Geometric Data analysis

Randomized projections and Dimensionality reduction

loannis Emiris

Dept Informatics \& Telecoms, National Kapodistrian U. Athens
ATHENA Research \& Innovation Center, Greece
INRIA Sophia-Antipolis France

Fall 2020

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space
- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics
(4) Experimental results

Approaches

- Trees (and AVDs): $\mathrm{S}=O(d n), \mathrm{Q}=o(n) \cdot \exp (d)$.
- LSH: $\mathrm{S}=O\left(d n^{1+\rho}\right), \mathrm{Q}=O\left(d n^{\rho}\right), \rho=1 /(1+\epsilon)^{2}$.
- Dimensionality reduction
\ldots and k-ANNs beat the curse in optimal space [Anagnostopoulos,E,Psarros:15-17]
- $\mathrm{S}=O(d n), \mathrm{Q}=O^{*}\left(d n^{\rho}\right), \rho=1-\epsilon^{2} /(\log \log n-\log \epsilon)$.
- $\mathrm{S}=O^{*}(d n), \mathrm{Q}=O^{*}\left(d n^{\rho}\right), \rho=1+\epsilon^{2} / \log \epsilon<1$.
... for LSH-able metrics [Avarikioti,E,Psarros,Samaras'17]:
- $S=O^{*}(d n), \mathrm{Q}=O^{*}\left(d n^{\rho}\right), \rho=1-\Theta\left(\epsilon^{2}\right)$.

Dimensionality reduction

Lemma (Johnson, Lindenstrauss'82)

Given pointset $P \subset \mathbb{R}^{d},|P|=n, 0<\epsilon<1$, there exists a distribution over linear maps

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}
$$

with $d^{\prime}=O\left(\log n / \epsilon^{2}\right)$ s.t., for any $p, q \in \mathbb{R}^{d}$, w/probability $\geq 2 / 3$:

$$
(1-\epsilon)\|p-q\|_{2} \leq\|f(p)-f(q)\|_{2} \leq(1+\epsilon)\|p-q\|_{2}
$$

Proofs (Constructive): Random orthogonal projection [JL'84], Gaussian matrix [Indyk,Motwani'98], i.i.d. entries $\in\{-1,1\}$ [Achlioptas'03], etc.
f oblivious to P i.e. defined over entire space.
Fast JL Transform using structured matrices [Chazelle et al.]

Outline

(1) Dimensionality reduction

- Proof of JL Lemma

(2) Random projections in Euclidean space

- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics
(4) Experimental results

Gaussian combinations

Lemma

Let $g \sim N(0,1)^{d}$, i.e. with iid normal coordinates, $x \in \mathbb{S}^{d-1}$. Then, their innner product is normally distributed: $\langle x, g\rangle \sim N(0,1)$.

Proof.

A linear combination of gaussian variables follows the gaussian distribution. Hence, it suffices to compute the expectation and variance:

$$
\mathbb{E}\langle x, g\rangle=\sum_{j=1}^{d} \mathbb{E}\left[g_{j}\right] \cdot x_{j}=0
$$

$$
\mathbb{E}\langle x, g\rangle^{2}=\sum_{k \neq j}^{d} \mathbb{E}\left[g_{j}\right] \cdot \mathbb{E}\left[g_{k}\right] \cdot x_{j} \cdot x_{k}+\sum_{j=1}^{d} \mathbb{E}\left[g_{j}^{2}\right] \cdot x_{j}^{2}=1
$$

because the $g_{j}, j=1, \ldots, d$ are independent and $x \in \mathbb{S}^{d-1}$.

Squared gaussians

Let each $G_{i} \sim N(0,1)^{d}, x \in \mathbb{S}^{d-1}$, and $X=G \cdot x$.

Sum of squares

For X_{1}, \ldots, X_{k} i.i.d. r.v.: $X_{i}=\left\langle x, G_{i}\right\rangle \sim N(0,1)$, and $Y_{k}=\sum_{i=1}^{k} X_{i}^{2}$, we know Y_{k} follows the χ^{2} distribution with k dof. Clearly $\mathbb{E}\left[Y_{k}\right]=k$.

For r.v. s, and $t \in \mathbb{R}, \mathbb{E}\left[e^{t s}\right]$ is the moment generating function of s.

Fact

Let $X \sim N(0,1)$ and Y_{k} as above. Then, if $t \in(0,1 / 2)$,

$$
\mathbb{E}\left[e^{t X^{2}}\right]=\frac{1}{\sqrt{1-2 t}} \Rightarrow \mathbb{E}\left[e^{t Y_{k}}\right]=\frac{1}{\sqrt{1-2 t}}{ }^{k}
$$

Proof of JL Lemma (I)

Lemma

Let $Y=\|X\|_{2}^{2}: Y_{k}=\sum_{i=1}^{k} X_{i}^{2}, X_{i} \sim N(0,1)$, so $\mathbb{E}\left[Y_{k}\right]=k$. Then,

- $\mathrm{P}\left[Y_{k} \geq(1+\epsilon) k\right]<e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}$,
- $\mathrm{P}\left[Y_{k} \leq(1-\epsilon) k\right]<e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}$.

Proof of first bound.

Markov's bound: $\mathrm{P}[x \geq a] \leq \mathbb{E}[x] / a, x \geq 0$. Then, for $t \in(0,1 / 2)$:

$$
\begin{gathered}
\mathrm{P}\left[Y_{k} \geq(1+\epsilon) k\right]=\mathrm{P}\left[e^{t Y_{k}} \geq e^{(1+\epsilon) t k}\right] \leq \frac{\mathbb{E}\left[e^{t Y_{k}}\right]}{e^{(1+\epsilon) t k}}= \\
=\frac{1}{(1-2 t)^{k / 2} \cdot e^{(1+\epsilon) t k}} \stackrel{t=\epsilon / 2(1+\epsilon)}{=}\left((1+\epsilon) e^{-\epsilon}\right)^{k / 2}<e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4}
\end{gathered}
$$

using $1+x \leq \exp \left(x-x^{2} / 2+x^{3} / 3\right)$, for $x \in(-1,1)$.

Proof of JL Lemma (II)

Theorem

Let $G \in N(0,1)^{k \times d}$ i.e. the elements are i.i.d. r.v.'s that follow $N(0,1)$. Let $A=\frac{1}{\sqrt{k}} G$. Then, for a fixed vector $x \in \mathbb{R}^{d}$,

$$
\mathrm{P}\left[\|A x\|^{2} \notin\left[(1-\epsilon)\|x\|^{2},(1+\epsilon)\|x\|^{2}\right]\right]<2 \cdot e^{-\left(\epsilon^{2}-\epsilon^{3}\right) k / 4} .
$$

Proof.

We apply the union bound. Notice that the stated probability equals

$$
\mathrm{P}\left[\frac{\|A x\|^{2}}{\|x\|^{2}} \notin[1-\epsilon, 1+\epsilon]\right]
$$

In other words, $k \cdot \frac{\|A x\|^{2}}{\|x\|^{2}}=\|G(x /\|x\|)\|^{2}$ follows the χ^{2} distribution with k dof, where $\|x\|$ is fixed.

Consequences

Dimension vs set size
Can always assume $d=o(n)$ or $d=O(\log n)$, otherwise apply JL Lemma to get $d^{\prime}=O\left(\log n / \epsilon^{2}\right)$.

Does not remedy the curse for ANN

- BBD-trees still require query time linear in n.
- AVDs require $n^{O\left(-\log \epsilon / \epsilon^{2}\right)}$ space, prohibitive if $\epsilon \ll 1$ [HarPeled et al.12]

Nearest-neighbor Preserving Embedding

Definition (Indyk,Naor'07)

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

$$
f: X \rightarrow Y
$$

is a $N N$-preserving embedding with distortion $D \geq 1$ if, for any $\epsilon>0$ and query $q \in X$, s.t. $f(p)$ is an $\epsilon-A N N$ of $f(q), p \in P$ then, with constant probability,

$$
p \text { is a } D \epsilon-A N N \text { of } q \text {. }
$$

Does it remedy the curse for ANN?

- Yes, for low doubling dim (ddim). Not in general.
- $\operatorname{ddim}=\delta$ iff 2^{δ} balls cover double-radius ball; $\operatorname{ddim}\left(\ell_{p}^{d}\right)=\Theta(d), p>1$

$k-A N N s$

Definition (k-ANNs)

Given query q, find a sequence $S=\left[p_{1}, \cdots, p_{k}\right] \subset P$ of distinct points s.t. p_{i} is an ϵ-ANN of the i-th exact $N N$ of q.

Property of tree-based search (*)

The solution to k-ANNs using BBD-trees implies, for every point $x \in P$ not visited during the search, $(1+\epsilon) \operatorname{dist}(x, q)>\operatorname{dist}\left(p_{k}, q\right)$.

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space
- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics

4 Experimental results

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space - Projections and k-ANNs
- Decision problem

(3) LSH-able metrics

(4) Experimental results

Locality-preserving Embedding

Definition

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

$$
f: X \rightarrow Y
$$

is a locality-preserving embedding with parameter k, distortion $D \geq 1$, and success probability δ if, for $\epsilon>0$ and query $q \in X$, when
$\left[f\left(p_{1}\right), \cdots, f\left(p_{k}\right)\right]$ is a solution to k-ANNs of $f(q)$ satisfying the property of tree-based search $\left(^{*}\right)$ above then, with probability $\geq \delta$,

$$
\exists i \in\{1, \ldots, k\}: p_{i} \text { is a } D \epsilon-A N N \text { of } q .
$$

[Anagnostopoulos,E,Psarros:SoCG'15-TALG17]

Low quality embedding

Locality-preserving embeddings lead to an "aggressive" JL-type projection

Theorem

There exists a randomized mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ satisfying the definition of locality-preserving embedding with parameter k for

$$
d^{\prime}=O\left(\frac{\log (n / k)}{\epsilon^{2}}\right)
$$

distortion $D=1+\epsilon, \epsilon \in(0,1)$, and failure probability $1 / 3$.
Eventually $d^{\prime} \sim \log n /\left(\epsilon^{2}+\log \log n\right)$.

Euclidean ANN

Recall: With BBD trees, find k-ANNs in $O^{*}\left(\left(\left(1+\frac{d^{\prime}}{\epsilon}\right)^{d^{\prime}}+k\right) \log n\right)$.

Lemma

There exists k s.t., for fixed $\epsilon,\left\lceil 1+6 d^{\prime} / \epsilon\right\rceil^{d^{\prime}}+k=O\left(n^{\rho}\right)$, where

$$
\rho=1-\Theta\left(\frac{\epsilon^{2}}{\log \log n}\right) .
$$

Theorem (Main)

Given n points in \mathbb{R}^{d}, our method employs a BBD-tree to report an $\left(2 \epsilon+\epsilon^{2}\right)$-ANN in $O\left(d n^{\rho} \log n\right)$, using space $O(d n)$. Preprocessing takes $O(d n \log n)$ and, for each query, it succeeds with constant probability.

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space
- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics
(4) Experimental results

Putting everything together

Corollary

The ϵ-ANN optimization problem in \mathbb{R}^{d} is solved using space $=O^{*}(d n)$, query time

$$
O^{*}\left(d n^{\rho}\right), \rho=1+\epsilon^{2} / \log \epsilon<1
$$

by a randomized algorithm with constant success probability.

Open

Exploit the sequence of k-ANNs: It's not a set!

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space
- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics
(4) Experimental results

Locality-Sensitive Hashing

Recall LSH.

Definition (Indyk,Motwani)

Let $r \in \mathbb{R}, 0<\epsilon<1$ and $1>p_{1}>p_{2}>0$. We call a family F of hash functions $\left(p_{1}, p_{2}, r,(1+\epsilon) r\right)$-sensitive for a metric space X if, for any $x, y \in X$, and h_{i} distributed uniformly in F :

- $\operatorname{dist}(x, y) \leq r \Longrightarrow \operatorname{Pr}\left[h_{i}(x)=h_{i}(y)\right] \geq p_{1}$,
- $\operatorname{dist}(x, y) \geq(1+\epsilon) r \Longrightarrow \operatorname{Pr}\left[h_{i}(x)=h_{i}(y)\right] \leq p_{2}$.

This definition is suitable for the (ϵ, r)-Approximate Near Neighbor decision problem.

Hamming (0/1) Hypercube

Projection

- Input: Metric space admitting family of LSH functions h_{i}.
- For each h_{i} "hashtable": let f_{i} map buckets to $\{0,1\}$ uniformly
- Overall projection $f: x \mapsto\left[f_{1}\left(h_{1}(x)\right), \ldots, f_{d^{\prime}}\left(h_{d^{\prime}}(x)\right)\right] \in\{0,1\}^{d^{\prime}}$.
- Preprocess: Project points to vertices of cube, dimension $d^{\prime}=\lfloor\lg n\rfloor$.

Here d^{\prime} is like k in LSH.

Approximate Near Neighbor

- Query: Project query, check points in same and nearby vertices.
- Visit all $0 / 1$ vertices v, s.t. $\|v-f(q)\|_{1} \leq \frac{1}{2} d^{\prime}\left(1-p_{1}\right)$, until: x found, s.t. $\operatorname{dist}(x, q) \leq(1+\epsilon) r$, or threshold \#points checked.

Important topologies

Theorem

For ℓ_{1} and ℓ_{2} metrics, this solves the Approximate Near Neighbor decision problem efficiently, thus yielding a solution for the ϵ-ANN optimization problem with space and preprocessing in $O^{*}(d n)$, and query time in $O^{*}\left(d n^{\rho}\right), \rho=1-\Theta\left(\epsilon^{2}\right)$.
The data structure succeeds with constant probability.

Sketch for ℓ_{2}

Recall LSH family, for $w \in \mathbb{R}$:

$$
x \mapsto h_{v t}(x)=\left\lfloor\frac{x \cdot v+t}{w}\right\rfloor
$$

for $v \sim \mathcal{N}(0,1)^{d}, t \in_{R}[0, w)$.

Implementation for \mathbb{R}^{d}

Parameters

- d^{\prime} : larger implies finer mapping so search can stop earlier; increases storage and preprocessing.
- Threshold \#points to be checked in \mathbb{R}^{d}

Distance computation

- $\|x-q\|^{2}=\|x\|^{2}+\|q\|^{2}-2 q \cdot x$, where the first two can be stored. May offer up to 10% speedup. Slight slowdown on MNIST.

$$
\text { Project idea: }\|x-q\|^{2}-\|y-q\|^{2} \text { reduces to } 2 q \cdot(y-x)
$$

https://github.com/gsamaras/Dolphinn

Outline

(1) Dimensionality reduction

- Proof of JL Lemma
(2) Random projections in Euclidean space
- Projections and k-ANNs
- Decision problem
(3) LSH-able metrics

4 Experimental results

Hypercube

- Implements projection to hypercube, for Approximate Near Neighbors.
- 8-80 times faster than brute force.

Falconn implements hyperplane/crosspoly LSH (4748 lines) [AILRS'15]. Hypercube is worse/same in build, same/better in space, query (716 lines)

	sift	SIFT	MNIST	GIST
d, n	$128,10^{4}$	$128,10^{6}$	$784,6 \cdot 10^{4}$	$960,10^{6}$
F (c)	$2.5 \mathrm{e}-4$	$1.5 \mathrm{e}-2$	$3.0 \mathrm{e}-3$.34
F (h)	$8.6 \mathrm{e}-5$	$9.0 \mathrm{e}-3$	$6.2 \mathrm{e}-4$.13
D	$9.0 \mathrm{e}-5$	$9.0 \mathrm{e}-3$	$5.0 \mathrm{e}-4$.13
Range search, in sec				

DolphinnPy

- https://github.com/ipsarros/DolphinnPy [Psarros]
- Python 2.7, NumPy (pip install numpy)
- Hardcoded parameters (main.py):
$K=$ new (projection) dimension, num_of_probes = max \#buckets searched, $M=\max \#$ candidate points examined.
- python main.py: preprocesses data, runs Dolphinn (hyperplane LSH) and exhaustive search on queries.
- Print K, preprocessing and average-query time; multiplicative error (approximation), \#exact-answers.

Tests

- Fix K, vary num_of_probes, M so as to improve accuracy (\#exact-answers), decrease multiplicative error.
- Fix num_of_probes, M, vary K for same goal.
- After reading files, the script calls isotropize on both sets (data, queries). Compare algorithm after commenting out both lines.
- siftsmall.tar.gz from http://corpus-texmex.irisa.fr/
- contains datafile and queryfile in fvecs format, $d=128, n=10^{4}$.

