Geometric Data analysis Randomized projections and Dimensionality reduction

Ioannis Emiris

Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece INRIA Sophia-Antipolis France

Fall 2020

- Dimensionality reduction
 - Proof of JL Lemma
- Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- SH-able metrics
- Experimental results

Approaches

- Trees (and AVDs): S = O(dn), $Q = o(n) \cdot \exp(d)$.
- LSH: $S = O(dn^{1+\rho})$, $Q = O(dn^{\rho})$, $\rho = 1/(1+\epsilon)^2$.
- Dimensionality reduction

... and *k*-ANNs beat the curse in optimal space [Anagnostopoulos,E,Psarros:15-17]

- S = O(dn), Q = $O^*(dn^{\rho})$, $\rho = 1 \epsilon^2/(\log\log n \log \epsilon)$.
- S = $O^*(dn)$, Q = $O^*(dn^{\rho})$, $\rho = 1 + \epsilon^2/\log \epsilon < 1$.

... for LSH-able metrics [Avarikioti, E, Psarros, Samaras' 17]:

• S = $O^*(dn)$, Q = $O^*(dn^{\rho})$, $\rho = 1 - \Theta(\epsilon^2)$.

Dimensionality reduction

Lemma (Johnson, Lindenstrauss'82)

Given pointset $P \subset \mathbb{R}^d$, |P| = n, $0 < \epsilon < 1$, there exists a distribution over linear maps

$$f: \mathbb{R}^d \to \mathbb{R}^{d'}$$

with $d' = O(\log n/\epsilon^2)$ s.t., for any $p, q \in \mathbb{R}^d$, w/probability $\geq 2/3$:

$$(1-\epsilon)\|p-q\|_2 \leq \|f(p)-f(q)\|_2 \leq (1+\epsilon)\|p-q\|_2.$$

Proofs (Constructive): Random orthogonal projection [JL'84], Gaussian matrix [Indyk,Motwani'98], i.i.d. entries $\in \{-1,1\}$ [Achlioptas'03], etc.

f oblivious to P i.e. defined over entire space. Fast JL Transform using structured matrices [Chazelle et al.]

- Dimensionality reduction
 - Proof of JL Lemma
- 2 Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- 3 LSH-able metrics
- Experimental results

Gaussian combinations

Lemma

Let $g \sim N(0,1)^d$, i.e. with iid normal coordinates, $x \in \mathbb{S}^{d-1}$. Then, their innner product is normally distributed: $\langle x,g \rangle \sim N(0,1)$.

Proof.

A linear combination of gaussian variables follows the gaussian distribution. Hence, it suffices to compute the expectation and variance:

$$\mathbb{E}\langle x,g\rangle = \sum_{j=1}^d \mathbb{E}[g_j]\cdot x_j = 0,$$

$$\mathbb{E}\langle x,g\rangle^2 = \sum_{k\neq j}^d \mathbb{E}[g_j] \cdot \mathbb{E}[g_k] \cdot x_j \cdot x_k + \sum_{j=1}^d \mathbb{E}[g_j^2] \cdot x_j^2 = 1,$$

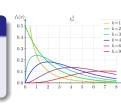
because the $g_i, j = 1, ..., d$ are independent and $x \in \mathbb{S}^{d-1}$.

Squared gaussians

Let each $G_i \sim N(0,1)^d$, $x \in \mathbb{S}^{d-1}$, and $X = G \cdot x$.

Sum of squares

For X_1, \ldots, X_k i.i.d. r.v.: $X_i = \langle x, G_i \rangle \sim N(0, 1)$, and $Y_k = \sum_{i=1}^k X_i^2$, we know Y_k follows the χ^2 distribution with k dof. Clearly $\mathbb{E}[Y_k] = k$.



For r.v. s, and $t \in \mathbb{R}$, $\mathbb{E}[e^{ts}]$ is the moment generating function of s.

Fact

Let $X \sim N(0,1)$ and Y_k as above. Then, if $t \in (0,1/2)$,

$$\mathbb{E}[e^{tX^2}] = \frac{1}{\sqrt{1-2t}} \Rightarrow \mathbb{E}[e^{tY_k}] = \frac{1}{\sqrt{1-2t}^k}.$$

Proof of JL Lemma (I)

Lemma

Let $Y = ||X||_2^2$: $Y_k = \sum_{i=1}^k X_i^2$, $X_i \sim N(0,1)$, so $\mathbb{E}[Y_k] = k$. Then,

- $P[Y_k \ge (1+\epsilon)k] < e^{-(\epsilon^2 \epsilon^3)k/4}$
- $P[Y_k \le (1-\epsilon)k] < e^{-(\epsilon^2-\epsilon^3)k/4}$.

Proof of first bound.

Markov's bound: $P[x \ge a] \le \mathbb{E}[x]/a, x \ge 0$. Then, for $t \in (0, 1/2)$:

$$\begin{split} & \mathrm{P}[Y_k \geq (1+\epsilon)k] \mathrm{=} \mathrm{P}[e^{tY_k} \geq e^{(1+\epsilon)tk}] \leq \frac{\mathbb{E}[e^{tY_k}]}{e^{(1+\epsilon)tk}} = \\ & = \frac{1}{(1-2t)^{k/2} \cdot e^{(1+\epsilon)tk}} \stackrel{t=\epsilon/2(1+\epsilon)}{=} ((1+\epsilon)e^{-\epsilon})^{k/2} < e^{-(\epsilon^2 - \epsilon^3)k/4}, \end{split}$$

using $1 + x \le exp(x - x^2/2 + x^3/3)$, for $x \in (-1, 1)$.

Proof of JL Lemma (II)

Theorem

Let $G \in N(0,1)^{k \times d}$ i.e. the elements are i.i.d. r.v.'s that follow N(0,1). Let $A = \frac{1}{\sqrt{k}}G$. Then, for a fixed vector $x \in \mathbb{R}^d$,

$$P[\|Ax\|^2 \notin [(1-\epsilon)\|x\|^2, (1+\epsilon)\|x\|^2]] < 2 \cdot e^{-(\epsilon^2 - \epsilon^3)k/4}.$$

Proof.

We apply the union bound. Notice that the stated probability equals

$$P\left[\frac{\|Ax\|^2}{\|x\|^2} \notin [1 - \epsilon, 1 + \epsilon]\right].$$

In other words, $k \cdot \frac{\|Ax\|^2}{\|x\|^2} = \|G(x/\|x\|)\|^2$ follows the χ^2 distribution with k dof, where $\|x\|$ is fixed.

Consequences

Dimension vs set size

Can always assume d = o(n) or $d = O(\log n)$, otherwise apply JL Lemma to get $d' = O(\log n/\epsilon^2)$.

Does not remedy the curse for ANN

- BBD-trees still require query time linear in *n*.
- ullet AVDs require $n^{O(-\log\epsilon/\epsilon^2)}$ space, prohibitive if $\epsilon\ll 1$ [HarPeled et al.12]

Nearest-neighbor Preserving Embedding

Definition (Indyk, Naor'07)

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

$$f: X \to Y$$

is a NN-preserving embedding with distortion $D \ge 1$ if, for any $\epsilon > 0$ and query $q \in X$, s.t. f(p) is an ϵ -ANN of $f(q), p \in P$ then, with constant probability,

p is a $D\epsilon$ -ANN of q.

Does it remedy the curse for ANN?

- Yes, for low doubling dim (ddim). Not in general.
- ullet ddim $=\delta$ iff 2^δ balls cover double-radius ball; ddim $(\ell_p^d)=\Theta(d), p>1$

k-ANNs

Definition (k-ANNs)

Given query q, find a sequence $S = [p_1, \cdots, p_k] \subset P$ of distinct points s.t. p_i is an ϵ -ANN of the i-th exact NN of q.

Property of tree-based search (*)

The solution to k-ANNs using BBD-trees implies, for every point $x \in P$ not visited during the search, $(1 + \epsilon) dist(x, q) > dist(p_k, q)$.

- Dimensionality reduction
 - Proof of JL Lemma
- Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- SH-able metrics
- Experimental results

- Dimensionality reduction
 - Proof of JL Lemma
- Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- 3 LSH-able metrics
- Experimental results

Locality-preserving Embedding

Definition

Let X, Y be metric spaces, and $P \subseteq X$. A distribution over mappings

$$f:X\to Y$$

is a locality-preserving embedding with parameter k, distortion $D \ge 1$, and success probability δ if, for $\epsilon > 0$ and query $q \in X$, when $[f(p_1), \cdots, f(p_k)]$ is a solution to k-ANNs of f(q) satisfying the property of tree-based search (*) above then, with probability $\ge \delta$,

$$\exists i \in \{1, \dots, k\} : p_i \text{ is a } D\epsilon\text{-ANN of } q.$$

[Anagnostopoulos, E, Psarros: SoCG'15-TALG17]

Low quality embedding

Locality-preserving embeddings lead to an "aggressive" JL-type projection

Theorem

There exists a randomized mapping $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ satisfying the definition of locality-preserving embedding with parameter k for

$$d' = O\left(\frac{\log(n/k)}{\epsilon^2}\right),\,$$

distortion $D=1+\epsilon, \ \epsilon\in(0,1)$, and failure probability 1/3.

Eventually $d' \sim \log n/(\epsilon^2 + \log \log n)$.

Euclidean ANN

Recall: With BBD trees, find k-ANNs in $O^*(((1 + \frac{d'}{\epsilon})^{d'} + k) \log n)$.

Lemma

There exists k s.t., for fixed ϵ , $\lceil 1 + 6d'/\epsilon \rceil^{d'} + k = O(n^{\rho})$, where

$$\rho = 1 - \Theta(\frac{\epsilon^2}{\log\log n}).$$

Theorem (Main)

Given n points in \mathbb{R}^d , our method employs a BBD-tree to report an $(2\epsilon + \epsilon^2)$ -ANN in $O(dn^\rho \log n)$, using space O(dn). Preprocessing takes $O(dn \log n)$ and, for each query, it succeeds with constant probability.

- Dimensionality reduction
 - Proof of JL Lemma
- 2 Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- SH-able metrics
- Experimental results

Putting everything together

Corollary

The ϵ -ANN optimization problem in \mathbb{R}^d is solved using space $= O^*(dn)$, query time

$$O^*(dn^{\rho}), \ \rho = 1 + \epsilon^2/\log\epsilon < 1,$$

by a randomized algorithm with constant success probability.

Open

Exploit the sequence of k-ANNs: It's not a set!

- Dimensionality reduction
 - Proof of JL Lemma
- Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- SH-able metrics
- Experimental results

Locality-Sensitive Hashing

Recall LSH.

Definition (Indyk, Motwani)

Let $r \in \mathbb{R}$, $0 < \epsilon < 1$ and $1 > p_1 > p_2 > 0$. We call a family F of hash functions $(p_1, p_2, r, (1 + \epsilon)r)$ -sensitive for a metric space X if, for any $x, y \in X$, and h_i distributed uniformly in F:

- $dist(x, y) \le r \implies Pr[h_i(x) = h_i(y)] \ge p_1$,
- $dist(x,y) \ge (1+\epsilon)r \implies Pr[h_i(x) = h_i(y)] \le p_2.$

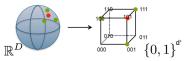
This definition is suitable for the (ϵ, r) -Approximate Near Neighbor decision problem.

Hamming (0/1) Hypercube

Projection

- Input: Metric space admitting family of LSH functions h_i .
- For each h_i "hashtable": let f_i map buckets to $\{0,1\}$ uniformly
- Overall projection $f: x \mapsto [f_1(h_1(x)), \dots, f_{d'}(h_{d'}(x))] \in \{0, 1\}^{d'}$.
- Preprocess: Project points to vertices of cube, dimension $d' = |\lg n|$.

Here d' is like k in LSH.



Approximate Near Neighbor

- Query: Project guery, check points in same and nearby vertices.
- Visit all 0/1 vertices v, s.t. $||v f(q)||_1 \le \frac{1}{2}d'(1 p_1)$, until: x found, s.t. $dist(x, q) \le (1 + \epsilon)r$, or threshold #points checked.

LEmiris Geometric Data analysis Fall 2020

Important topologies

Theorem

For ℓ_1 and ℓ_2 metrics, this solves the Approximate Near Neighbor decision problem efficiently, thus yielding a solution for the ϵ -ANN optimization problem with space and preprocessing in $O^*(dn)$, and query time in $O^*(dn^\rho)$, $\rho=1-\Theta(\epsilon^2)$.

The data structure succeeds with constant probability.

Sketch for ℓ_2

Recall LSH family, for $w \in \mathbb{R}$:

$$x \mapsto h_{vt}(x) = \lfloor \frac{x \cdot v + t}{w} \rfloor,$$

for $v \sim \mathcal{N}(0,1)^d$, $t \in_R [0, w)$.

Implementation for \mathbb{R}^d

Parameters

- d': larger implies finer mapping so search can stop earlier; increases storage and preprocessing.
- ullet Threshold # points to be checked in \mathbb{R}^d

Distance computation

• $\|x-q\|^2 = \|x\|^2 + \|q\|^2 - 2q \cdot x$, where the first two can be stored. May offer up to 10% speedup. Slight slowdown on MNIST.

Project idea: $||x - q||^2 - ||y - q||^2$ reduces to $2q \cdot (y - x)$.

https://github.com/gsamaras/Dolphinn

- Dimensionality reduction
 - Proof of JL Lemma
- 2 Random projections in Euclidean space
 - Projections and k-ANNs
 - Decision problem
- SH-able metrics
- Experimental results

Hypercube

- Implements projection to hypercube, for Approximate Near Neighbors.
- 8-80 times faster than brute force.

Falconn implements hyperplane/crosspoly LSH (4748 lines) [AILRS'15]. Hypercube is worse/same in build, same/better in space, query (716 lines)

	sift	SIFT	MNIST	GIST
d, n	128, 10 ⁴	128, 10 ⁶	$784, 6 \cdot 10^4$	960, 10 ⁶
F (c)	2.5e-4	1.5e-2	3.0e-3	.34
F (h)	8.6e-5	9.0e-3	6.2e-4	.13
D	9.0e-5	9.0e-3	5.0e-4	.13

Range search, in sec

DolphinnPy

- https://github.com/ipsarros/DolphinnPy [Psarros]
- Python 2.7, NumPy (pip install numpy)
- Hardcoded parameters (main.py):
 K = new (projection) dimension,
 num_of_probes = max #buckets searched,
 M = max #candidate points examined.
- python main.py: preprocesses data, runs Dolphinn (hyperplane LSH) and exhaustive search on queries.
- Print K, preprocessing and average-query time; multiplicative error (approximation), #exact-answers.

Tests

- Fix K, vary num_of_probes, M so as to improve accuracy (#exact-answers), decrease multiplicative error.
- Fix *num_of_probes*, *M*, vary *K* for same goal.
- After reading files, the script calls isotropize on both sets (data, queries). Compare algorithm after commenting out both lines.
- siftsmall.tar.gz from http://corpus-texmex.irisa.fr/
- contains datafile and queryfile in frees format, $d = 128, n = 10^4$.