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Clustering

Definition (k clusters)

Given n objects, and k > 1, partition the objects intfo k subsets (clusters) so as to
optimize some objective function.

@ Objects in the same cluster are more "similar” (or closer) to each other than
to those in other clusters.

@ Possible criteria: minimizing the total distance among all cluster points,
minimizing the distance of cluster points fo some center, etc.

@ Variations: k is unknown and computed, e.g., by the Silhouette method.
Capacitated/balanced: k given, clusters of equal cardinality.
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Good Clustering, with centers
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Approaches

@ hierarchical (agglomerative): each point initializes a cluster, merge closest
pair (define distance of clusters) until stopping criterion, e.g.,
predetermined number of clusters, or clusters with points too far apart
(Gromos).

@ point-assignment: given some initial clusters, assign points fo "best" cluster;
cluster represented by *‘centroid" (which may not belong o input).
Example: k-means.

(Uliman et al.:Mining Massive datasets)

loannis Emiris (di.UoA.gr) Geometric Data Analysis Fall 2020 6/39



Outline

@ Clustering
@ Vector spaces

loannis Emiris (di.UoA.gr) Geometric Data Analysis Fall 2020 7/39



k-means: Objective function

Typical ambient space is R but can generdlize to metric space Z.

Minimization function

In any metric space over points/vectors Z with distance/metric function d, let
the dataset be X = {x1,...,x,} C X C Z, k > 1. Given centroids C C Z, let

d(x;, C) = cmel(r/] d(x;, c).

Consider vector v(C) = (d(x, C), . .., d(xn, C)). The k-means objective is:

n

i Q) = d(x, C)2
ccTin_ MO ; (x,C)

The k-means objective is NP-hard, but for the ¢, metric, Lioyd’s algorithm
converges quickly to a local minimum.
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Variations

Various minimizations
Recall X = {x;}, v(C) = (d(x1, C),...,d(x», C)), C C Z are centroids.
For d(+) denoting ¢, distance, the k-means objective is:

n

min [V(C)[5 = d(x, ).

CCZ,|Cl=k —

Other standard objectives:

— k-edian: mincc z o=« [|V(C)])1.
- k-medoid: mincc o= [[V(C)]|1-
— k-center: minccy (cj=k [[V(C)loo-
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Lloyd’s

Algorithm

Initialize k centers randomly (or using some strategy).

@ Assignment: Assign each object to its nearest center.
@ Update: Calculate mean 1? Z,.T:] v; of each cluster, make it new center.

Repeat the two steps until there is no change in the assignments.

@ Each distance calculation = O(d) because vectors in R
e Assignment = O(nkd), Update = O(nd),

@ Fiterations unknown, in practice < n.

@ Converges to local minimum in Euclidean space (depends on initialization)
v
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Inverted Quantized k-means (IQ-means)

Reverse assignment

@ Fixed Data-structure for points (Dataset in memory)
@ Centroids are queries; range search of increasing radius

@ Resolve overlapping balls; consider *‘left-overs".
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(Avrithis-Anagnostopoulos-Kalantidis-E.ICCV’ 15)
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Assignment by Range search

Reverse approach (ANN)

@ Index n points, but only once for entire algorithm.

@ At each iteration, for each centroid ¢, range/ball queries centered at c.

@ Mark assigned points: move at end of bucket, or flag them.

@ Increase radii by X2, start with min(dist between centers)/2, until all points
assigned, or most ranges/balls do not assign a new point.

@ For a given radius, if a point lies in > 2 balls, compare its distances to the
respective centroids, assign to closest centroid.

@ At end: for every unassigned point, compare its distances to all centroids

v

@ Standard method: n ANN queries, each k”, hence O(nk?).
@ Inverse: k queries, each n”+OutputSize = O(n); stores entire dataset
°

‘ babilisti lysi
O rprobablistic analysis

V.
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Inverted Quantized k-means (IQ-means)

The algorithm

@ inverse assignment (above): faster than update!
@ quantization on dynamic 2d-grid (via learning) (Avrithis:ICCV13)

@ dynamic estimation of overlap hence of k (Avrithis-Kalantidis,ECCV12)
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Dynamic IQ-means (k=9)
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Dynamic IQ-means (k=7)
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Dynamic IQ-means (k=7)
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(Avrithis,Kalantidis, Anagnostopoulos,E:ICCV’ 15)
http://github.com/iavr/igm

Comparison against

- Approximate k-means (Philoin et al. CVPR'07)

- RR: Ranked Retrieval (Broder et al. Web Search & Data Mining’ 14)
- standard k-means

Speed: IQ-means fastest

Accuracy: 1Q-M on par with dedicated methods, worse than (approx)
k-means

clustering of 100M images, on a single machine, in < 1 hour.
Best method for a couple of years.
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Performance

Distortion vs total time for 20 iterations on 10° images (SIFTTM):

—@— k-means
—0— AKM
-10 10
T T T 111177 T T T T 1T T T T TTTTIT 4.4 1T 11T =T 11717 +RR
i . f’ —e—aM
c c
g 50 1 s /'.
b= b - .|
5 5 4.2
2 I . 2
kel hel
o) o)
8 4.5 |- 1 8 al -
[0} [
> >
o] [~ 1 o]
L | [ i 3.8 IR L] (IR
102 10° 10 10! 102 10° 10
runtime (s) runtime (s)

Left: varying number of clusters k. Right: increasing number of points n.
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Mining example

500K Paris + 100Mil YahooFlicker images

Accurate cluster despite large dataset: Paris ground truth depicted in red
outline, the rest are images closest to the red ones.
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Goal: Handle any distance metric; k-means only if consistent with mean.

k-medoids (PAM is simplest algorithm) use centroids that belong to the dataset:

Definition (Medoid)

The medoid of a set is the object of the set that minimizes total dissimilarity
(distance) to all other objects in the sef.

Objective function (cf. above): Minimize sum of distances to point’s centroid.

- k-means tends 1o select convex spherical clusters; k-medoids less so.
-- k-means is more sensitive to noisy data and outliers.
-- k-means is faster and easier to implement.

(Kaufman-Rousseeuw’87)
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Partitioning Around Medoids (PAM)

Initialize k centroids randomly.
@ Assignment: Assign each object to nearest centroid; compute objective
@ Update:
for each centroid m do
for each non-centroid t do
Swap m and t, compute new objective function value.
end for
end for
Keep configuration (centroids) with min objective value.

Repeat steps 1 and 2 until there is no change of configuration (centroids).

Let distance calculation = O(d"). Update of Objective = O((n — k)d’). if 2nd
best centroid known. Hence, update = O((n — k)?kd’) ~ n?.
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Accelerating updates

Two faster updates, which may however lose accuracy compared to PAM.
Recall that after every swap we compute J in O((n — k)d’).

1. Improved Update

Instead of swapping centroid m with every point t, swap m only with every
non-centroid in same cluster as m.

Complexity: n — k iterations instead of k(n — k), hence update = O((n— k)?d’)

2. Update a la Lloyd’s

For every cluster: (i) compute its medoid t, (ii) swap its current centroid m with t.

The medoid  minimizes ) .~ d(i, t) over dll possible objects t in cluster C.
Computed in O(a?d’), assuming clusters have a =~ n/k items.

Total Complexity = O((ka? + k(n — k))d') = O((n?/k + nk)d') = O(n*d’)
(Park-Jun’09).
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Clustering Large Applications (CLARA)

General Idea: run entire algorithm with sample of size n’ < n. Use s samples
drawn independently, return best clustering.

Overall algorithm:
fori=1,...,sdo
apply PAM on a random (uniform) sample of size n’
assign n points to k computed centroids
calculate the total cost of the partitioning
end for
return best partitioning

Experimental results recommend: s = 5, n’ = 40 + 2k.
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CLARA based on RANdomised Search (CLARANS)

@ Update: swap m’s with t’s, for some randomly selected (m, f)’s only.

@ Picking random Q C {1,...,k} x {1,...,n— k}, stimes.

Select k centroids by some initialization method.
fori=1,...,sdo
Cluster n — k points to k centroids by some assignment method.
Randomly select set Q of |Q| pairs (m, 1), |Q| < k(n — k).
for (m, 1) € Qdo
Swap m with t; compute new objective value.
end for
Keep centroids with minimum objective value over |Q| choices.
end for
Output centroids yielding minimum objective value over s candidates.

Experiments recommend: s = 2, |Q| = max{0.12 - k(n — k), 250}.
(Ng-Han:IEEE Tran.Know.Data Eng’02, Theodoridis et al.:Patft.Recogn..ch.14)
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Improve Initialisation 1: Spread-out

initialization++ : k-means++ / k-medoids++:
(1) Choose a centroid uniformly at random; + <— 1.
(2) ¥ non-centroid point i = 1,...,n — t, let D(i) - min distance to some
centroid, among t chosen centroids.
(8) Choose new centroid: r chosen with probability proportional to D(r)2:

n—t

prob[choose r] = D(r)?/ Z D(i)?.

i=1

Lett <+ t+ 1.
(4) Go fo (2) until t = k = given #cenftroids.

Expected approximation ratio = O(log k) (Arthur-Vassilvitskii:SODA’07)
Similar algo for 2-approx of k-center (NP-hard prob)
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Improve Initialisation 2: Concentrate

Select centroids close to dataset’s center of mass (and to each other) as
follows.

(1) Calculate symmetric n X n distance matrix of all objects, i.e. all distances
dj from every objecti = 1, ..., nto every other objectj =1, .. NN
(2) For object i compute

n

g

Vi = E n )
j=1 Zf‘:] d]f

i=1,...,n.

(3) Return the k objects with k smallest v; values.

Algorithm proposed in (Park-Jun’09).
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Evaluation: Silhouette

—For1 <i<n, a(i) = average distance of i to other objects in same cluster.
- Let b(i) = average distance of i to objects in next best (neighbor) cluster, i.e.
cluster of 2nd closest centroid.

Silhouette of Object i

Interpret silhouette

s(i) — 1: i seems correctly assigned fo its cluster;
s(i) ~ 0: borderline assignment (but not worth to change);
s(i) — —1: i would be better if assigned to next best cluster.
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Silhouette: Cluster and clustering

Specific clusters

- Evaluate a cluster: Compute average s(i) over all i in some cluster.

-~ If k is too large or too small, some clusters shall display much smaller sihouettes
than the rest.

- Silhouette plots are used to improve k: try different k’s and see if clusters have
roughly equal silhouettes.

Overall Clustering

Overall Silhouette coefficient = average s(i) overi=1,...,n.

High if well clustered, low may indicate bad k (or existance of outlier points).
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