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Traditional Node Representation

Representation: row of adjacency matrix

→


0 1 . . . 0

1 0 . . . 1

...
...

...
...

0 1 . . . 0


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Traditional Node Representation

Representation: row of adjacency matrix

→


0 1 . . . 0

1 0 . . . 1

...
...

...
...

0 1 . . . 0



However, such a representation suffers from:

data sparsity

high dimensionality

...
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Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

dimensionality d � |V |
similar vertices are embedded close to each other in the
low-dimensional space
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Why Learning Node Representations?

Node Classification

Anomaly Detection

Link Prediction
Clustering

Recommendation

Examples:

Recommend friends

Detect malicious users
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Early Methods

Focused mainly on matrix-factorization approaches (e. g.,
Laplacian eigenmaps)

Laplacian eigenmaps projects two nodes i and j close to each
other when the weight of the edge between the two nodes Aij

is high

Embeddings are obtained by the following objective function:

y∗ = arg min
∑
i 6=j

(yi − yj)
2Aij = arg min yTLy

where L is the graph Laplacian

The solution is obtained by taking the eigenvectors
corresponding to the d smallest eigenvalues of the normalized
Laplacian matrix

[Belkin and Niyogi, NIPS’02]
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Recent Methods

Most methods belong to the following groups:

1 Random walk based methods: employ random walks to
capture structural relationships between nodes

2 Edge modeling methods: directly learn node embeddings
using structural information from the graph

3 Matrix factorization methods: generate a matrix that
represents the relationships between vertices and use matrix
factorization to obtain embeddings

4 Deep learning methods: apply deep learning techniques to
learn highly non-linear node representations
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Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

dimensionality d � |V |
similar vertices are embedded close to each other in the
low-dimensional space

When two vertices are similar to each other?

− > first-order proxmity

− > second-order proxmity

− > third-order proxmity
...
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Proximities

Definition (First-order proximity)

The first-order proximity captures the direct neighboring relationships
between vertices. If two vertices v and u are linked by an edge, the
first-order proximity between them is determined by their edge weight,
otherwise is equal to 0.

Definition (Second-order proximity)

The second-order proximity captures the 2-step relations between two
vertices v and u. It describes the proximity of the neighborhood
structures of v and u, and is thus determined by the number of common
neighbors shared by the two vertices.

Definition (High-order proximity)

The high-order proximity captures the k-step relations (k ≥ 3) between
two vertices v and u. It is determined by the number of k-step paths
from v to u.
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Proximities

First-order proximity: observed links in the network

Second-order proximity: shared neighborhood structures

Vertices 6 and 7 have a high first-order proximity since they
are connected through a strong tie → they should be placed
closely in the embedding space

Vertices 5 and 6 have a high second-order proximity since they
share similar neighbors → they should also be placed closely
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Proximities

k-order proximities for k = 1, . . . , 4

Second-order and high-order proximities capture similarity
between vertices with similar structural roles

Higher-order proximities capture more global structure
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DeepWalk

Inspired by recent advances in language modeling

→

v5→v8→v32→v28→v6→v10→v9

v3→v5→v28→v8→v9→v10→v25

v20→v10→v12→v6→v8→v4→v5

v23→v5→v32→v10→v8→v3→v1

v4→v3→v1→v5→v1→v12→v10

...

Simulates a series of short random walks

Main Idea: Short random walks = Sentences

[Perozzi et al., KDD’14]
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DeepWalk

Inspired by recent advances in language modeling

Simulates a series of short random walks

Main Idea: Short random walks = Sentences

[Perozzi et al., KDD’14]
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Skipgram

Skipgram is a recently-proposed language model that:

uses one word to predict the context

context is composed of words appearing to both the right and
left of the given word

removes the ordering constraint on the problem (i. e. does not
take into account the offset of context words from the given
word)

In our setting:

Slide a window of length
2w + 1 over the random
walk

Use the representation of
central vertex to predict its
neighbors
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Skipgram

This yields the optimization problem:

minimize
f

− 1

T

T∑
i=1

logP({vi−w , . . . , vi+w} \ vi |f (vi ))

vi : central vertex
vi−w , . . . , vi+w : neighbors of central vertex
f (v): embedding of vertex v

Skipgram approximates the above conditional probability using the following
independence assumption:

minimize
f

− 1

T

T∑
i=1

i+w∑
j=i−w
j 6=i

logP(vj |f (vi ))

We can learn such a posterior distribution using several choices of
classifiers

However, most of them (e. g., logistic regression) would produce a huge
number of labels (i. e. |V | labels)

Instead, we approximate the distribution using the Hierarchical Softmax

17 / 77 Deep Learning for Graphs - I



Hierarchical Softmax

Reduces complexity from O(|V |) to
O(log |V |) using a binary tree

Assigns the vertices to the leaves
of a binary tree

New problem: Maximizing the
probability of a specific path in the
hierarchy

If the path to vertex vj is identified by a sequence of tree nodes
(b0, b1, . . . , bdlog |V |e) then

P(vj |f (vi )) =

dlog |V |e∏
l=1

P(bl |f (vi ))

where

P(bl |f (vi )) = 1/(1 + e−f (vi )
>f ′(bl )) = σ(f (vi )

>f ′(bl))

and f ′(bl) ∈ Rd is the representation assigned to tree node bl ’s parent
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node2vec

Like DeepWalk, node2vec is also a random walk based method

DeepWalk uses a rigid search strategy

Conversely, node2vec simulates a family of biased random walks
which

explore diverse neighborhoods of a given vertex

allow it to learn representations that organize vertices based
on
� their network roles

� the communities they belong to

[Grover and Leskovec, KDD’16]
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Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS)
represent extreme scenarios in terms of the search space

Goal: Given a source node u, sample its neighborhood N (u) where
|N (u)| = k
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Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS)
represent extreme scenarios in terms of the search space

In most applications, we are interested in two kinds of similarities between
vertices:

1 homophily: nodes that are highly interconnected and belong to
similar communities should be embedded closely together (e. g., s1

and u)

2 structural equivalence: nodes that have similar structural roles
should be embedded closely together (e. g., u and s6)
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Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS)
represent extreme scenarios in terms of the search space

BFS and DFS strategies play a key role in producing representations that
reflect these two properties:

The neighborhoods sampled by BFS lead to embeddings that
correspond closely to structural equivalence

The neighborhoods sampled by DFS reflect a macro-view of the
neighborhood which is essential in inferring communities based on
homophily
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Random Walks of node2vec

Given a source node, node2vec simulates a random walk of fixed length l

v1 → v2 → v3 → . . .→ vl

The i th node in the walk is generated as follows:

P(ci = x |ci−1 = v) =

{
πvx

Z , if (v , x) ∈ E

0, otherwise

where πvx is the unnormalized transition probability between v and x ,
and Z is a normalizing factor

To capture both structural equivalence and homophily, node2vec uses a
neighborhood sampling strategy which

is based on a flexible biased random walk procedure

allows it to smoothly interpolate between BFS and DFS
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Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now
resides at node v

The unnormalized transition probability is πvx = wvxαpq(t, x),
where:

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

where dtx denotes the shortest path distance between t and x
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Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now
resides at node v

The return parameter p controls the likelihood of immediately re-
visiting a node in the walk

if p is high, we are less likely to sample an already-visited
node in the following two steps

if p is low, it would keep the walk in the local neighborhood of
the starting node

22 / 77 Deep Learning for Graphs - I



Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now
resides at node v

The in-out parameter q allows the search to differentiate between
“inward” and “outward” nodes.

if q is high, the random walk is biased towards nodes close to
node t

if q is low, the walk is more inclined to visit nodes which are
further away from the node t

22 / 77 Deep Learning for Graphs - I



Optimization

After defining the neighborhood N (v) ⊂ V of each node v , node2vec uses the
Skipgram architecture:

minimize
f

−
∑
v∈V

log
∏

u∈N (v)

P(u|f (v))

where conditional likelihood is modelled as a softmax unit parametrized by a
dot product of their features:

P(u|f (v)) =
e f

′(u)>f (v)∑|V |
k=1 e

f ′(vk )>f (v)

and f ′(u) ∈ Rd is the representation of node u when considered as context

The objective function thus becomes:

minimize
f ,f ′

−
∑
v∈V

(
− log

∑
u∈V

e f
′(u)>f (v) +

∑
u∈N (v)

f ′(u)>f (v)
)

Since learning the above posterior distribution is very expensive, node2vec
approximates it using negative sampling
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GraRep

GraRep

- constructs transition matrices

- applies matrix factorization to generate node embeddings

k-step Transition Probabilities

Let S be the adjacency matrix of a graph, and D the diagonal degree matrix:

Dij =

{∑
p Sip if i = j

0 if i 6= j

Then, the 1-step probability transition matrix is defined as:

A = D−1S

and then the k-step probability transition matrix is defined as:

Ak = A · · · A︸ ︷︷ ︸
k

Let Pk(vj |vi ) denote the probability for a transition from vi to vj in exactly k
steps. Then,

Pk(vj |vi ) = Ak
ij

[Cao et al., CIKM’15]
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GraRep

For a given k , the loss function of GraRep is:

minimize
f ,f ′

−
∑
vi∈V

( ∑
vj∈V

Pk(vj |vi ) log σ(f ′(vj)
>f (vi ))+

λEvc∼Pk (V )[log σ(−f ′(vc)>f (vi ))]
)

λ: a hyper-parameter indicating the number of negative samples
Pk(V ): distribution over the vertices

Given a specific starting vertex vi and ending vertex vj , the local loss over
that pair is defined as:

Lk(vi , vj) = −Pk(vj |vi ) log σ(f ′(vj)
>f (vi ))−λPk(vj) log σ(−f ′(vj)>f (vi ))

and Pk(vj) can be computed as:

Pk(vj) =
1

|V |
∑
vl∈V

Ak
lj
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GraRep

This leads to:

Lk(vi , vj) = −Ak
ij log σ(f ′(vj)

>f (vi ))− λ

|V |
∑
vl∈V

Ak
lj log σ(−f ′(vj)>f (vi ))

By defining e = f (vi )
>f ′(vj) and setting ∂Lk

∂e = 0, we get:

Y k
ij = f (vi )

>f ′(vj) = W k
i C

k
j = log

( Ak
ij∑

vl∈V Ak
lj

)
− log

( λ
|V |
)

Hence, optimizing the proposed loss essentially involves a matrix
factorization problem
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GraRep

To reduce noise, GraRep replaces all negative entries in Y k with 0:

X k
ij = max(Y k

ij , 0)

And then decomposes X k using SVD:

X k = UkΣk(V k)>

Let X k
d be a low-rank approximation of X k (by keeping the top d

singular values). Then,

X k ≈ X k
d = Uk

d Σk
d(V k

d )> = W kC k

where

W k = Uk
d (Σk

d)
1
2 C k = (Σk

d)
1
2 (V k

d )>

rows of W k : representations of vertices
columns of C k : representations of vertices when considered as
context

27 / 77 Deep Learning for Graphs - I



GraRep

To capture high-order proximities between vertices, GraRep:

computes the k-step transition probability matrix Ak for each
k = 1, 2, . . . ,K

computes each k-step representation

concatenates all k-step representations

Main disadvantage: by setting K to large values, GraRep fails to
efficiently scale to large networks
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SDNE

Most real-world networks are very complex

Shallow models

cannot capture the highly non-linear network structure

generate sub-optimal node representations

SDNE is a deep model which

has multiple layers of non-linear functions

preserves the first-order and second-order proximities

[Wang et al., KDD’16]
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SDNE

To preserve the second-order proximity, SDNE employs a deep autoencoder

Given an input xi (i th row of adjacency matrix), the hidden representations at
layers 1, . . . , k are:

y(1)
i = σ(W(1)xi + b(1))

y(k)
i = σ(W(k)y(k−1)

i + b(k))

where σ is a non-linear activation function (e. g., sigmoid function)

After obtaining y(k)
i (node i ’s’ embedding), we compute the reconstructed

input x̂i by reversing the above calculation process

The objective function is then:

L2nd =
n∑

i=1

||(x̂i − xi )� bi ||22

where � is the Hadamard product, bij = 1 if nodes i and j are not connected
by an edge, and bij > 1 otherwise

Vertices that have similar neighborhoods are mapped close to each other in the
embedding space
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SDNE

To capture the first-order proximity, SDNE borrows the idea of Laplacian
Eigenmaps:

L1st =
n∑

i=1

n∑
j=1

xij ||y(k)
i − y

(k)
j ||

2
2

Vertices linked by edges with high weights are thus mapped close to each
other

SDNE then jointly minimizes
the following objective
function:

L = L2nd + αL1st + νLreg

where Lreg is an l2-norm
regularizer term to prevent
overfitting
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LINE

LINE employs an objective function that explicitly uses structural
information from the graph to learn node representations

Specifically, LINE

preserves both the first-order and second-order proximities

trains two models separately

concatenates the two learned embeddings for each vertex

[Tang et al., WWW’15]
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LINE with First-order Proximity

To model the first-order proximity, for each undirected edge (vi , vj),
define the joint probability between vi and vj as follows:

P1(vi , vj) =
1

1 + e−f (vi )>f (vj )

where f (vi ) ∈ Rd is the low-dimensional vector representation of vertex vi

The empirical probability can be defined as:

P̂1(vi , vj) =
wij

W

wij : weight of the edge between vi , vj
W : sum of weights of all edges

LINE minimizes the KL-divergence of the two probability distributions:

minimize
f

−
∑

(vi ,vj )∈E

wij logP1(vi , vj)
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LINE with Second-order Proximity

To model the second-order proximity, for each edge (vi , vj), LINE defines the
probability of context vj generated by vertex vi :

P2(vj |vi ) =
e f

′(vj )
>f (vi )∑|V |

k=1 e
f ′(vk )>f (vi )

f (vi ): representation of vi when treated as a vertex
f ′(vi ): representation of vi when treated as context

The empirical probability can be defined as:

P̂2(vj |vi ) =
wij

di

di : out-degree of vi

LINE minimizes the KL-divergence of the two probability distributions:

minimize
f ,f ′

−
∑

(vi ,vj )∈E

wij logP2(vj |vi )
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LINE with Second-order Proximity

Optimizing the objective of the second-order proximity is
computationally very expensive

Instead, use negative sampling: for each edge, sample multiple
negative edges according to some noisy distribution

Every logP2(vj |vi ) term in the objective is replaced with:

log σ(f ′(vj)
>f (vi )) +

K∑
k=1

Evk∼Pn(v)[log σ(−f ′(vk)>f (vi ))]

where σ = 1/(1 + e−x) is the sigmoid function and K the number
of negative edges
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Experimental Evaluation

Experimental comparison conducted in [1]

Compared algorithms:

DeepWalk

GraRep

SDNE

LINE

Laplacian Eigenmaps (LE)

[Wang et al., KDD’16]
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Datasets

Five datasets:

three social networks

one citation network

one language network

Three real-world applications

node classification

link prediction

visualization
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Node Classification

Vertex representations generated from node embedding methods
and given as input to a logistic regression classifier to predict a set
of labels for each vertex

BLOGCATALOG

For BLOGCATALOG, the training/test ratio is increased from 10%
to 90%
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Node Classification

FLICKR

YOUTUBE

For FLICKR and YOUTUBE, the training/test ratio is increased
from 1% to 10%
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Link Prediction

Followed procedure:

Remove a portion of ARXIV GR-QC’s edges

Use the emerging network to learn node embeddings

Predict missing links
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Visualization

Visualization of 20-NEWSGROUP

Each point indicates one document

Color of a point indicates the category of the document

41 / 77 Deep Learning for Graphs - I



Outline

1 Learning Node Representations
Introduction
Unsupervised Methods

Proximity-based Approaches
Structural Equivalence-based Approaches

Supervised Methods

42 / 77 Deep Learning for Graphs - I



Structural Identity

Nodes in networks have specific roles

- e. g., individuals, web pages, proteins, etc

Structural identity

- identification of nodes based on network structure (no other
attribute)

- often related to role played by node

Automorphism: strong structural equivalence

Red, Green: structurally identical
Purple, Brown: structurally
similar
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RolX: Structural Role Extraction & Mining in Large Graphs

An unsupervised learning approach for automatically extracting
structural roles from networks

Key Ideas:

Automatic feature extraction, based exclusively on the graph
structure
Assignment of a mixed-membership of roles to each node
Feature grouping and role extraction in linear time on the
number of edges.

Applications:

Transfer learning: The structural roles generalize across
disjoint networks
Structural Similarity of networks by comparison of the role
distributions
Sense-making: Structural roles highlight different contextual
roles

[Henderson et al., KDD’12]
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Step 1: Feature Extraction

ReFeX turns network connectivity into recursive structural
features

Local and egonet features seed the recursive ReFeX process.
Local features: measures of the node degree
Egonet features: information of the induced subgraph of each
node, i. e. neighbors and edges occruring in the subgraph

[Henderson et al., KDD’11]
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Step 2: Embedding Generation

To identify the roles that each node plays in the network, RolX
performs soft clustering in the structural feature space

Let V denote the node-feature matrix

The algorithm computes a low-rank approximation of V, V ≈ G F

To compute the low-rank approximation, the alorithm uses
nonnegative matrix factorization:
arg minG,F ||V − G F||F , such that G ≥ 0,F ≥ 0

This type of factorization

- is computationally efficient
- simplifies the interpretation of roles and memberships

Rows of matrix V considered as structural embeddings of nodes
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Step 3: Model Selection

What is the best choice of rank r of the approximation G F?

Minimum description length for optimal size r of model

- L: description length
- M: number of bits required to describe the model
- E : description cost of the reconstruction error in V − G F
- Goal: Minimize L = M + E

Errors in V − G F are not distributed normally → KL
divergence

E =
∑
i ,j

(
Vi ,j log

Vi ,j

(G F)i ,j
− Vi ,j + (G F)i ,j

)
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struc2vec

Learns node representations based on structural identity

- structurally similar nodes close in space

Key ideas:

Structural similarity does not depend on hop distance

- neighbor nodes can be different, far away nodes can be similar

Structural identity as a hierarchical concept

- depth of similarity varies

Flexible four step procedure

- operational aspect of steps are flexible

[Ribeiro et al., KDD’17]

48 / 77 Deep Learning for Graphs - I



Step 1: Structural Similarity

Hierarchical measure for structural similarity between two
nodes

Rk(v): set of nodes at distance k from v (ring)

s(S): ordered degree sequence of set S

s(R0(u)) = 4

s(R0(v)) = 3

s(R1(u)) = 1, 3, 4, 4

s(R1(v)) = 4, 4, 4

s(R2(u)) = 2, 2, 2, 2

s(R2(v)) = 1, 2, 2, 2, 2
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Step 1: Structural Similarity

g(D1,D2): distance between two ordered sequences

cost of pairwise alignment: max(a,b)/min(a,b)− 1
optimal alignment by Dynamic Time Warping in our framework

s(R0(u)) = 4

s(R0(v)) = 3

g(·, ·) = 0.33

s(R1(u)) = 1, 3, 4, 4

s(R1(v)) = 4, 4, 4

g(·, ·) = 3.33

s(R2(u)) = 2, 2, 2, 2

s(R2(v)) = 1, 2, 2, 2, 2

g(·, ·) = 1

fk(v , u): structural distance between nodes v and u
considering first k rings

fk(v , u) = fk−1(v , u) + g(s(Rk(v)), s(Rk(u)))

f0(v , u) = 0.33 f1(v , u) = 3.66 f2(v , u) = 4.66
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Step 2: Multi-layer graph

Encodes structural similarity
between all node pairs

Each layer is a weighted complete
graph

- corresponds to similarity
hierarchies

Edge weights in layer k

- wk(v , u) = e−fk (v ,u)

Connect corresponding nodes in
adjacent layers
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Step 3: Generate Context

Context generated by biased random walk

walking on multi-layer graph

Walk in current layer with probability p

choose neighbor according to edge weight
RW prefers more similar nodes

Change layer with probability 1− p

jump to the corresponding node
choose up/down according to edge weight
RW prefers layer with less similar neighbors
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Step 3: Learn Representation

For each node, generate set of
independent and relative short
random walks

- context for node → sentences of
a language

Train a neural network to learn
latent representation for nodes

- maximize probability of nodes
within context

- Skip-gram (Hierarchical Softmax)
adopted
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Barbell Network

struc2vec embeds isomorphic nodes very close to each other
in space
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Spectral approach

Preliminaries:
Let L = D− A be the Laplacian of graph G , where D the
diagonal degree matrix and A the adjacency matrix of G
→ L is symmetric
→ L is positive-semidefinite and, thus, its eigenvalues

λ1, λ2, .., λN are real, non-negative numbers

Let the eigendecomposition of L, L = UΛU>

Matrix U contains the eigenvectors of L and matrix Λ is a
diagonal matrix with the eigenvalues of L on the main
diagonal

The spectral decomposition of the Laplacian of a graph reveals
several structural characteristics of the graph:

number of components

sparsest cut

etc.
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Spectral graph wavelets (1/2)

The graph Laplacian L satisfies the eigendecomposition:
Lx` = λ`x`
The eigenvalues λi , i = 1, .., n correspond to different
frequencies in the frequency domain:

The equivalent of the Fourier transform can be defined in the
graph space:

Real Space Graph Space

Laplacian Operator d2

dx2 L

Eigenfunctions e jωx x`
Fourier Transform f̂ (ω) =

∫
(e jωx)∗f (x)dx f̂ (`) =

∑n
i=1 x∗` (i)f (i)

Inv. Fourier Transform f (ω) = 1
2π

∫
e jωx f̂ (x)dx f (i) =

∑n
`=1 f̂ (`)x`(i)
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Spectral graph wavelets (2/2)

Spectral Graph filtering: Why do we need filtering?

Filters keep specific frequencies/eigenvalues of the signal!

⇒Different structural aspects of the graph!!

Apply filter with transfer function ĝ(·) to a graph signal
f : V → Rn

[Dong et al., IEEE Transactions on Signal Processing]
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GraphWave

Key idea:

Represent a node’s topological signature as a distribution over
the coefficients of the heat scaling wavelet centered around
the node

Spectral graph wavelet:

Ψi = U Z U> δi

where Z a diagonal matrix with gs(λ1), gs(λ2), . . . , gs(λn) on the
main diagonal, gs(·) a scaling wavelet (filter kernel with scaling
parameter s) and δi the one-hot vector of node vi

heat kernel: gs(λ) = e−λs

mth wavelet coefficient: Ψm,i (s) =
∑n

j=1 gs(λj)Um,jUi ,j

[Donnat et al., KDD’18]
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GraphWave: The Algorithm

Given a graph G = (V ,E ), a scale s and evenly-spaced sampling
points {t1, t2, .., td}, GraphWave:

1 computes the eigenvalue decomposition of the Laplacian of G :
Ψ = Ugs(Λ)U>

2 computes:

φi (t) =
1

n

n∑
j=1

expitΨji

for every node vi ∈ V and for every t ∈ {t1, t2, .., td}

The embedding of a node vi is the defined as follows:

hi = [Re(φi (t1), Im(φi (t1), . . . ,Re(φi (td), Im(φi (td)]

Hyperparameters:

scale s → determines the size of the considered neighborhood
around each node
sampling points t1, t2, .., td
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SEGK: Structural Node Embeddings using Graph Kernels

Another algorithm for learning node representations based on
structural identity

structurally similar nodes close in space

Main idea: The task of learning structural node representations
involves comparing the structure of the neighborhoods of nodes

can use existing algorithms to compare the neighborhoods

SEGK:

uses graph kernels to compare nodes’ neighborhoods

builds a kernel matrix that incorporates structural similarity
between nodes

generates structural node representations by decomposing
that matrix

[Nikolentzos and Vazirgiannis, TKDE]
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Neighborhood Extraction and Labeling

Extracts the 1, 2, . . . ,R-hop neighborhood of each node

Example: Extraction of the
1-hop, 2-hop, and 3-hop
neighborhoods of the green node

r = 1

r = 2

r = 3

1

0

1 1

1

2
1 0

2

2
2

2

1

2
1 0

2

2
2

2

3

3
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Neighborhood Extraction and Labeling

Assigns a label to each node of the r -hop neighborhood
↪→ label equal to the shortest path distance from root

Exaple of assignment of labels to
the nodes of the 3 neighborhood
subgraphs

r = 1

r = 2

r = 3

1

0

1 1

1

2
1 0

2

2
2

2

1

2
1 0

2

2
2

2

3

3

62 / 77 Deep Learning for Graphs - I



Similarity Computation

Uses graph kernels that can handle node labels to compare neighborhood
subgraphs to each other

Let {G 1
i ,G

2
i , . . . ,G

R
i } and {G 1

j ,G
2
j , . . . ,G

R
j } be the 1, 2, . . . ,R-hop

neighborhoods of two nodes vi and vj

Then, SEGK compares two nodes by computing the following kernel:

k(vi , vj) =
R∑

r=1

k̂G (G r
i ,G

r
j ) k̂G (G r−1

i ,G r−1
j )

where k̂G (G 0
i ,G

0
j ) = 1 and k̂G is a normalized kernel between

graphs kG :

k̂G (Gi ,Gj) =
kG (Gi ,Gj)√

kG (Gi ,Gi ) kG (Gj ,Gj)

SEGK puts more emphasis on local neighborhoods than on more distant
ones:

For any r and nodes vi , vj , it holds that 0 ≤ k̂G (G r
i ,G

r
j ) ≤ 1

Product inside the sum no greater than the minimum of the two
kernels
↪→ r -hop neighborhood contributes at most as much as the
(r − 1)-hop neighborhood
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Example

Computing the kernel/similarity between the green and red nodes
based on their 1-hop and 2-hop neighborhoods

k( , ) = k̂G( , )

+k̂G( , ) · k̂G( , )

0 0

0 0 00

1
1

1

1
1

1

1

1

1

2

2
2

2

2

2
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Embedding Generation

After constructing the kernel matrix K ∈ Rn×n (where n is the
number of nodes of the graph), we can generate structural node
embeddings by factorizing it:

K = Q Q>

Then, the i th row of Q corresponds to the embedding of the i th

node

In case n is very large (i. e. hundreds of thousands, millions or
billions) computing matrix K:

can be very inefficient
can be prohibitive in terms of the required memory

To avoid explicitly constructing the kernel matrix, SEGK resorts to
low-rank approximation algorithms
↪→ e. g., the Nyström method allows us to obtain Q ∈ Rn×d (with
d � n) such that K ≈ Q Q>
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Synthetic Node Classification Dataset

Generated synthetic graphs with planted
structural equivalences

Structurally equivalent nodes are assigned the
same class labels

generated graphs consist of a cycle of length 40
and some basic shapes (“house”, “fan”, “star”)
which are regularly placed along the cycle

“basic” setup: 10 instances of only one shape are
placed along the cycle

“varied” setup: 10 of each one of the 3 shapes
are placed along the cycle

“basic perturbed” and “varied perturbed”: noisy scenarios where
edges are added uniformly at random on the generated graphs
↪→ Number of added edges: 10% of the edges of the graph

“basic labeled” and “varied labeled”: the nodes are assigned node
labels
↪→ Two nodes are assigned the same class labels if they are
structurally equivalent and have the same label
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Node Classification Results (1/2)

Configuration Shapes placed along a cycle Method Accuracy F1-score

basic OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.442 0.295

RolX 1.000 1.000
struc2vec 0.784 0.708

DRNE 0.987 0.980

GraphWave 0.995 0.993

SEGK-SP 1.000 1.000
SEGK-WL 1.000 1.000
SEGK-GR 1.000 1.000

basic
perturbed

OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.488 0.327

RolX 0.928 0.886

struc2vec 0.703 0.632

DRNE 0.862 0.800

GraphWave 0.906 0.861

SEGK-SP 0.941 0.907

SEGK-WL 0.907 0.850

SEGK-GR 0.956 0.925

basic
labeled

OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.439 0.263

RolX 0.987 0.974

struc2vec 0.617 0.470

DRNE 0.697 0.547

GraphWave 0.768 0.608

SEGK-SP 0.990 0.984
SEGK-WL 0.990 0.984
SEGK-GR 0.894 0.855
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Node Classification Results (2/2)

Configuration Shapes placed along a cycle Method Accuracy F1-score

varied AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.329 0.139

RolX 0.998 0.996
struc2vec 0.738 0.592

DRNE 0.930 0.876

GraphWave 0.982 0.965

SEGK-SP 0.998 0.996
SEGK-WL 0.994 0.988

SEGK-GR 0.937 0.923

varied
perturbed

AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.313 0.128

RolX 0.856 0.768

struc2vec 0.573 0.412

DRNE 0.734 0.605

GraphWave 0.793 0.682

SEGK-SP 0.892 0.818
SEGK-WL 0.876 0.790

SEGK-GR 0.882 0.817

varied
labeled

AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.315 0.137

RolX 0.940 0.879

struc2vec 0.524 0.349

DRNE 0.548 0.424

GraphWave 0.726 0.547

SEGK-SP 0.940 0.902

SEGK-WL 0.960 0.931
SEGK-GR 0.783 0.776
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Enron Dataset

An e-mail network encoding communication between employees in
a company. There are 143 nodes and 2,583 edges:

Nodes represent Enron employees

Edges correspond to e-mail communication between the
employees

We expect structural equivalences in job titles due to corporate
organizational hierarchy:

An employee has one of 7 functions in the company (e. g.,
CEO, manager)

These functions provide ground-truth information about roles
of the corresponding nodes in the network
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Enron Dataset

Method Homogeneity Completeness Silhouette Accuracy F1-score

DeepWalk 0.240 0.081 0.214 0.324 0.202

RolX 0.178 0.141 0.040 0.264 0.154

struc2vec 0.243 0.122 0.246 0.323 0.190

DRNE 0.344 0.112 0.420 0.201 0.111

GraphWave 0.203 0.092 0.249 0.257 0.149

SEGK-SP 0.227 0.064 0.011 0.264 0.151

SEGK-WL 0.291 0.064 0.283 0.360 0.222
SEGK-GR 0.144 0.088 0.127 0.294 0.172

Table: Performance of the baselines and and the proposed SEGK
instances for learning structural embeddings on the Enron dataset.
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Planetoid

Planetoid

assumes node attributed graphs (e. g., a feature vector is
associated with each vertex)

takes into account both the class labels and the graph
structure to learn node embeddings

minimizes the following loss function: L = Ls + λLu
Ls : a supervised loss of predicting the labels

Lu: an unsupervised loss of predicting the graph context

[Yang et al., ICML’16]
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GCN

Given the adjacency matrix A of a graph, GCN first computes:

Â = D̃−
1
2 Ã D̃−

1
2

where
Ã = A + I
D̃: a diagonal matrix such that D̃ii =

∑
j Ãij

Then, the output of the model is:

Z = softmax(Â ReLU(Â X W0) W1)

where
X: matrix whose rows contain the attributes of the nodes
W0,W1: trainable weight matrices

[Kipf and Welling, ICLR’17]
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GCN

To learn node embeddings, GCN minimizes the following loss
function:

L = −
∑
i∈I

|C|∑
j=1

Yij log Zij

I : indices of the nodes of the training set
C: set of class labels

74 / 77 Deep Learning for Graphs - I



Experimental Evaluation

Experimental comparison conducted in [1]

Compared algorithms:

DeepWalk

ICA [2]

Planetoid

GCN

Task: node classification

[Kipf and Welling, ICLR’17]

[Lu and Getoor, ICML’03]
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Datasets

Label rate: number of labeled nodes that are used for training
divided by the total number of nodes

Citation network datasets:

nodes are documents and edges are citation links

each node has an attribute (the bag-of-words representation
of its abstract)

NELL is a bipartite graph dataset extracted from a knowledge
graph
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Results

Classification accuracies of the 4 methods

Observation: DeepWalk → unsupervised learning of embeddings

↪→ fails to compete against the supervised approaches
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