Deep Learning for Graphs - I

Michalis Vazirgiannis and Giannis Nikolentzos

EDasciM, LIX, École Polytechnique

December 17, 2019

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Traditional Node Representation

Representation: row of adjacency matrix

$$
\rightarrow \quad\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & \ldots & 0
\end{array}\right)
$$

Traditional Node Representation

Representation: row of adjacency matrix

$$
\rightarrow \quad\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & \ldots & 0
\end{array}\right)
$$

Traditional Node Representation

Representation: row of adjacency matrix

$$
\rightarrow \quad\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & \ldots & 0
\end{array}\right)
$$

However, such a representation suffers from:

- data sparsity
- high dimensionality

Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

- dimensionality $d \ll|V|$
- similar vertices are embedded close to each other in the low-dimensional space

Why Learning Node Representations?

Node Classification Anomaly Detection Link Prediction Clustering Recommendation

Examples:

- Recommend friends
- Detect malicious users

Early Methods

- Focused mainly on matrix-factorization approaches (e.g., Laplacian eigenmaps)
- Laplacian eigenmaps projects two nodes i and j close to each other when the weight of the edge between the two nodes $A_{i j}$ is high
- Embeddings are obtained by the following objective function:

$$
y^{*}=\arg \min \sum_{i \neq j}\left(y_{i}-y_{j}\right)^{2} A_{i j}=\arg \min y^{\top} L y
$$

where L is the graph Laplacian

- The solution is obtained by taking the eigenvectors corresponding to the d smallest eigenvalues of the normalized Laplacian matrix

Recent Methods

Most methods belong to the following groups:
(1) Random walk based methods: employ random walks to capture structural relationships between nodes
(2) Edge modeling methods: directly learn node embeddings using structural information from the graph
(3) Matrix factorization methods: generate a matrix that represents the relationships between vertices and use matrix factorization to obtain embeddings
(9) Deep learning methods: apply deep learning techniques to learn highly non-linear node representations

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

- dimensionality $d \ll|V|$
- similar vertices are embedded close to each other in the low-dimensional space

When two vertices are similar to each other?

> first-order proxmity
> second-order proxmity
> third-order proxmity

Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

- dimensionality $d \ll|V|$
- similar vertices are embedded close to each other in the low-dimensional space

When two vertices are similar to each other?
$->$ first-order proxmity
$->$ second-order proxmity
$->$ third-order proxmity
\vdots

Proximities

Definition (First-order proximity)

The first-order proximity captures the direct neighboring relationships between vertices. If two vertices v and u are linked by an edge, the first-order proximity between them is determined by their edge weight, otherwise is equal to 0 .

Definition (Second-order proximity)

The second-order proximity captures the 2-step relations between two vertices v and u. It describes the proximity of the neighborhood structures of v and u, and is thus determined by the number of common neighbors shared by the two vertices.

Definition (High-order proximity)

The high-order proximity captures the k-step relations $(k \geq 3)$ between two vertices v and u. It is determined by the number of k-step paths from vto

Proximities

First-order proximity: observed links in the network
Second-order proximity: shared neighborhood structures

- Vertices 6 and 7 have a high first-order proximity since they are connected through a strong tie \rightarrow they should be placed closely in the embedding space
- Vertices 5 and 6 have a high second-order proximity since they share similar neighbors \rightarrow they should also be placed closely

Proximities

k-order proximities for $k=1, \ldots, 4$

- Second-order and high-order proximities capture similarity between vertices with similar structural roles
- Higher-order proximities capture more global structure

DeepWalk

Inspired by recent advances in language modeling

$$
\begin{aligned}
& v_{5} \rightarrow v_{8} \rightarrow v_{32} \rightarrow v_{28} \rightarrow v_{6} \rightarrow v_{10} \rightarrow v_{9} \\
& v_{3} \rightarrow v_{5} \rightarrow v_{28} \rightarrow v_{8} \rightarrow v_{9} \rightarrow v_{10} \rightarrow v_{25} \\
& v_{20} \rightarrow v_{10} \rightarrow v_{12} \rightarrow v_{6} \rightarrow v_{8} \rightarrow v_{4} \rightarrow v_{5} \\
& v_{23} \rightarrow v_{5} \rightarrow v_{32} \rightarrow v_{10} \rightarrow v_{8} \rightarrow v_{3} \rightarrow v_{1} \\
& v_{4} \rightarrow v_{3} \rightarrow v_{1} \rightarrow v_{5} \rightarrow v_{1} \rightarrow v_{12} \rightarrow v_{10}
\end{aligned}
$$

- Simulates a series of short random walks
[Perozzi et al., KDD'14]

DeepWalk

Inspired by recent advances in language modeling

(a) YouTube Social Graph

(b) Wikipedia Article Text

- Simulates a series of short random walks
- Main Idea: Short random walks = Sentences
[Perozzi et al., KDD'14]

Skipgram

Skipgram is a recently-proposed language model that:

- uses one word to predict the context
- context is composed of words appearing to both the right and left of the given word
- removes the ordering constraint on the problem (i.e. does not take into account the offset of context words from the given word)

In our setting:

$$
\begin{aligned}
& \mathcal{W}_{v_{4}}=4 \\
& 1 \\
& \vdots
\end{aligned}
$$

- Slide a window of length $2 w+1$ over the random walk
- Use the representation of central vertex to predict its neighbors

Skipgram

This yields the optimization problem:

$$
\underset{f}{\operatorname{minimize}}-\frac{1}{T} \sum_{i=1}^{T} \log P\left(\left\{v_{i-w}, \ldots, v_{i+w}\right\} \backslash v_{i} \mid f\left(v_{i}\right)\right)
$$

v_{i} : central vertex
v_{i-w}, \ldots, v_{i+w} : neighbors of central vertex
$f(v)$: embedding of vertex v

Skipgram approximates the above conditional probability using the following independence assumption:

$$
\underset{f}{\operatorname{minimize}}-\frac{1}{T} \sum_{i=1}^{T} \sum_{\substack{j=i-w \\ j \neq i}}^{i+w} \log P\left(v_{j} \mid f\left(v_{i}\right)\right)
$$

- We can learn such a posterior distribution using several choices of classifiers
- However, most of them (e.g., logistic regression) would produce a huge number of labels (i.e. $|V|$ labels)
- Instead, we approximate the distribution using the Hierarchical Softmax

Hierarchical Softmax

Reduces complexity from $\mathcal{O}(|V|)$ to $\mathcal{O}(\log |V|)$ using a binary tree

- Assigns the vertices to the leaves of a binary tree
- New problem: Maximizing the probability of a specific path in the
 hierarchy

If the path to vertex v_{j} is identified by a sequence of tree nodes $\left(b_{0}, b_{1}, \ldots, b_{[\log |V| 7}\right)$ then

$$
P\left(v_{j} \mid f\left(v_{i}\right)\right)=\prod_{l=1}^{\left\lceil\log \mid V_{\mid\rceil}\right.} P\left(b_{l} \mid f\left(v_{i}\right)\right)
$$

where

$$
P\left(b_{l} \mid f\left(v_{i}\right)\right)=1 /\left(1+e^{-f\left(v_{i}\right)^{\top} f^{\prime}\left(b_{l}\right)}\right)=\sigma\left(f\left(v_{i}\right)^{\top} f^{\prime}\left(b_{l}\right)\right)
$$

and $f^{\prime}\left(b_{l}\right) \in \mathbb{R}^{d}$ is the representation assigned to tree node b_{l} 's parent

node2vec

Like DeepWalk, node2vec is also a random walk based method

DeepWalk uses a rigid search strategy

Conversely, node2vec simulates a family of biased random walks which

- explore diverse neighborhoods of a given vertex
- allow it to learn representations that organize vertices based on
- their network roles
- the communities they belong to

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

Goal: Given a source node u, sample its neighborhood $\mathcal{N}(u)$ where $|\mathcal{N}(u)|=k$

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

In most applications, we are interested in two kinds of similarities between vertices:
(1) homophily: nodes that are highly interconnected and belong to similar communities should be embedded closely together (e.g., s_{1} and u)
(2) structural equivalence: nodes that have similar structural roles should be embedded closely together (e.g., u and s_{6})

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme scenarios in terms of the search space

BFS and DFS strategies play a key role in producing representations that reflect these two properties:

- The neighborhoods sampled by BFS lead to embeddings that correspond closely to structural equivalence
- The neighborhoods sampled by DFS reflect a macro-view of the neighborhood which is essential in inferring communities based on homophily

Random Walks of node2vec

Given a source node, node2vec simulates a random walk of fixed length /

$$
v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow \ldots \rightarrow v_{l}
$$

The $i^{\text {th }}$ node in the walk is generated as follows:

$$
P\left(c_{i}=x \mid c_{i-1}=v\right)= \begin{cases}\frac{\pi_{v x}}{Z}, & \text { if }(v, x) \in E \\ 0, & \text { otherwise }\end{cases}
$$

where $\pi_{v x}$ is the unnormalized transition probability between v and x, and Z is a normalizing factor

To capture both structural equivalence and homophily, node2vec uses a neighborhood sampling strategy which

- is based on a flexible biased random walk procedure
- allows it to smoothly interpolate between BFS and DFS

Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now resides at node v

The unnormalized transition probability is $\pi_{v x}=w_{v x} \alpha_{p q}(t, x)$, where:

$$
\alpha_{p q}(t, x)= \begin{cases}\frac{1}{p} & \text { if } d_{t x}=0 \\ 1 & \text { if } d_{t x}=1 \\ \frac{1}{q} & \text { if } d_{t x}=2\end{cases}
$$

where $d_{t x}$ denotes the shortest path distance between t and x

Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now resides at node v

The return parameter p controls the likelihood of immediately revisiting a node in the walk

- if p is high, we are less likely to sample an already-visited node in the following two steps
- if p is low, it would keep the walk in the local neighborhood of the starting node

Random Walks of node2vec

The random walk shown below just traversed edge (t, v) and now resides at node v

The in-out parameter q allows the search to differentiate between "inward" and "outward" nodes.

- if q is high, the random walk is biased towards nodes close to node t
- if q is low, the walk is more inclined to visit nodes which are further away from the node t

Optimization

After defining the neighborhood $\mathcal{N}(v) \subset V$ of each node v, node2vec uses the Skipgram architecture:

$$
\underset{f}{\operatorname{minimize}}-\sum_{v \in V} \log \prod_{u \in \mathcal{N}(v)} P(u \mid f(v))
$$

where conditional likelihood is modelled as a softmax unit parametrized by a dot product of their features:

$$
P(u \mid f(v))=\frac{e^{f^{\prime}(u)^{\top} f(v)}}{\sum_{k=1}^{|V|} e^{f^{\prime}\left(v_{k}\right)^{\top} f(v)}}
$$

and $f^{\prime}(u) \in \mathbb{R}^{d}$ is the representation of node u when considered as context

The objective function thus becomes:

$$
\underset{f, f^{\prime}}{\operatorname{minimize}}-\sum_{v \in V}\left(-\log \sum_{u \in V} e^{f^{\prime}(u)^{\top} f(v)}+\sum_{u \in \mathcal{N}(v)} f^{\prime}(u)^{\top} f(v)\right)
$$

Since learning the above posterior distribution is very expensive, node2vec approximates it using negative sampling

GraRep

GraRep

- constructs transition matrices
- applies matrix factorization to generate node embeddings

k-step Transition Probabilities

Let S be the adjacency matrix of a graph, and D the diagonal degree matrix:

$$
D_{i j}= \begin{cases}\sum_{p} S_{i p} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then, the 1 -step probability transition matrix is defined as:

$$
A=D^{-1} S
$$

and then the k-step probability transition matrix is defined as:

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Let $P_{k}\left(v_{j} \mid v_{i}\right)$ denote the probability for a transition from v_{i} to v_{j} in exactly k steps. Then,

$$
P_{k}\left(v_{j} \mid v_{i}\right)=A_{i j}^{k}
$$

[Cao et al., CIKM'15]

GraRep

For a given k, the loss function of GraRep is:

$$
\begin{aligned}
\underset{f, f^{\prime}}{\operatorname{minimize}}-\sum_{v_{i} \in V} & \left(\sum_{v_{j} \in V} P_{k}\left(v_{j} \mid v_{i}\right) \log \sigma\left(f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)+\right. \\
& \left.\lambda \mathbb{E}_{v_{c} \sim P_{k}(V)}\left[\log \sigma\left(-f^{\prime}\left(v_{c}\right)^{\top} f\left(v_{i}\right)\right)\right]\right)
\end{aligned}
$$

λ : a hyper-parameter indicating the number of negative samples $P_{k}(V)$: distribution over the vertices

Given a specific starting vertex v_{i} and ending vertex v_{j}, the local loss over that pair is defined as:
$L_{k}\left(v_{i}, v_{j}\right)=-P_{k}\left(v_{j} \mid v_{i}\right) \log \sigma\left(f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)-\lambda P_{k}\left(v_{j}\right) \log \sigma\left(-f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)$ and $P_{k}\left(v_{j}\right)$ can be computed as:

$$
P_{k}\left(v_{j}\right)=\frac{1}{|V|} \sum_{v_{v} \in V} A_{l j}^{k}
$$

GraRep

This leads to:
$L_{k}\left(v_{i}, v_{j}\right)=-A_{i j}^{k} \log \sigma\left(f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)-\frac{\lambda}{|V|} \sum_{v_{l} \in V} A_{l j}^{k} \log \sigma\left(-f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)$

By defining $e=f\left(v_{i}\right)^{\top} f^{\prime}\left(v_{j}\right)$ and setting $\frac{\partial L_{k}}{\partial e}=0$, we get:

$$
Y_{i j}^{k}=f\left(v_{i}\right)^{\top} f^{\prime}\left(v_{j}\right)=W_{i}^{k} C_{j}^{k}=\log \left(\frac{A_{i j}^{k}}{\sum_{v_{l} \in V} A_{l j}^{k}}\right)-\log \left(\frac{\lambda}{|V|}\right)
$$

Hence, optimizing the proposed loss essentially involves a matrix factorization problem

GraRep

To reduce noise, GraRep replaces all negative entries in Y^{k} with 0:

$$
X_{i j}^{k}=\max \left(Y_{i j}^{k}, 0\right)
$$

And then decomposes X^{k} using SVD:

$$
X^{k}=U^{k} \Sigma^{k}\left(V^{k}\right)^{\top}
$$

Let X_{d}^{k} be a low-rank approximation of X^{k} (by keeping the top d singular values). Then,

$$
X^{k} \approx X_{d}^{k}=U_{d}^{k} \Sigma_{d}^{k}\left(V_{d}^{k}\right)^{\top}=W^{k} C^{k}
$$

where

$$
W^{k}=U_{d}^{k}\left(\Sigma_{d}^{k}\right)^{\frac{1}{2}} \quad C^{k}=\left(\Sigma_{d}^{k}\right)^{\frac{1}{2}}\left(V_{d}^{k}\right)^{\top}
$$

GraRep

To capture high-order proximities between vertices, GraRep:

- computes the k-step transition probability matrix A^{k} for each $k=1,2, \ldots, K$
- computes each k-step representation
- concatenates all k-step representations

Main disadvantage: by setting K to large values, GraRep fails to efficiently scale to large networks

Most real-world networks are very complex

Shallow models

- cannot capture the highly non-linear network structure
- generate sub-optimal node representations

SDNE is a deep model which

- has multiple layers of non-linear functions
- preserves the first-order and second-order proximities
[Wang et al., KDD'16]

SDNE

To preserve the second-order proximity, SDNE employs a deep autoencoder
Given an input \mathbf{x}_{i} ($i^{\text {th }}$ row of adjacency matrix), the hidden representations at layers $1, \ldots, k$ are:

$$
\begin{aligned}
& \mathbf{y}_{i}^{(1)}=\sigma\left(\mathbf{W}^{(1)} \mathbf{x}_{i}+\mathbf{b}^{(1)}\right) \\
& \mathbf{y}_{i}^{(k)}=\sigma\left(\mathbf{W}^{(k)} \mathbf{y}_{i}^{(k-1)}+\mathbf{b}^{(k)}\right)
\end{aligned}
$$

where σ is a non-linear activation function (e.g., sigmoid function)
After obtaining $\mathbf{y}_{i}^{(k)}$ (node i^{\prime} s' embedding), we compute the reconstructed $^{\prime}$ input $\hat{\mathbf{x}}_{i}$ by reversing the above calculation process

The objective function is then:

$$
\mathcal{L}_{2 n d}=\sum_{i=1}^{n}\left\|\left(\hat{\mathbf{x}}_{i}-\mathbf{x}_{i}\right) \odot \mathbf{b}_{i}\right\|_{2}^{2}
$$

where \odot is the Hadamard product, $\mathbf{b}_{i j}=1$ if nodes i and j are not connected by an edge, and $\mathbf{b}_{i j}>1$ otherwise

Vertices that have similar neighborhoods are mapped close to each other in the embedding space

To capture the first-order proximity, SDNE borrows the idea of Laplacian Eigenmaps:

$$
\mathcal{L}_{1 s t}=\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i j}\left\|\mathbf{y}_{i}^{(k)}-\mathbf{y}_{j}^{(k)}\right\|_{2}^{2}
$$

Vertices linked by edges with high weights are thus mapped close to each other

SDNE then jointly minimizes the following objective function:

$$
\mathcal{L}=\mathcal{L}_{2 \text { nd }}+\alpha \mathcal{L}_{1 s t}+\nu \mathcal{L}_{\text {reg }}
$$

where $\mathcal{L}_{\text {reg }}$ is an I_{2}-norm regularizer term to prevent overfitting

LINE employs an objective function that explicitly uses structural information from the graph to learn node representations

Specifically, LINE

- preserves both the first-order and second-order proximities
- trains two models separately
- concatenates the two learned embeddings for each vertex
[Tang et al., WWW'15]

LINE with First-order Proximity

To model the first-order proximity, for each undirected edge $\left(v_{i}, v_{j}\right)$, define the joint probability between v_{i} and v_{j} as follows:

$$
P_{1}\left(v_{i}, v_{j}\right)=\frac{1}{1+e^{-f\left(v_{i}\right)^{\top} f\left(v_{j}\right)}}
$$

where $f\left(v_{i}\right) \in \mathbb{R}^{d}$ is the low-dimensional vector representation of vertex v_{i}

The empirical probability can be defined as:

$$
\hat{P}_{1}\left(v_{i}, v_{j}\right)=\frac{w_{i j}}{W}
$$

$w_{i j}$: weight of the edge between v_{i}, v_{j}
W : sum of weights of all edges

LINE minimizes the KL-divergence of the two probability distributions:

$$
\underset{f}{\operatorname{minimize}}-\sum_{\left(v_{i}, v_{j}\right) \in E} w_{i j} \log P_{1}\left(v_{i}, v_{j}\right)
$$

LINE with Second-order Proximity

To model the second-order proximity, for each edge $\left(v_{i}, v_{j}\right)$, LINE defines the probability of context v_{j} generated by vertex v_{i} :

$$
P_{2}\left(v_{j} \mid v_{i}\right)=\frac{e^{f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)}}{\sum_{k=1}^{|V|} e^{f^{\prime}\left(v_{k}\right)^{\top} f\left(v_{i}\right)}}
$$

$f\left(v_{i}\right)$: representation of v_{i} when treated as a vertex $f^{\prime}\left(v_{i}\right)$: representation of v_{i} when treated as context

The empirical probability can be defined as:

$$
\hat{P}_{2}\left(v_{j} \mid v_{i}\right)=\frac{w_{i j}}{d_{i}}
$$

d_{i} : out-degree of v_{i}

LINE minimizes the KL-divergence of the two probability distributions:

$$
\underset{f, f^{\prime}}{\operatorname{minimize}}-\sum_{\left(v_{i}, v_{j}\right) \in E} w_{i j} \log P_{2}\left(v_{j} \mid v_{i}\right)
$$

LINE with Second-order Proximity

Optimizing the objective of the second-order proximity is computationally very expensive

Instead, use negative sampling: for each edge, sample multiple negative edges according to some noisy distribution

Every $\log P_{2}\left(v_{j} \mid v_{i}\right)$ term in the objective is replaced with:

$$
\log \sigma\left(f^{\prime}\left(v_{j}\right)^{\top} f\left(v_{i}\right)\right)+\sum_{k=1}^{K} \mathbb{E}_{v_{k} \sim P_{n}(v)}\left[\log \sigma\left(-f^{\prime}\left(v_{k}\right)^{\top} f\left(v_{i}\right)\right)\right]
$$

where $\sigma=1 /\left(1+e^{-x}\right)$ is the sigmoid function and K the number of negative edges

Experimental Evaluation

Experimental comparison conducted in [1]

Compared algorithms:

- DeepWalk
- GraRep
- SDNE
- LINE
- Laplacian Eigenmaps (LE)
[Wang et al., KDD'16]

Datasets

Five datasets:

- three social networks
- one citation network
- one language network

Dataset	$\#(\mathrm{~V})$	$\#(\mathrm{E})$
BLOGCATALOG	10312	667966
FLICKR	80513	11799764
YoUTUBE	1138499	5980886
ARXIV GR-QC	5242	28980
20-NEWSGROUP	1720	Full-connected

Three real-world applications

- node classification
- link prediction
- visualization

Node Classification

Vertex representations generated from node embedding methods and given as input to a logistic regression classifier to predict a set of labels for each vertex

BLOGCATALOG

For BLOGCATALOG, the training/test ratio is increased from 10\% to 90%

Node Classification

FLICKR

YOUTUBE

For FLICKR and YOUTUBE, the training/test ratio is increased from 1% to 10%

Link Prediction

Followed procedure:

- Remove a portion of ARXIV GR-QC's edges
- Use the emerging network to learn node embeddings
- Predict missing links

Visualization

Visualization of 20-NEWSGROUP

- Each point indicates one document
- Color of a point indicates the category of the document

(a) SDNE

(c) DeepWalk

(b) LINE

(d) GraRep

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Structural Identity

- Nodes in networks have specific roles
- e.g., individuals, web pages, proteins, etc
- Structural identity
- identification of nodes based on network structure (no other attribute)
- often related to role played by node
- Automorphism: strong structural equivalence

Red, Green: structurally identical Purple, Brown: structurally similar

RolX: Structural Role Extraction \& Mining in Large Graphs

An unsupervised learning approach for automatically extracting structural roles from networks

Key Ideas:

- Automatic feature extraction, based exclusively on the graph structure
- Assignment of a mixed-membership of roles to each node
- Feature grouping and role extraction in linear time on the number of edges.

Applications:

- Transfer learning: The structural roles generalize across disjoint networks
- Structural Similarity of networks by comparison of the role distributions
- Sense-making: Structural roles highlight different contextual roles

Step 1: Feature Extraction

- ReFeX turns network connectivity into recursive structural features
- Local and egonet features seed the recursive ReFeX process.
- Local features: measures of the node degree
- Egonet features: information of the induced subgraph of each node, i. e. neighbors and edges occruring in the subgraph

[Henderson et al., KDD'11]

Step 2: Embedding Generation

- To identify the roles that each node plays in the network, RolX performs soft clustering in the structural feature space
- Let \mathbf{V} denote the node-feature matrix
- The algorithm computes a low-rank approximation of $\mathbf{V}, \mathbf{V} \approx \mathbf{G} \mathbf{F}$
- To compute the low-rank approximation, the alorithm uses nonnegative matrix factorization: $\arg \min _{\mathbf{G}, \mathbf{F}}\|\mathbf{V}-\mathbf{G} \mathbf{F}\|_{\boldsymbol{F}}$, such that $\mathbf{G} \geq 0, \mathbf{F} \geq 0$
- This type of factorization
- is computationally efficient
- simplifies the interpretation of roles and memberships
- Rows of matrix \mathbf{V} considered as structural embeddings of nodes

Step 3: Model Selection

What is the best choice of rank r of the approximation G F?

- Minimum description length for optimal size r of model
- L: description length
- M : number of bits required to describe the model
- E: description cost of the reconstruction error in $\mathbf{V}-\mathbf{G F}$
- Goal: Minimize $L=M+E$
- Errors in V - G F are not distributed normally $\rightarrow \mathbf{K L}$ divergence

$$
E=\sum_{i, j}\left(\mathbf{V}_{i, j} \log \frac{\mathbf{V}_{i, j}}{(\mathbf{G} \mathbf{F})_{i, j}}-\mathbf{V}_{i, j}+(\mathbf{G} \mathbf{F})_{i, j}\right)
$$

- Learns node representations based on structural identity
- structurally similar nodes close in space

Key ideas:

- Structural similarity does not depend on hop distance
- neighbor nodes can be different, far away nodes can be similar
- Structural identity as a hierarchical concept
- depth of similarity varies
- Flexible four step procedure
- operational aspect of steps are flexible

Step 1: Structural Similarity

- Hierarchical measure for structural similarity between two nodes
- $R_{k}(v)$: set of nodes at distance k from v (ring)
- $s(S)$: ordered degree sequence of set S

$s\left(R_{0}(u)\right)=4$
$s\left(R_{0}(v)\right)=3$
$s\left(R_{1}(u)\right)=1,3,4,4$
$s\left(R_{2}(u)\right)=2,2,2,2$
$s\left(R_{1}(v)\right)=4,4,4$
$s\left(R_{2}(v)\right)=1,2,2,2,2$

Step 1: Structural Similarity

- $g\left(D_{1}, D_{2}\right)$: distance between two ordered sequences
- cost of pairwise alignment: $\max (a, b) / \min (a, b)-1$
- optimal alignment by Dynamic Time Warping in our framework

$$
\begin{array}{rlrlrl}
s\left(R_{0}(u)\right) & =4 & s\left(R_{1}(u)\right) & =1,3,4,4 & s\left(R_{2}(u)\right) & =2,2,2,2 \\
s\left(R_{0}(v)\right) & =3 & s\left(R_{1}(v)\right) & =4,4,4 & s\left(R_{2}(v)\right) & =1,2,2,2,2 \\
g(\cdot, \cdot) & =0.33 & g(\cdot, \cdot) & =3.33 & & g(\cdot, \cdot)
\end{array}
$$

- $f_{k}(v, u)$: structural distance between nodes v and u considering first k rings

$$
\text { - } f_{k}(v, u)=f_{k-1}(v, u)+g\left(s\left(R_{k}(v)\right), s\left(R_{k}(u)\right)\right)
$$

$$
f_{0}(v, u)=0.33
$$

$$
f_{1}(v, u)=3.66
$$

$$
f_{2}(v, u)=4.66
$$

Step 2: Multi-layer graph

- Encodes structural similarity between all node pairs

- Each layer is a weighted complete graph
- corresponds to similarity hierarchies
- Edge weights in layer k

$$
-w_{k}(v, u)=e^{-f_{k}(v, u)}
$$

- Connect corresponding nodes in
 adjacent layers

Step 3: Generate Context

- Context generated by biased random walk
- walking on multi-layer graph
- Walk in current layer with probability p
- choose neighbor according to edge weight
- RW prefers more similar nodes
- Change layer with probability $1-p$
- jump to the corresponding node
- choose up/down according to edge weight
- RW prefers layer with less similar neighbors

Step 3: Learn Representation

- For each node, generate set of independent and relative short random walks
- context for node \rightarrow sentences of a language

- Train a neural network to learn latent representation for nodes
- maximize probability of nodes within context
- Skip-gram (Hierarchical Softmax) adopted

Barbell Network

(c) DeepWalk

(d) node2vec
(e) struc2vec

- struc2vec embeds isomorphic nodes very close to each other in space

Spectral approach

Preliminaries:

- Let $\mathbf{L}=\mathbf{D}-\mathbf{A}$ be the Laplacian of graph G, where \mathbf{D} the diagonal degree matrix and \mathbf{A} the adjacency matrix of G
$\rightarrow \mathbf{L}$ is symmetric
$\rightarrow \mathbf{L}$ is positive-semidefinite and, thus, its eigenvalues $\lambda_{1}, \lambda_{2}, . ., \lambda_{N}$ are real, non-negative numbers
- Let the eigendecomposition of $\mathbf{L}, \mathbf{L}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$
- Matrix \mathbf{U} contains the eigenvectors of \mathbf{L} and matrix $\boldsymbol{\Lambda}$ is a diagonal matrix with the eigenvalues of \mathbf{L} on the main diagonal

The spectral decomposition of the Laplacian of a graph reveals several structural characteristics of the graph:

- number of components
- sparsest cut
- etc.

Spectral graph wavelets $(1 / 2)$

- The graph Laplacian \mathbf{L} satisfies the eigendecomposition: $\mathbf{L} \mathbf{x}_{\ell}=\lambda_{\ell} \mathbf{x}_{\ell}$
- The eigenvalues $\lambda_{i}, i=1, . ., n$ correspond to different frequencies in the frequency domain:
- The equivalent of the Fourier transform can be defined in the graph space:

	Real Space	Graph Space
Laplacian Operator	$\frac{d^{2}}{d x^{2}}$	\mathbf{L}
Eigenfunctions	$e^{\omega \omega^{2}}$	\mathbf{x}_{ℓ}
Fourier Transform	$\hat{f}(\omega)=\int\left(e^{j \omega x}\right)^{*} f(x) d x$	$\hat{f}(\ell)=\sum_{i=1}^{n} \mathbf{x}_{\ell}^{*}(i) f(i)$
Inv. Fourier Transform	$f(\omega)=\frac{1}{2 \pi} \int e^{j \omega x} \hat{f}(x) d x$	$f(i)=\sum_{\ell=1}^{n} \hat{f}(\ell) \mathbf{x}_{\ell}(i)$

Spectral graph wavelets $(2 / 2)$

Spectral Graph filtering: Why do we need filtering?
Filters keep specific frequencies/eigenvalues of the signal!
\Rightarrow Different structural aspects of the graph!!

- Apply filter with transfer function $\hat{g}(\cdot)$ to a graph signal $f: V \rightarrow \mathbb{R}^{n}$

[Dong et al., IEEE Transactions on Signal Processing]

GraphWave

Key idea:

- Represent a node's topological signature as a distribution over the coefficients of the heat scaling wavelet centered around the node

Spectral graph wavelet:

$$
\boldsymbol{\Psi}_{i}=\mathbf{U} \mathbf{Z} \mathbf{U}^{\top} \boldsymbol{\delta}_{i}
$$

where \mathbf{Z} a diagonal matrix with $g_{s}\left(\lambda_{1}\right), g_{s}\left(\lambda_{2}\right), \ldots, g_{s}\left(\lambda_{n}\right)$ on the main diagonal, $g_{s}(\cdot)$ a scaling wavelet (filter kernel with scaling parameter s) and $\boldsymbol{\delta}_{i}$ the one-hot vector of node v_{i}

- heat kernel: $g_{s}(\lambda)=e^{-\lambda s}$
- $m^{\text {th }}$ wavelet coefficient: $\boldsymbol{\Psi}_{m, i}(s)=\sum_{j=1}^{n} g_{s}\left(\lambda_{j}\right) \mathbf{U}_{m, j} \mathbf{U}_{i, j}$

GraphWave: The Algorithm

Given a graph $G=(V, E)$, a scale s and evenly-spaced sampling points $\left\{t_{1}, t_{2}, . ., t_{d}\right\}$, GraphWave:
(1) computes the eigenvalue decomposition of the Laplacian of G :

$$
\boldsymbol{\Psi}=\mathbf{U} g_{s}(\boldsymbol{\Lambda}) \mathbf{U}^{\top}
$$

(2) computes:

$$
\phi_{i}(t)=\frac{1}{n} \sum_{j=1}^{n} \exp ^{i t \boldsymbol{\Psi}_{j i}}
$$

for every node $v_{i} \in V$ and for every $t \in\left\{t_{1}, t_{2}, . ., t_{d}\right\}$

The embedding of a node v_{i} is the defined as follows:

$$
\mathbf{h}_{i}=\left[\operatorname { R e } \left(\phi_{i}\left(t_{1}\right), \operatorname{Im}\left(\phi_{i}\left(t_{1}\right), \ldots, \operatorname{Re}\left(\phi_{i}\left(t_{d}\right), \operatorname{Im}\left(\phi_{i}\left(t_{d}\right)\right]\right.\right.\right.\right.
$$

Hyperparameters:

- scale $s \rightarrow$ determines the size of the considered neighborhood around each node
- sampling points $t_{1}, t_{2}, . ., t_{d}$

SEGK: Structural Node Embeddings using Graph Kernels

Another algorithm for learning node representations based on structural identity

- structurally similar nodes close in space

Main idea: The task of learning structural node representations involves comparing the structure of the neighborhoods of nodes

- can use existing algorithms to compare the neighborhoods

SEGK:

- uses graph kernels to compare nodes' neighborhoods
- builds a kernel matrix that incorporates structural similarity between nodes
- generates structural node representations by decomposing that matrix

Neighborhood Extraction and Labeling

Extracts the $1,2, \ldots, R$-hop neighborhood of each node

Example: Extraction of the 1-hop, 2-hop, and 3-hop neighborhoods of the green node

Neighborhood Extraction and Labeling

Assigns a label to each node of the r-hop neighborhood \hookrightarrow label equal to the shortest path distance from root

Exaple of assignment of labels to the nodes of the 3 neighborhood subgraphs

Similarity Computation

Uses graph kernels that can handle node labels to compare neighborhood subgraphs to each other

- Let $\left\{G_{i}^{1}, G_{i}^{2}, \ldots, G_{i}^{R}\right\}$ and $\left\{G_{j}^{1}, G_{j}^{2}, \ldots, G_{j}^{R}\right\}$ be the $1,2, \ldots, R$-hop neighborhoods of two nodes v_{i} and v_{j}
- Then, SEGK compares two nodes by computing the following kernel:

$$
k\left(v_{i}, v_{j}\right)=\sum_{r=1}^{R} \hat{k}_{G}\left(G_{i}^{r}, G_{j}^{r}\right) \hat{k}_{G}\left(G_{i}^{r-1}, G_{j}^{r-1}\right)
$$

where $\hat{k}_{G}\left(G_{i}^{0}, G_{j}^{0}\right)=1$ and \hat{k}_{G} is a normalized kernel between graphs k_{G} :

$$
\hat{k}_{G}\left(G_{i}, G_{j}\right)=\frac{k_{G}\left(G_{i}, G_{j}\right)}{\sqrt{k_{G}\left(G_{i}, G_{i}\right) k_{G}\left(G_{j}, G_{j}\right)}}
$$

SEGK puts more emphasis on local neighborhoods than on more distant ones:

- For any r and nodes v_{i}, v_{j}, it holds that $0 \leq \hat{k}_{G}\left(G_{i}^{r}, G_{j}^{r}\right) \leq 1$
- Product inside the sum no greater than the minimum of the two kernels

Example

Computing the kernel/similarity between the green and red nodes based on their 1-hop and 2-hop neighborhoods

Embedding Generation

After constructing the kernel matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$ (where n is the number of nodes of the graph), we can generate structural node embeddings by factorizing it:

$$
\mathbf{K}=\mathbf{Q} \mathbf{Q}^{\top}
$$

Then, the $i^{\text {th }}$ row of \mathbf{Q} corresponds to the embedding of the $i^{\text {th }}$ node

In case n is very large (i. e. hundreds of thousands, millions or billions) computing matrix \mathbf{K} :

- can be very inefficient
- can be prohibitive in terms of the required memory

To avoid explicitly constructing the kernel matrix, SEGK resorts to low-rank approximation algorithms
\hookrightarrow e.g., the Nyström method allows us to obtain $\mathbf{Q} \in \mathbb{R}^{n \times d}$ (with $d \ll n$) such that $\mathbf{K} \approx \mathbf{Q} \mathbf{Q}^{\top}$

Synthetic Node Classification Dataset

- Generated synthetic graphs with planted structural equivalences
- Structurally equivalent nodes are assigned the same class labels
- generated graphs consist of a cycle of length 40 and some basic shapes ("house", "fan", "star") which are regularly placed along the cycle
- "basic" setup: 10 instances of only one shape are placed along the cycle

- "varied" setup: 10 of each one of the 3 shapes are placed along the cycle
- "basic perturbed" and "varied perturbed": noisy scenarios where edges are added uniformly at random on the generated graphs \hookrightarrow Number of added edges: 10% of the edges of the graph
- "basic labeled" and "varied labeled": the nodes are assigned node labels
\hookrightarrow Two nodes are assigned the same class labels if they are structurally equivalent and have the same label

Node Classification Results (1/2)

Configuration	Shapes placed along a cycle	Method	Accuracy	F1-SCORE
BASIC		Deep Walk RolX struc2vec DRNE GraphWave	$\begin{aligned} & \hline 0.442 \\ & \mathbf{1 . 0 0 0} \\ & 0.784 \\ & 0.987 \\ & 0.995 \end{aligned}$	$\begin{aligned} & \hline 0.295 \\ & \mathbf{1 . 0 0 0} \\ & 0.708 \\ & 0.980 \\ & 0.993 \end{aligned}$
		$\begin{aligned} & \text { SEGK-SP } \\ & \text { SEGK-WL } \\ & \text { SEGK-GR } \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 1.000 \\ & 1.000 \\ & 1.000 \end{aligned}$
BASIC PERTURBED		DeepWalk RolX struc2vec DRNE GraphWave	$\begin{aligned} & \hline 0.488 \\ & 0.928 \\ & 0.703 \\ & 0.862 \\ & 0.906 \end{aligned}$	$\begin{aligned} & \hline 0.327 \\ & 0.886 \\ & 0.632 \\ & 0.800 \\ & 0.861 \end{aligned}$
		$\begin{aligned} & \text { SEGK-SP } \\ & \text { SEGK-WL } \\ & \text { SEGK-GR } \end{aligned}$	$\begin{aligned} & 0.941 \\ & 0.907 \\ & \mathbf{0 . 9 5 6} \end{aligned}$	$\begin{aligned} & 0.907 \\ & 0.850 \\ & \mathbf{0 . 9 2 5} \end{aligned}$
BASIC LABELED		DEEPWALK RolX STRUC2VEC DRNE GraphWave	0.439 0.987 0.617 0.697 0.768	$\begin{aligned} & \hline 0.263 \\ & 0.974 \\ & 0.470 \\ & 0.547 \\ & 0.608 \end{aligned}$
		SEGK-SP SEGK-WL SEGK-GR	$\begin{aligned} & 0.990 \\ & 0.990 \\ & 0.894 \end{aligned}$	$\begin{aligned} & 0.984 \\ & 0.984 \\ & 0.855 \end{aligned}$

Node Classification Results (2/2)

Configuration	Shapes placed along a Cycle	Method	Accuracy	F1-SCORE
VARIED		DeEpWALK	0.329	0.139
		RolX	0.998	0.996
		struc2vec	0.738	0.592
		DRNE	0.930	0.876
		GraphWave	0.982	0.965
		SEGK-SP	0.998	0.996
		SEGK-WL	0.994	0.988
		SEGK-GR	0.937	0.923
VARIED PERTURBED		Deep Walk	0.313	0.128
		RolX	0.856	0.768
		StRUC2VEC	0.573	0.412
		DRNE	0.734	0.605
		GraphWave	0.793	0.682
		SEGK-SP	0.892	0.818
		SEGK-WL	0.876	0.790
		SEGK-GR	0.882	0.817
VARIED LABELED		Deep Walk	0.315	0.137
		RolX	0.940	0.879
		Struc2vec	0.524	0.349
		DRNE	0.548	0.424
		GraphWave	0.726	0.547
		SEGK-SP	0.940	0.902
		SEGK-WL	0.960	0.931
		SEGK-GR	0.783	0.776

An e-mail network encoding communication between employees in a company. There are 143 nodes and 2,583 edges:

- Nodes represent Enron employees
- Edges correspond to e-mail communication between the employees

We expect structural equivalences in job titles due to corporate organizational hierarchy:

- An employee has one of 7 functions in the company (e.g., CEO, manager)
- These functions provide ground-truth information about roles of the corresponding nodes in the network

METHOD	Homogeneity	Completeness	SilhouetTe	ACCURACY	F1-SCORE
DEEPWALK	0.240	0.081	0.214	0.324	0.202
ROLX	0.178	$\mathbf{0 . 1 4 1}$	0.040	0.264	0.154
STRUC2VEC	0.243	0.122	0.246	0.323	0.190
DRNE	$\mathbf{0 . 3 4 4}$	0.112	$\mathbf{0 . 4 2 0}$	0.201	0.111
GRAPHWAVE	0.203	0.092	0.249	0.257	0.149
SEGK-SP	0.227	0.064	0.011	0.264	0.151
SEGK-WL	0.291	0.064	0.283	$\mathbf{0 . 3 6 0}$	$\mathbf{0 . 2 2 2}$
SEGK-GR	0.144	0.088	0.127	0.294	0.172

Table: Performance of the baselines and and the proposed SEGK instances for learning structural embeddings on the Enron dataset.

Outline

(1) Learning Node Representations

- Introduction
- Unsupervised Methods
- Proximity-based Approaches
- Structural Equivalence-based Approaches
- Supervised Methods

Planetoid

- assumes node attributed graphs (e.g., a feature vector is associated with each vertex)
- takes into account both the class labels and the graph structure to learn node embeddings
- minimizes the following loss function: $\mathcal{L}=\mathcal{L}_{s}+\lambda \mathcal{L}_{u}$ \mathcal{L}_{s} : a supervised loss of predicting the labels \mathcal{L}_{u} : an unsupervised loss of predicting the graph context
[Yang et al., ICML'16]

Given the adjacency matrix \mathbf{A} of a graph, GCN first computes:

$$
\hat{\mathbf{A}}=\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}
$$

where
$\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{I}$
$\tilde{\mathbf{D}}$: a diagonal matrix such that $\tilde{\mathbf{D}}_{i j}=\sum_{j} \tilde{\mathbf{A}}_{i j}$

Then, the output of the model is:

$$
\mathbf{Z}=\operatorname{softmax}\left(\hat{\mathbf{A}} \operatorname{Re} L U\left(\hat{\mathbf{A}} \mathbf{X} \mathbf{W}^{0}\right) \mathbf{W}^{1}\right)
$$

where
X: matrix whose rows contain the attributes of the nodes
$\mathbf{W}^{0}, \mathbf{W}^{1}$: trainable weight matrices

To learn node embeddings, GCN minimizes the following loss function:

$$
\mathcal{L}=-\sum_{i \in l} \sum_{j=1}^{|\mathcal{C}|} \mathbf{Y}_{i j} \log \mathbf{Z}_{i j}
$$

I : indices of the nodes of the training set
\mathcal{C} : set of class labels

Experimental Evaluation

Experimental comparison conducted in [1]

Compared algorithms:

- DeepWalk
- ICA [2]
- Planetoid
- GCN

Task: node classification
[Kipf and Welling, ICLR'17]
[Lu and Getoor, ICML'03]

Datasets

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Label rate: number of labeled nodes that are used for training divided by the total number of nodes

Citation network datasets:

- nodes are documents and edges are citation links
- each node has an attribute (the bag-of-words representation of its abstract)

NELL is a bipartite graph dataset extracted from a knowledge graph

Classification accuracies of the 4 methods

Method	Citeseer	Cora	Pubmed	NELL
DeepWalk	43.2	67.2	65.3	58.1
ICA	69.1	75.1	73.9	23.1
Planetoid	$64.7(26 \mathrm{~s})$	$75.7(13 \mathrm{~s})$	$77.2(25 \mathrm{~s})$	$61.9(185 \mathrm{~s})$
GCN	$\mathbf{7 0 . 3}(7 \mathrm{~s})$	$\mathbf{8 1 . 5}(4 \mathrm{~s})$	$\mathbf{7 9 . 0}(38 \mathrm{~s})$	$\mathbf{6 6 . 0}(48 \mathrm{~s})$

Observation: DeepWalk \rightarrow unsupervised learning of embeddings
\hookrightarrow fails to compete against the supervised approaches

