence of subgraphs generated by k-core decomposition to capture structure at multiple different scales

The core variant of the base kernel k is defined as:

$$
k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+\ldots+k\left(C_{\delta_{\min }^{*}}, C_{\delta_{\min }^{*}}^{\prime}\right)
$$

where $\delta_{\text {min }}^{*}$ is the minimum of the degeneracies of the two graphs, and $C_{0}, C_{1}, \ldots, C_{\delta_{\text {min }}^{*}}$ and $C_{0}^{\prime}, C_{1}^{\prime}, \ldots, C_{\delta_{\text {min }}^{*}}^{\prime}$ are the 0 -core, 1 -core, $\ldots, \delta_{\text {min }}^{*}$-core subgraphs of G and G^{\prime}, respectively

The degeneracy framework can:

- increase the expressive power of existing algorithms
- be applied to any algorithm that compares graphs

Example

Example

Example

Example

$$
\begin{aligned}
& C_{2} \\
& k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+k\left(C_{2}, C_{2}^{\prime}\right)
\end{aligned}
$$

Example

C_{3}
C_{3}^{\prime}

$$
k_{c}\left(G, G^{\prime}\right)=k\left(C_{0}, C_{0}^{\prime}\right)+k\left(C_{1}, C_{1}^{\prime}\right)+k\left(C_{2}, C_{2}^{\prime}\right)+k\left(C_{3}, C_{3}^{\prime}\right)
$$

Successive Embeddings

Graph kernels compute implicitly the inner product between the representations of input graphs in \mathcal{H}

- Equivalent to computing the linear kernel on feature space \mathcal{H}
- Linear kernel limits expressiveness of derived representations

Idea: Obtain complex kernels by stacking simpler kernels on top of one another
[Nikolentzos et al., CIKM'18]

Successive Embeddings

Embedding 1: Embed graphs in a Hilbert space \mathcal{H}_{1} using a graph kernel k
Embedding 2: Embed emerging representations $\phi(G), \phi\left(G^{\prime}\right)$ into another Hilbert space \mathcal{H}_{2} using kernels for vector data:
(1) Polynomial kernel: $k_{P}\left(\phi(G), \phi\left(G^{\prime}\right)\right)=\left(\left\langle\phi(G), \phi\left(G^{\prime}\right)\right\rangle\right)^{d}, \quad d \in \mathbb{N}$
(2) Gaussian kernel: $k_{G}\left(\phi(G), \phi\left(G^{\prime}\right)\right)=\exp \left(-\frac{\left\|\phi(G)-\phi\left(G^{\prime}\right)\right\|^{2}}{2 \sigma^{2}}\right), \quad \sigma>0$

Problem: Usually $\phi(G)$ and $\phi\left(G^{\prime}\right)$ not computed explicitly. How to apply Embedding 2?
\hookrightarrow Use an implicit computation scheme
The two kernels for vector data can be computed as:
(1) Polynomial kernel:

$$
k_{P}\left(\phi(G), \phi\left(G^{\prime}\right)\right)=\left(\left\langle\phi(G), \phi\left(G^{\prime}\right)\right\rangle\right)^{d}=\left(k\left(G, G^{\prime}\right)\right)^{d}, \quad d \in \mathbb{N}
$$

(2) Gaussian kernel:
$k\left(\phi(G) \phi\left(G^{\prime}\right)\right)=\operatorname{exn}\left(-k(G, G)-2 k\left(G, G^{\prime}\right)+k\left(G^{\prime}, G^{\prime}\right)\right) \quad \sigma>0$

Successive Embeddings Example

- Figure below illustrates a sequence of two embeddings
- Separation of the data points associated with the two classes progressively increased

Applications of Graph Kernels

Applications

- Bioinformatics [Borgwardt et al., Bioinformatics 21(suppl_1); Borgwardt et al., PSB'07; Sato et al., BMC bioinformatics 9(1)]
- Chemoinformatics [Swamidass et al., Bioinformatics 21(suppl_1); Ralaivola et al., Neural Networks 18(8); Mahé et al., JCIM 45(4); Ceroni et al., Bioinformatics 23(16); Mahé and Vert, Machine Learning 75(1)]
- Computer Vision [Harchaoui and Bach, CVPR'07; Bach, ICML'08; Wang and Sahbi. CVPR'13; Stumm et al., CVPR'16]
- Cybersecurity [Anderson et al., JCV 7(4); Gascon et al., AISec'13; Narayanan et al., IJCNN'16]
- Natural Language Processing [Glavas and Snajder, ACL'13; Bleik et al., TCBB 10(5); Nikolentzos et al., EMNLP'17]
- Social Networks [Yanardag and Vishwanathan, KDD'15]

Protein Function Prediction

For each protein, create a graph that contains information about its

- structure
- sequence
- chemical properties

Kernel type	Accuracy
Vector kernel	76.86
Optimized vector kernel	80.17
Graph kernel	77.30
Graph kernel without structure	72.33
Graph kernel with global info	84.04
DALI classifier	75.07

Chemical Compound Classification

Represent each chemical compound as a graph

Perform graph classification to predict if a chemical compound displays the desired behavior against the specific biomolecular target or not

Lin.Reg	DT	NN	Progoll	Progol2	Sebag	Kramer	graph kernels
89.3%	88.3%	89.4%	81.4%	87.8%	93.3%	95.7%	91.2%

[Mahé et al., JCIM 45(4)]

Malware Detection

Given a computer program, create its control flow graph

call	[ebp+0x8]
push	0×70
push	$0 \times 010012 \mathrm{~F} 8$
call	0×01006170
push	$0 \times 010061 \mathrm{C} 0$
mov	eax, fs: $[0 \times 00000000]$
push	eax
mov	fs: [], esp
mov	eax, $[\mathrm{esp}+0 \times 10]$
mov	$[\mathrm{esp}+0 \times 10]$, ebp
lea	ebp, $[\mathrm{esp}+0 \times 10]$
sub	esp, eax
\ldots	\ldots

Perform graph classification to predict if there is malicious code inside the program or not

Method	Accuracy (\%)
Gaussian kernel	$\mathbf{9 9 . 0 9}$
Spectral kernel	96.36
Combined kernel	$\mathbf{1 0 0 . 0 0}$
n-gram $(n=4, L=1,000$, SVM $=2$-poly)	94.55
n-gram $(n=4, L=2,500$, SVM $=$ Gauss $)$	93.64
n-gram $(n=6, L=2,500, S V M=2$-poly)	92.73
n-gram $(n=3, L=1,000$, SVM $=2$-poly $)$	89.09
n-gram $(n=2, L=500,3$-NN $)$	88.18

Graph-Of-Words

Each document is represented as a graph $G=(V, E)$ consisting of a set V of vertices and a set E of edges between them

- vertices \rightarrow unique terms
- edges \rightarrow co-occurrences within a fixed-size sliding window
- no edge weight
- no edge direction

As a discipline, computer science spans a range of topics from theoretical studies of algorithms and the limits of computation to the practical issues of implementing computing systems in hardware and software.

Graph representation more flexible than n-grams. Takes into account

- word inversion
- subset matching
- e.g., "article about news" vs. "news article"

Custom Shortest Path Kernel

Transforms the original graphs into shortest-paths graphs
\hookrightarrow Edges correspond to shortest paths of length at most d in original graph
Given the SP-transformed graphs $C_{1}=\left(V_{1}, E_{1}\right)$ and $C_{2}=\left(V_{2}, E_{2}\right)$ of G_{1} and G_{2}, the shortest path kernel is defined as:

$$
k\left(G_{1}, G_{2}\right)=\frac{\sum_{v_{1} \in V_{1}, v_{2} \in V_{2}} k_{\text {node }}\left(v_{1}, v_{2}\right)+\sum_{e_{1} \in E_{1}, e_{2} \in E_{2}} k_{\text {walk }}^{(1)}\left(e_{1}, e_{2}\right)}{n o r m}
$$

where $k_{\text {node }}$ is a kernel for comparing two vertices, $k_{\text {walk }}^{(1)}$ a kernel on edge walks of length 1 and norm a normalization factor. Specifically:

$$
\begin{aligned}
& k_{\text {node }}\left(v_{1}, v_{2}\right)= \begin{cases}1 & \text { if } \ell\left(v_{1}\right)=\ell\left(v_{2}\right), \\
0 & \text { otherwise }\end{cases} \\
& k_{\text {walk }}^{(1)}\left(e_{1}, e_{2}\right)=k_{\text {node }}\left(u_{1}, u_{2}\right) k_{\text {edge }}\left(e_{1}, e_{2}\right) k_{\text {node }}\left(v_{1}, v_{2}\right) \\
& k_{\text {edge }}\left(e_{1}, e_{2}\right)= \begin{cases}\ell\left(e_{1}\right) \ell\left(e_{2}\right) & \text { if } e_{1} \in E_{1} \wedge e_{2} \in E_{2}, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

[Nikolentzos et al., EMNLP'17]

Example

d_{1} : "barclays bank cut its base lending rate"
d_{2} : "base rate of barclays bank dropped"

Example

SP-transformation $(d=2)$

Example

$$
\sum_{v_{1} \in V_{1}, v_{2} \in V_{2}} k_{n o d e}\left(v_{1}, v_{2}\right)=4
$$

Example

$$
\sum_{e_{1} \in E_{1}, e_{2} \in E_{2}} k_{\text {walk }}^{(1)}\left(e_{1}, e_{2}\right)=1+\frac{1}{2}=\frac{3}{2}
$$

C_{1}

Example

norm $=13.07$
$k\left(G_{1}, G_{2}\right)=\frac{4+\frac{3}{2}}{13.07}=0.42$

C_{1}

Text Categorization

Method \quad Dataset		WebKB		News		Subjectivity		Amazon		Polarity	
		Acc	F1								
Dot product	$n=1$	90.26	89.23	81.10	77.64	89.92	89.92	91.88	91.88	76.27	76.26
	$n=2$	90.47	89.50	80.91	77.32	91.01	91.01	92.00	92.02	77.46	77.45
	$n=3$	90.26	89.17	80.72	77.10	90.90	90.90	91.81	91.85	77.41	77.40
	$n=4$	89.40	88.13	80.31	76.51	90.39	90.39	91.31	91.33	77.19	77.18
Cosine	$n=1$	92.48	91.88	81.17	77.66	90.03	90.02	94.00	94.00	76.70	76.69
	$n=2$	93.05	92.75	81.49	77.97	90.94	90.94	94.13	94.13	77.56	77.56
	$n=3$	92.98	92.59	80.97	77.38	90.99	90.99	94.19	94.18	77.65	77.65
	$n=4$	92.48	92.08	80.76	77.09	90.76	90.75	94.13	94.13	77.53	77.53
Tanimoto	$n=1$	90.62	89.83	81.55	78.15	90.94	90.93	92.25	92.26	77.49	77.48
	$n=2$	90.40	89.45	80.75	77.00	90.61	90.60	91.81	91.85	77.35	77.35
	$n=3$	92.41	91.80	79.80	75.75	90.21	90.20	93.44	93.47	76.48	76.48
	$n=4$	91.76	90.84	78.99	74.83	89.53	89.52	93.00	93.00	75.86	75.86
DCNN		89.18	87.99	79.91	76.15	90.26	90.26	91.81	91.81	73.26	73.26
CNN	static, rand			77.57	73.37	87.16	87.15	88.81	88.82	71.50	71.50
CNN	non-static, rand			81.13	77.49	89.61	89.60	93.56	93.56	76.54	76.53
SPGK	$d=1$	93.27	92.78	81.04	77.49	91.48	91.48	94.00	94.01	77.76	77.75
	$d=2$	93.70	93.36	80.89	77.29	91.46	91.46	94.13	94.13	77.89	77.88
	$d=3$	92.91	92.33	80.78	77.03	91.37	91.37	94.44	94.44	77.61	77.60
	$d=4$	92.91	92.23	80.97	77.30	91.18	91.18	94.63	94.63	77.80	77.80

Image Classification

Represent each image as a graph based on its segmentation mosaic

Perform graph classification to categorize images

	H	W	TW	wTW	M
Coil100	1.2%	0.8%	0.0%	0.0%	0.0%
Corel14	10.36%	8.52%	7.24%	6.12%	5.38%

[Harchaoui and Bach, CVPR'07]

Experimental Evaluation

GraKeL

- Python library for graph kernels
- Contains implementations of a large number of graph kernels
- Compatible with scikit-learn
- Project repository:
 https://github.com/ysig/GraKeL

Evaluation

Standard datasets from graph classification containing:

- unlabeled graphs
- node-labeled graphs
- node-attributed graphs

Classification using:

- SVM \rightarrow precompute kernel matrix
- Hyperparameters of both SVM (i.e. C) and graph kernels optimized on training set using cross-validation

Perform 10 times 10 -fold cross validation and report:

- Average accuracy over the 10 repetitions
- Standard deviation over the 10 repetitions

Graph Classification（Node－Labeled Graphs）

Kernels	DATASETS			
	MUTAG	ENZYMES	NCI1	PTC－MR
Vertex Histogram	71.87 （ $\pm 1.83)$	16.87 （ $\pm 1.56)$	56.09 （ $\pm 0.35)$	58.09 （ $\pm 0.62)$
Random Walk	82.24 （ $\pm 2.87)$	12.90 （ $\pm 1.42)$	TIMEOUT	51.26 （ $\pm 2.30)$
Shortest Path	82.54 （ $\pm 1.00)$	40.13 （ $\pm 1.34)$	72.25 （ $\pm 0.28)$	59.26 （ $\pm 2.34)$
WL Subtree	84.00 （ $\pm 1.25)$	53.15 （ $\pm 1.22)$	$85.03(\pm 0.20)$	63.28 （土 1．34）
WL Shortest Path	82.29 （ $\pm 1.93)$	28.23 （ $\pm 1.00)$	61.43 （ $\pm 0.32)$	55.51 （ $\pm 1.68)$
WL Pyramid Match	88.60 （ $\pm 0.95)$	57.72 （ $\pm 0.84)$	$85.31(\pm 0.42)$	64.52 （ $\pm 1.36)$
Neighborhood Hash	$87.74(\pm 1.17)$	43.43 （ $\pm 1.45)$	$74.81(\pm 0.37)$	60.50 （ $\pm 2.10)$
Neighborhood Subgraph Pairwise Distance	82.46 （ $\pm 1.55)$	41.97 （ $\pm 1.66)$	74.36 （ $\pm 0.31)$	60.04 （ $\pm 1.15)$
Ordered Dags Decomposition	$79.01(\pm 2.04)$	31.87 （ $\pm 1.35)$	$75.03(\pm 0.45)$	$59.08(\pm 1.85)$
Pyramid Match	84.72 （ $\pm 1.67)$	42.67 （ $\pm 1.78)$	73.11 （ $\pm 0.49)$	$57.99(\pm 2.45)$
GraphHopper	$82.11(\pm 2.13)$	36.47 （ $\pm 2.13)$	$71.36(\pm 0.13)$	$55.64(\pm 2.03)$
Subgraph Matching	$84.04(\pm 1.55)$	35.68 （ $\pm 0.80)$	TIMEOUT	57.91 （ $\pm 1.73)$
Propagation	77.23 （ $\pm 1.22)$	44.48 （ $\pm 1.63)$	$82.12(\pm 0.22)$	59.30 （ $\pm 1.24)$
Multiscale Laplacian	86.11 （ $\pm 1.60)$	$53.08(\pm 1.53)$	79.40 （ $\pm 0.47)$	59.95 （ $\pm 1.71)$
CORE WL	85.90 （ $\pm 1.44)$	52.37 （ $\pm 1.29)$	$85.12(\pm 0.21)$	63.03 （ $\pm 1.67)$
CORE Shortest Path	85.13 （ $\pm 2.46)$	41.55 （ $\pm 1.66)$	73.87 （ $\pm 0.19)$	58.21 （ $\pm 1.87)$
Kernels	DATASETS			Avg． Rank
	D\＆D	PROTEINS	AIDS	
Vertex Histogram	74.83 （土 0．40）	70.93 （ $\pm 0.28)$	79.78 （土 0．13）	13.7
Random Walk	OUT－OF－MEM	69.31 （ $\pm 0.29)$	79.52 （土0．58）	15.0
Shortest Path	78.93 （ $\pm 0.53)$	75.92 （ $\pm 0.35)$	99.41 （ $\pm 0.12)$	6.7
WL Subtree	78.88 （土0．46）	75.45 （ $\pm 0.33)$	98.51 （ $\pm 0.05)$	4.8
WL Shortest Path	75.66 （ $\pm 0.42)$	71.88 （ $\pm 0.22)$	99.36 （ $\pm 0.02)$	11.8
WL Pyramid Match	OUT－OF－MEM	75.63 （ $\pm 0.49)$	$99.37(\pm 0.04)$	2.1
Neighborhood Hash	76.02 （ $\pm 0.94)$	75.55 （ $\pm 1.00)$	$99.54(\pm 0.02)$	5.0
Neighborhood Subgraph Pairwise Distance	78.76 （ $\pm 0.56)$	73.17 （土0．76）	$98.04(\pm 0.20)$	8.0
Ordered DAGs Decomposition	75.82 （ $\pm 0.54)$	70.49 （ $\pm 0.64)$	90.75 （ $\pm 0.30)$	11.4
Pyramid Match	76.98 （ $\pm 0.84)$	71.90 （ $\pm 0.79)$	99.56 （ $\pm 0.08)$	8.2
GraphHopper	TIMEOUT	74.19 （ $\pm 0.42)$	$99.57(\pm 0.02)$	9.6
Subgraph Matching	OUT－OF－MEM	OUT－OF－MEM	91.96 （ $\pm 0.18)$	11.2
Propagation	78.43 （ $\pm 0.55)$	72.71 （ $\pm 0.62)$	96.51 （ $\pm 0.38)$	8.4
Multiscale Laplacian	78.28 （ $\pm 0.99)$	73.89 （ $\pm 0.93)$	98.48 （ $\pm 0.12)$	6.0
CORE WL	78.91 （ $\pm 0.50)$	75.46 （ $\pm 0.38)$	98.70 （ $\pm 0.09)$	4.1
CORE Shortest Path	79.33 （土0．65）	76.31 （土0．40）	99.47 （ ± 0.05 ）	5.5

Running Time (Node-Labeled Graphs)

DATASETS

Kernels	DATASETS			
	MUTAG	ENZYMES	NCI1	PTC-MR
Vertex Histogram	0.01 s	0.04 s	0.84 s	0.02 s
Random Walk	1 m 46.86 s	4H 24 m 16.26 s	timeout	6 m 41.20 s
Shortest Path	0.92 s	11.03 s	1 m 9.69 s	1.52 s
WL Subtree	0.21 s	3.81 s	7 m 5.33 s	0.55 s
WL Shortest Path	7.02 s	1 m 27.07 s	15 m 29.50 s	12.55 s
WL Pyramid Match	3 m 42.07 s	1H 5m 37.26 s	13 H 31 m 34.36 s	11 m 8.16 s
Neighborhood Hash	0.40 s	11.17 s	7 m 4.54 s	1.31 s
Neighborhood Subgraph Pairwise Distance	- 4.05 s	27.02 s	6 m 9.81 s	7.66 s
Ordered DAGs Decomposition	1.54 s	50.05 s	46 m 2.13 s	4.03 s
Pyramid Match	2.59 s	31.38 s	37 m 37.50 s	11.35 s
GraphHopper	24.70 s	15 m 38.33 s	3 H 45 m 8.31 s	1 m 33.90 s
Subgraph Matching	1 m 57.25 s	3H 25 m 43.59 S	TIMEOUT	4 m 19.80 s
Propagation	0.48 s	12.05 s	10 m 27.83 s	1.81 s
Multiscale Laplacian	10m 3.15 s	56 m 43.76 s	5H 30m 56.29s	19 m 22.43 s
CORE WL	0.55 s	12.52 s	14 m 30.56 S	17 M 2.27 S
CORE Shortest Path	2.69 s	48.02 s	3 m 16.54 s	3.97 s
Kernels	DATASETS			Avg. Rank
	D\&D	PROTEINS	AIDS	
Vertex Histogram	0.24 s	0.10 s	0.25 s	1.0
Random Walk	OUT-OF-MEM	51 m 10.11 s	1H 51 m 56.47 s	13.6
Shortest Path	55 m 58.79 s	1 m 18.91 s	13.93 s	4.4
WL Subtree	5 m 52.96 s	32.48 s	40.49 s	2.8
WL Shortest Path	7 H 27 M 21.90 s	8 m 3.68 s	1 m 33.46 s	10.1
WL Pyramid Match	OUT-OF-MEM	5 H 37 M 10.33 S	5H 55m 20.37 s	14.6
Neighborhood Hash	6 m 17.21 s	41.81s	33.30 s	3.5
Neighborhood Subgraph Pairwise Distance	4H 36m 28.97 s	9 M 9.80 s	1 m 12.31 s	8.1
Ordered DAGs Decomposition	27m 59.18 s	4 m 7.81 s	2 m 5.32 s	8.7
Pyramid Match	5m 48.51s	1 m 26.82 s	2 m 48.04 s	8.0
GraphHopper	TIMEOUT	3 H 43 m 1.54 s	38 m 51.78 s	12.1
Subgraph Matching	OUT-OF-MEM	OUT-OF-MEM	4H 26 m 46.71 s	14.0
Propagation	9 m 34.30 s	51.20 s	1 m 43.62 s	5.5
Multiscale Laplacian	3 H 40 m 30.72 s	2H 20 m 39.57 S	1 H 11 m 58.23 s	13.2
CORE WL	17 m 2.27 s	1 m 16.74 s	54.79 s	7.2
CORE Shortest Path	5 H 2 m 39.71 s	3 m 31.97 s	40.11 s	7.2

Graph Classification（Unlabeled Graphs）

Kernels	DATASETS						Avg． Rank
	$\begin{gathered} \text { IMDB } \\ \text { BINARY } \end{gathered}$	$\begin{gathered} \text { IMDB } \\ \text { MULTI } \end{gathered}$	$\begin{aligned} & \text { REDDIT } \\ & \text { BINARY } \end{aligned}$	$\begin{gathered} \text { REDDIT } \\ \text { MULTI-5K } \end{gathered}$	REDDIT MULTI－12K	COLLAB	
Vertex Histogram	46.54 （土 0．80）	29.59 （ $\pm 0.40)$	47.32 （土 0．66）	17.92 （ $\pm 0.42)$	21.73 （ $\pm 0.00)$	52.00 （土 0．00）	12.4
Random Walk	$63.87(\pm 1.06)$	45.75 （ $\pm 1.03)$	TIMEOUT	timeout	OUT－OF－MEM	68.00 （ $\pm 0.07)$	7.6
Shortest Path	$55.18(\pm 1.23)$	39.37 （ $\pm 0.84)$	$81.67(\pm 0.23)$	47.90 （ $\pm 0.13)$	timeout	58.80 （ $\pm 0.08)$	8.3
Graphlet	65.19 （ $\pm 0.97)$	39.82 （ $\pm 0.89)$	76.80 （ $\pm 0.27)$	34.06 （ $\pm 0.38)$	23.08 （土 0．11）	70.63 （土0．25）	7.0
WL Subtree	72.47 （土0．50）	50.76 （ $\pm 0.30)$	67.96 （ $\pm 1.01)$	OUT－OF－MEM	OUT－OF－MEM	78.12 （ $\pm 0.17)$	4.2
WL Shortest Path	55.87 （ $\pm 1.19)$	39.63 （ $\pm 0.68)$	TIMEOUT	TIMEOUT	timeout	58.80 （ $\pm 0.06)$	10.8
Neighborhood Hash	73.34 （土0．98）	50.68 （ $\pm 0.50)$	81.65 （ $\pm 0.28)$	$49.36(\pm 0.18)$	39.62 （ $\pm 0.19)$	79.99 （土0．39）	2.3
Neighborhood Subgraph Pairwise Distance	68.81 （ $\pm 0.71)$	45.10 （ $\pm 0.63)$	timeout	timeout	timeout	timeout	7.5
Lovász－ϑ	49.21 （ $\pm 1.33)$	39.33 （ $\pm 0.95)$	timeout	timeout	timeout	timeout	15.0
SVM－ϑ	$51.35(\pm 1.54)$	$38.40(\pm 0.60)$	$74.54(\pm 0.27)$	29.65 （ $\pm 0.53)$	23.04 （ $\pm 0.18)$	55.72 （ $\pm 0.31)$	10.1
Ordered Dags Decomposition	$64.70(\pm 0.73)$	$46.80(\pm 0.51)$	$50.61(\pm 1.06)$	$42.99(\pm 0.09)$	$29.83(\pm 0.08)$	$52.00(\pm 0.00)$	7.5
Pyramid Match	$66.67(\pm 1.45)$	45.25 （ $\pm 0.79)$	$86.77(\pm 0.42)$	48.22 （ $\pm 0.29)$	41.15 （ $\pm 0.17)$	74.57 （ $\pm 0.34)$	4.1
GraphHopper	57.69 （ $\pm 1.31)$	$40.04(\pm 0.91)$	TIMEOUT	timeout	timeout	60.21 （土 0．10）	9.3
Subgraph Matching	timeout	TIMEOUT	OUT－OF－MEM	OUT－OF－MEM	OUT－OF－MEM	TIMEOUT	－
Propagation	51.15 （ $\pm 1.67)$	33.15 （ $\pm 1.08)$	63.41 （ $\pm 0.77)$	34.32 （ $\pm 0.61)$	24.07 （ ± 0.11 ）	58.67 （土0．15）	10.1
Multiscale Laplacian	$70.94(\pm 0.93)$	$47.92(\pm 0.87)$	$89.44(\pm 0.30)$	35.01 （ $\pm 0.65)$	OUT－OF－MEM	75.29 （ $\pm 0.49)$	3.8
CORE WL	73.31 （ $\pm 1.06)$	$50.79(\pm 0.54)$	$72.82(\pm 1.05)$	OUT－OF－MEM	OUT－OF－MEM	OUT－OF－MEM	3.8
CORE Shortest Path	$69.37(\pm 0.68)$	$50.79(\pm 0.57)$	$90.76(\pm 0.14)$	timeout	OUT－OF－MEM	TIMEOUT	2.5

［Nikolentzos et al．，arXiv：1904．12218］

Running Time (Unlabeled Graphs)

Kernels	DATASETS						Avg. Rank
	IMDB	IMDB	REDDIT	REDDIT	REDDIT	COLLAB	
	BINARY	MULTI	BINARY	MULTI-5K	MULTI-12K		
Vertex Histogram	0.07s	0.15 s	0.67 s	2.20 s	6.37 s	1.12 s	1.0
Random Walk	7 m 20.94 s	13 m 40.75 s	timeout	timeout	timeout	13 H 38 m 11.49 S	13.6
Shortest Path	11.51 s	7.92 s	4H 48m 11.19s	12 H 40 m 19.50 S	timeout	1 H 9 m 5.50 s	7.0
Graphlet	22 M 45.89 S	21 m 44.30 s	44 m 45.42 s	44 m 6.52 S	53 M 14.22 s	2 H 58 m 1.14 S	9.5
WL Subtree	4.49 s	6.16 s	16 m 2.65 s	OUT-OF-MEM	OUT-OF-MEM	38 m 42.24 S	4.2
WL Shortest Path	1 m 32.66 s	1 m 40.46 s	timeout	timeout	timeout	10 H 27 M 41.97 s	10.3
Neighborhood Hash	21.83 s	26.07 s	23 m 3.42 s	2H 44m 44.66 S	9H 11m 23.67 s	35 M 49.96 s	6.3
Neighborhood Subgraph Pairwise Distance	4 m 18.12 s	2 M 49.45 s	timeout	timeout	TIMEOUT	timeout	12.5
Lovász- ϑ	5H 19m 27.17 s	$6 \mathrm{H} 33 \mathrm{M} \mathrm{6.55s}$	timeout	TIMEOUT	timeout	TIMEOUT	17.0
SVM- ϑ	39.40 s	1 m 0.57 s	19 m 24.73 s	23 m 14.31 s	52 m 10.36 s	5 m 57.31 s	5.3
Ordered Dags Decomposition	4.47 s	4.85 s	1 m 53.50 s	4 m 48.92 s	8m 20.66 s	2 H 1 M 9.55 s	3.1
Pyramid Match	1 m 28.02 s	2 m 13.01 s	10 M 9.24 s	51 m 45.10 s	3 H 50 m 38.60 s	36 m 26.14 s	7.0
GraphHopper	2 m 11.15 s	2 m 3.71 s	timeout	TIMEOUT	timeout	5H 51 m 32.27 s	10.3
Subgraph Matching	timeout	timeout	OUT-OF-MEM	OUT-OF-MEM	OUT-0F-MEM	timeout	-
Propagation	7.41 s	14.26s	1 m 23.42 s	5 m 49.01 s	20 m 41.73 s	4 m 34.26 s	3.1
Multiscale Laplacian	1 H 22 M 6.04 s	1H 41m 13.74 s	8 H 21 m 18.76 s	47 M 51.91 s	OUT-OF-MEM	9H 24 m 15.22 S	10.0
CORE WL	36.74 s	1 m 1.82 s	45 m 1.09 s	OUT-OF-MEM	OUT-OF-MEM	OUT-OF-MEM	8.0
CORE Shortest Path	3 m 58.29 S	4 m 29.55 s	10 H 37 M 3.94 s	TIMEOUT	OUT-OF-MEM	TIMEOUT	12.3

[Nikolentzos et al., arXiv:1904.12218]

Graph Classification（Node－Attributed Graphs）

Kernels	DATASETS					Avg． Rank
	ENZYMES	PROTEINS＿FULL	SYNTHETICNEW	Synthie	BZR	
Shortest Path	TIMEOUT	TIMEOUT	TIMEOUT	TIMEOUT	TIMEOUT	－
Subgraph Matching	timeout	OUT－OF－MEM	TIMEOUT	TIMEOUT	$80.52(\pm 0.43)$	3.0
GraphHopper	66.25 （ $\pm 1.24)$	72.49 （ $\pm 0.34)$	76.43 （ $\pm 1.97)$	71.75 （ $\pm 1.65)$	82.58 （ $\pm 1.05)$	1.0
Propagation	15.42 （ $\pm 1.00)$	59.56 （土 0．01）	47.90 （土3．26）	48.90 （ $\pm 2.05)$	78.76 （ $\pm 0.02)$	3.0
Multiscale Laplacian	65.55 （ $\pm 0.93)$	70.55 （ $\pm 0.99)$	47.90 （土2．13）	69.42 （ $\pm 1.98)$	82.33 （ $\pm 1.29)$	2.0

［Nikolentzos et al．，arXiv：1904．12218］

Running Time (Node-Attributed Graphs)

Kernels	DATASETS					Avg. Rank
	ENZYMES	PROTEINS_FULL	SYNTHETICNEW	Synthie	BZR	
Shortest Path	TIMEOUT	TIMEOUT	TIMEOUT	TIMEOUT	TIMEOUT	-
Subgraph Matching	TIMEOUT	OUT-OF-MEM	TIMEOUT	timeout	8H 2 M 3.79 s	4.0
GraphHopper	16m 36.12 s	5H 16m 46.48 s	13 m 54.36 s	24 m 20.00 s	4 m 24.79 s	2.6
Propagation	15.85 s	1 m 43.58 s	13.44 s	34.68 s	10.40 s	1.0
Multiscale Laplacian	26.05 s	4 H 29 m 35.69 s	2H 54m 31.22 s	15 m 11.29 s	49 m 33.60 s	2.4

[Nikolentzos et al., arXiv:1904.12218]

THANK YOU!

http://www.lix.polytechnique.fr/dascim/

Software and data sets:
http://www.lix.polytechnique.fr/dascim/software_datasets/

Preprint available at: https://arxiv.org/pdf/1904.12218.pdf

[^0]: Rousseau et al. "Text categorization as a graph classification problem.". ACL'15

