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Nearest Neighbor

Exact NN

In d-dimensional space D, given set P C D, and query point g € D, its
NN is point pg € P: dist(po, q) < dist(p,q), Vp € P.

Approximate NN

Given set P C D, approximation factor 1 > € > 0, and query point g,
an e-NN, or ANN, is any point py € P:

dist(po, q) < (1 + €)dist(p,q), Vp e P.
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Approximate Near-neighbor problem

Definition ((r, c)-Near neighbor)

Preprocess: finite set of points P.
Query: point q, radius r, approximation factor ¢ > 1.

® Range search: Report all p € P s.t. dist(q,p) < c-r.

o Augmented decision problem (with witness):
— If 3 po within radius r, output YES and any p : dist(q,p) <c-r.
— If A p within radius c - r, then report NO.
— If none of above, report either NO, or YES and some pg in cr-ball

v
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ANN to Near-Neighbor (bounding radius)

c(1 + €)-ANN reduces to logy . A instances of ((1 + €)', c)-Near-Neighbor
decision problems, for i = logy, A, ...,2,1, where A = bounding radius.

For any query, run ith and (i + 1)st augmented decision problems:

— Balls cannot be both empty.
— While both answers positive, continue with new radius (1 4 ¢)~1.

— When answers differ, we obtain py within radius c(1 + €)™+, whereas
none exists within radius c(1 + €)'

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 4/41



ANN to Near-Neighbor (log n)

Theorem (Har-Peled,Indyk,Motwani'12)

For set P in a metric space, and ¢ >1, 0 < 1, v € (1/n,1), given a data
structure solving the decision (r, c)-Near Neighbor problem with failure
probability 6, using space S, and query time Q, there exists a data
structure using

O(S log® n/v) space,
answering e-ANN, 1+ e = ©(c)(1 + O(7)), with query time

O(Q log n),

and failure probability O(6 log n).

Replaces the dependence on log;, . A (bounding radius) by log n.
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Sort/store n points in balanced binary search tree (red-black, AVL), use
binary search for queries:

@ Prepreprocessing in O(nlog n) time
e Data structure requiring O(n) space

@ Answer the query in O(log n) time

A hash-table with M buckets offers a solution with
@ preprocessing in O(M + n) = O(n) time
@ space O(M + n) = O(n)
@ query time O(1)

assuming constant time for hashing and constant number of items per
bucket.
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@ Preprocessing: Voronoi Diagram in O(nlog n).

e Storage = O(n).

e Given query g, find the cell it belongs (point location) in O(log n).
NN = site of cell containing q.
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Curse of Dimensionality: Voronoi diagram = O(n!9/21).
Can query be polynomial in d and sublinear in n?

Approximate e-NN:

[

o BBD-trees: Sp = O(dn), Q = O((d/¢)9 log n).
e Locality sensitive hashing (LSH): Sp ~ dn'**, Q ~ dn”,
p = 1/(1 + €)? [Indyk,Motwani'98] [Andoni,Indyk’08]; various metrics.
Data-dependent: p = m + o(1) [Andoni,Razenshteyn’14].

e Projection-based methods: Sp = 0*(dn), Q ~ dn*~©(<")
[E,Psarros,et al.15-18].
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Complexity and extension

ANN in R9 [Arya, Mount et al ]
Let S(n), @(n) denote space and ANN query time. Ignoring log factors,

S(n)@3(n) = Q* (edL_l) :

Definition (k-ANNs)

For pointset P and 0 < € < 1, given query point q and k € N*, find a
sequence S = [p1,- - , px] C P of distinct points s.t. p; is an e-ANN of the
i-th exact NN of q.

v

BBD-trees return k-ANN in O((k + (d/€)9) log n). Moreover, if S’ C P
are the points visited by the search and S C S’ the k points nearest to g
among S’, then Vx € P\ S, (1 + €)dist(x, q) > dist(pk, q).

v
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Outline

© Locality sensitive hashing

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020



LSH idea

Let ri < ry, probabilities p; > p. Function family H is (r1, r2, p1, p2)-
sensitive if, for any points p # g and any randomly selected h €g H:

e if dist(p, q) < n1, then prob[h(q) = h(p)] > p1,
e if dist(p, g) > rz, then prob[h(q) = h(p)] < p2.

. Quer
h €r H: h randomly (uniformly) chosen. e
Idea: increase collisions of similar strings. YRty
. ) .//
Typically n =c-n, c > 1. EE—

u@)y
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Amplification

Hash-table
LSH creates hash-table using amplified hash functions by concatenation:

g(p) = [m(p) [ h(p) | - [ hk(pP)],

where every h; €g H is distributed uniformly (with repetition) in H.

Some h; may be chosen more than once for a given g or for different g's.
Also called AND-amplification.

g is (i, ra2, pX, pk)-sensitive.

Large k = larger gap between p;, p>. Practical choices are k = 4 to 6.
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Preprocess
@ Having defined H and amplified hash-function g:

@ Select L (= n”) hash-functions gi,...,g;.
o Initialize L hashtables, hash all points to all tables using g (or ¢).

Goal: L so that it has ©(1) points per bucket.
L is 5 up to function of n, and HashTable size = ©(n).

Overall construction is OR-amplification of g: points are “neighbors” if 3/
for which they lie in same bucket.

If g is (r1, 2,01, 02)-sensitive, then the overall construction represents a
(r1,rm,1—(1—061)1— (1 — 6)b)-sensitive function.
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Range Search

Range (r, c)-Near Neighbor search
Input: r, c, query g
for i from 1to L do
for each item p in bucket gi(q) do
if dist(g, p) < cr then output p
end if
end for
end for

Decision problem: "return p” instead of "output p".

At end "return FAIL"; also FAIL after threshold on #examined points
reached.
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NN search

Approximate NN

Input: query g
Let b < Null; dp + oo
for i from 1to L do
for each item p in bucket gi(q) do
if large #checked items (e.g. > 3L) then return b // threshold
end if
if dist(g, p) < dp then b« p; dp, < dist(q, p)
end if
end for
return b
end for

v

Theoretical bounds for c(1 + ¢)-NN by reduction to ((1 + €)', c)-Neighbor
decision problems, i =1,2,...,lg;, A.

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 15 /41



Analysis of bad events

From the definition, with p; > po:

lp—gll > cr = P [g(p) = g(a)] < p5.

Set k = |og'?1g/';)2) = log,,(1/n), then bound exp'd #falsePositives:

Eg [#x : g(x) =g(q),llx —gl| > cr] <n-p5 =1.

For L hashtables, the expected number of false positives is < L.
Markov's inequality: P[X > a] < E[X]/a, X > 0.
Hence, P[#falsePositives > 3L] < 1/3.
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Analysis (cont'd)

True positive:

_log(1/p1)

lp—qll <r = Pglg(p) =g(q)] = n "=/e).

Set \ = :228?53 < 1, thus missing probability < 1 — n=*.

Probability missing one true positive (false negative) in L tables =

L

L
Paa Vi€ L] gi(p) # &i(q)] < (1 _ ﬁ) <o

using 14+ x < e*. Set L = n*, and by union bound over two bad events,

the total failure probability <Py +P> =1/3 +1/e.

The constant probability of success can be amplified to 1 — o(1) by
building logarithmically many independent data structures.
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Known LSH-able metrics

@ Hamming distance,

@ /5 (Euclidean) distance,

@ /1 (Manhattan) distance,

e /; distance for any k € [1,2),
@ /5 distance on a sphere,

@ Cosine similarity,

@ Jaccard coefficient.

Recall £ norm:  disty, (x,y) =
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Outline

© Locality sensitive hashing
@ Hamming space
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Hamming distance

Definition

Given strings x, y of length d, their Hamming distance dy(x, y) is the
number of positions at which x and y differ.

Let x = 10010 and y = 10100. Then, dy(x,y) = 2.
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Definition of hash functions

Given x = (x1,...,xg) € {0,1}¢:

H={h(x)=x; : i=1,...,d}.

Obviously, |H| = d.
Pick uniformly at random h €g H: Then prob[h(x) # h(y)] = du(x,y)/d,

prob[h(x) = h(y)] =1 — dn(x,y)/d.

The family H is (r, 2,1 — rn/d,1 — rn/d)-sensitive, for i < r».
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LSH in Hamming Space

However probabilities 1 — r; /d, 1 — rp/d can be close to each other.

Amplification
Given parameter k, define new family G by concatenation. G is the set of
all functions

g {0,137 = {0,1}* : g(x) = [hy ()| -~ | i, (X)),

where h; €g H is uniformly chosen for j =1,... k.

— We must have L < |G| = d¥, so as to pick L different g's.
— The range of each g is [0,2X), so k < Ign.
— So k may be close to Ign — 1 (unlike later cases where k = 4,5)
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Build Hash-tables

Pick uniformly at random L functions g1,...,81 €r G, using h; Eg H
(chosen uniformly with repetition).
for i from 1to L do
Initialize (one-dim) hash-table T; of size 2:
for each p € P, store p in bucket gi(p).
end for

Complexity

Build = O(Lnk) H-function calls, where L ~ n”.

Store n strings = O(dn) bits,

L hashtables and n pointers to strings per table = O(Ln) pointers.
(r, c)-Neighbors: Query = O(L(k + d)), assuming O(1) strings per bucket.

v
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Outline

© Locality sensitive hashing

@ Euclidean space
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Euclidean Space

Recall:  disty,(x,y)? = 320, (xi — ).

Definition

Let d-vector v ~ N(0,1)9 have coordinates identically independently
distributed (i.i.d.) by the standard normal (next slide).

Set "window” w € N* for the entire algorithm, pick single-precision real
t uniformly €g [0, w). For point p € RY, define:

p-v+t

h(p) = |———] € Z.

v

— Essentially project p on line of v, shift by t, partition in cells of length w
— Generally w = 4 is OK but should increase for range queries of large r
— Also k = 4 (but can go up to 10), and L may be 5 (up to 30).
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Normal distribution

Vector v ~ N(0,1)9 has single-precision real coordinates distributed
according to the standard normal (Gaussian) distribution:

vi~N(0,1), i=1,2,...,d,

with mean z = 0, variance 02 = 1 (o is the standard deviation).

Standard Normal

The bell curve:
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Normal from Uniform

Given uniform generator [Wikipedial:

o Marsaglia: Use independent uniform U,V €g (—1,1), S = U? + V2.
If S > 1 then start over, otherwise:

—2InS VY —2InS

X =
v s S

are independent and standard normally distributed.

The U, V, X, Y are single-precision reals.
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Implementation

Given (elementary) hash h;, set amplified hash g = [h1(p)|- - - |hk(p)]-
Yields huge table, many empty buckets. Use random linear combination:

Implement a 1-dim hash-table with indexing function:
é(p) = (rhi(p) + r2ha(p) + - - - + rkhk(p) mod M) mod TableSize,

int r; €r Z, prime M = 23272 TableSize = n/8 (e.g.).

Note ¢ computed in int arithmetic, if all h;(p), ri are int (< 32 bits).
Recall (a + b) mod m = ((a mod m) + (b mod m)) mod m.

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 28 /41



© Locality sensitive hashing

@ Cosine similarity (Hyperplane LSH)
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LSH for Cosine similarity

Consider RY, equipped with cosine similarity of two vectors:

(.y) = =
cos(x,y) = ———
’ - lly [
which expresses the angle between vectors x, y.

Similarity is inversely proportional of distance: For unit x, y,
dist?(x,y) = 2 — 2cos(x, y). (not a metric: no triangular ineq.)

For comparing documents or, generally, very long vectors (typically
sparse), based on direction only, not length.
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Hyperplane LSH

Let r; ~ N(0,1)9, with each real coordinate iid N'(0,1)9. Define

1, ifri-x>0
h"(x)_{o, ifri-x<0

Then H = {hi(x) | for every r;} is a locality sensitive family.
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Hyperplane LSH (cont'd)

Each r; is normal to a hyperplane. Two vectors lying on same side of many
hyperplanes are very likely similar.

Two vectors match with probability proportional to their cosine.

Amplification: Given parameter k, define new family G by concatenation:

G ={g:R? = {0,1}* | g(x) = [h(x) | ha(x) | - -~ | ()]}
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Outline

© Locality sensitive hashing

@ Manhattan distance
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Hash-function

disty, (x,y) = Z:-j:l Ixi — il

Consider RY, r is the radius of range search. Pick real w > r once, then h
specified by independent, real, uniformly distributed sp, . ..,s4—1 €g [0, w).

Xj — Sj

LetxHaGZd:a;:{ Jez, i=0,1,...,d -1,

w

shifts x by s, then projects to bottom-left corner of its cell in
d-dimensional grid of size w.

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 34 /41



LSH function for 1-dim hashtable

h(X)=3d71+m-ad72+~-+md’1-ao mod M € N,
for max; a; < m < M/2 for entire algorithm, e.g. M = 2132/
By concatenation, amplified function g(x) = [h1(x)|h2(x)| - - - |hx(x)]-

Lemma. (c, r)-Near-Neighbor decided whp: check 3L candidate points,
L=n? p=Inpi/Inpy =1/c+ O(r/w) [TarsosLSH software] J
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Outline

© General Metric spaces
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Distance Metric

Definition (Distance Metric)

A distance metric d : D> — R is a function that satisfies:
e Non-negativity: d(x,y) >0
@ Isolation: x # y < d(x,y) >0
o Symmetry: d(x,y) = d(y,x)
o Triangle inequality: d(x,y) < d(x,z)+d(z,y)

It follows that d(x,x) =0, and |d(x,z) — d(z,y)| < d(x,y).

Distances in vector spaces (e.g. Hamming, Euclidean, Manhattan, any ¢
metric) are all distance metrics. Compact (vector) representation allow to
compute mean, total order. ..
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Distance Based Hashing (DBH)

@ LSH needs specific families of LSH functions, so it is not applicable to
novel, or not studied, metrics.

@ DBH produces hash functions tailored to the space by considering
only calls to the distance measure and by making no assumptions
about the domain.

@ Due to the generality of the method there are no theoretical
guarantees

[Athitsos,et al.08]
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DBH family of functions

Consider metric space (D, d) and data P C D. Construct family of
functions H that behaves like LSH.

Definition (Line projection)

Given x1,xo € P C D define the line projection function

d(x, X1)2 + d(xy, x2)2 —d(x, x2)2

2D 3 R: x>
- x 2d(x1, x2)

If D is Euclidean, this is the signed length of projecting vector (xj, x) on
line (x1,x2), x2 lying on the positive axis.
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Discretization and balancing

Definition (Discretization)

For hashing, discretize W2 by using thresholds t1,t; € R U {400} :

1, ithI’XQ(X) € [tl, tg]

X1,X2 5
L s UL ER { 0, otherwise

The t1, to should map half the objects of P to 0 and the other half to 1:

Definition (Set of valid thresholds V)

For x1,x0 € P, the set of thresholds yielding "balanced” h is

V(x1,x2) = {[t1, t2] : probxep[hflljt)f(x) =0]=1/2}.
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Hash functions

Definition
Consider the "balanced” functions

H= {hgl”gz : x1,x2 € P and [tl, t2] € V(Xl,Xg) }

Using random h; g H we define L hash functions by concatenation

gi(x) = [hin(x) | hia(x) | - -~ | hi(x)], i=1,..., L.

Implement:

— Pick x1,x2 €g P uniformly among points for which oracle/distance
matrix defined; this defines h*12(.).

— Evaluate h"”2(x) € R for all x € P (or a large sample).

— Set t; = median of {P*2(x) : x € P}, to = oo; or at the 1/4,3/4 mark.

I.Emiris (Athens, Greece) Geometric Data analysis Fall 2020 41/41



	Locality sensitive hashing
	Hamming space
	Euclidean space
	Cosine similarity (Hyperplane LSH)
	Manhattan distance

	General Metric spaces

