Geometric Data analysis Curse of dimensionality and LSH

Ioannis Emiris

National & Kapodistrian U. Athens ATHENA Research Center, Greece

Fall 2020

Nearest Neighbor

Exact NN

In *d*-dimensional space D, given set $P \subset D$, and query point $q \in D$, its NN is point $p_0 \in P$: $dist(p_0, q) \leq dist(p, q)$, $\forall p \in P$.

Approximate NN

Given set $P \subset D$, approximation factor $1 > \epsilon > 0$, and query point q, an ϵ -NN, or ANN, is any point $p_0 \in P$:

$$\operatorname{dist}(p_0, q) \leq (1 + \epsilon)\operatorname{dist}(p, q), \quad \forall p \in P.$$

2/41

Approximate Near-neighbor problem

Definition ((r, c)-Near neighbor)

Preprocess: finite set of points P.

Query: point q, radius r, approximation factor c > 1.

- Range search: Report all $p \in P$ s.t. $dist(q, p) \le c \cdot r$.
- Augmented decision problem (with witness):
 - If $\exists p_0$ within radius r, output YES and any p: dist $(q, p) \le c \cdot r$.
 - If $\not\exists$ p within radius c · r, then report NO.
 - If none of above, report either NO, or YES and some p_0 in cr-ball

ANN to Near-Neighbor (bounding radius)

Lemma

 $c(1+\epsilon)$ -ANN reduces to $\log_{1+\epsilon} \Delta$ instances of $((1+\epsilon)^i, c)$ -Near-Neighbor decision problems, for $i = \log_{1+\epsilon} \Delta, \ldots, 2, 1$, where $\Delta =$ bounding radius.

Proof

For any query, run *i*th and (i + 1)st augmented decision problems:

- Balls cannot be both empty.
- While both answers positive, continue with new radius $(1+\epsilon)^{i-1}$.
- When answers differ, we obtain p_0 within radius $c(1+\epsilon)^{i+1}$, whereas none exists within radius $c(1+\epsilon)^i$.

ANN to Near-Neighbor ($\log n$)

Theorem (Har-Peled, Indyk, Motwani'12)

For set P in a metric space, and c>1, $\delta\ll 1$, $\gamma\in (1/n,1)$, given a data structure solving the decision (r,c)-Near Neighbor problem with failure probability δ , using space S, and query time Q, there exists a data structure using

$$O(S \log^2 n/\gamma)$$
 space,

answering ϵ -ANN, $1 + \epsilon = \Theta(c)(1 + O(\gamma))$, with query time

$$O(Q \log n)$$
,

and failure probability $O(\delta \log n)$.

Replaces the dependence on $\log_{1+\epsilon} \Delta$ (bounding radius) by $\log n$.

NN in \mathbb{R}

Sort/store n points in balanced binary search tree (red-black, AVL), use binary search for queries:

- Prepreprocessing in $O(n \log n)$ time
- Data structure requiring O(n) space
- Answer the query in $O(\log n)$ time

A hash-table with M buckets offers a solution with

- preprocessing in O(M + n) = O(n) time
- space O(M+n) = O(n)
- query time O(1)

assuming constant time for hashing and constant number of items per bucket.

NN in \mathbb{R}^2

- Preprocessing: Voronoi Diagram in $O(n \log n)$.
- Storage = O(n).
- Given query q, find the cell it belongs (point location) in $O(\log n)$. NN = site of cell containing q.

NN in \mathbb{R}^d

Curse of Dimensionality: Voronoi diagram = $O(n^{\lceil d/2 \rceil})$. Can query be polynomial in d and sublinear in n?

Approximate ϵ -NN:

- BBD-trees: Sp = O(dn), $Q = O((d/\epsilon)^d \log n)$.
- Locality sensitive hashing (LSH): Sp $\simeq dn^{1+\rho}$, Q $\simeq dn^{\rho}$, $\rho=1/(1+\epsilon)^2$ [Indyk,Motwani'98] [Andoni,Indyk'08]; various metrics. Data-dependent: $\rho=\frac{1}{2(1+\epsilon)^2-1}+o(1)$ [Andoni,Razenshteyn'14].
- Projection-based methods: Sp = $O^*(dn)$, Q $\simeq dn^{1-\Theta(\epsilon^2)}$ [E,Psarros,et al.15-18].

Complexity and extension

ANN in \mathbb{R}^d [Arya, Mount et al.]

Let S(n), Q(n) denote space and ANN query time. Ignoring log factors,

$$S(n)Q^2(n) = \Omega^*\left(\frac{n}{\epsilon^{d-1}}\right).$$

Definition (*k*-ANNs)

For pointset P and $0 < \epsilon < 1$, given query point q and $k \in \mathbb{N}^*$, find a sequence $S = [p_1, \cdots, p_k] \subset P$ of distinct points s.t. p_i is an ϵ -ANN of the i-th exact NN of q.

BBD-trees return k-ANN in $O((k + (d/\epsilon)^d) \log n)$. Moreover, if $S' \subseteq P$ are the points visited by the search and $S \subseteq S'$ the k points nearest to q among S', then $\forall x \in P \setminus S'$, $(1 + \epsilon) dist(x, q) > dist(p_k, q)$.

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

2 General Metric spaces

LSH idea

LSH Family

Let $r_1 < r_2$, probabilities $p_1 > p_2$. Function family H is (r_1, r_2, p_1, p_2) -sensitive if, for any points $p \neq q$ and any randomly selected $h \in_R H$:

- if $\operatorname{dist}(p,q) \leq r_1$, then $\operatorname{prob}[h(q) = h(p)] \geq p_1$,
- if $dist(p, q) \ge r_2$, then $prob[h(q) = h(p)] \le p_2$.

 $h \in_R H$: h randomly (uniformly) chosen. Idea: increase collisions of similar strings. Typically $r_2 = c \cdot r_1, \ c > 1$.

Amplification

Hash-table

LSH creates hash-table using amplified hash functions by concatenation:

$$g(p) = [h_1(p) | h_2(p) | \cdots | h_k(p)],$$

where every $h_i \in_R H$ is distributed uniformly (with repetition) in H.

Some h_i may be chosen more than once for a given g or for different g's. Also called AND-amplification.

Lemma

g is (r_1, r_2, p_1^k, p_2^k) -sensitive.

Large $k \Rightarrow$ larger gap between p_1, p_2 . Practical choices are k = 4 to 6.

Construction

Preprocess

- Having defined H and amplified hash-function g:
- Select $L (= n^{\rho})$ hash-functions g_1, \ldots, g_L .
- Initialize L hashtables, hash all points to all tables using g (or ϕ).

Goal: L so that it has $\Theta(1)$ points per bucket.

L is 5 up to function of n, and HashTable size $= \Theta(n)$.

Overall construction is OR-amplification of g: points are "neighbors" if $\exists i$ for which they lie in same bucket.

Lemma

If g is $(r_1, r_2, \delta_1, \delta_2)$ -sensitive, then the overall construction represents a $(r_1, r_2, 1 - (1 - \delta_1)^L, 1 - (1 - \delta)^L)$ -sensitive function.

Range Search

Range (r, c)-Near Neighbor search

```
Input: r, c, query q

for i from 1 to L do

for each item p in bucket g_i(q) do

if \operatorname{dist}(q, p) < cr then output p

end if

end for
```

Decision problem: "return p" instead of "output p".

At end "return FAIL"; also FAIL after threshold on #examined points reached.

NN search

Approximate NN

```
Input: query q
Let b \leftarrow \text{Null}; d_b \leftarrow \infty
for i from 1 to L do
    for each item p in bucket g_i(q) do
        if large #checked items (e.g. > 3L) then return b // threshold
        end if
        if dist(q, p) < d_b then b \leftarrow p; d_b \leftarrow dist(q, p)
        end if
    end for
    return b
end for
```

Theoretical bounds for $c(1+\epsilon)$ -NN by reduction to $((1+\epsilon)^i,c)$ -Neighbor decision problems, $i=1,2,\ldots,\lg_{1+\epsilon}\Delta$.

Analysis of bad events

From the definition, with $p_1 > p_2$: LSH-Defn

$$||p-q|| \ge cr \implies P_g[g(p) = g(q)] \le p_2^k.$$

Set $k = \frac{\log n}{\log(1/p_2)} = \log_{p_2}(1/n)$, then bound exp'd #falsePositives:

$$\mathbb{E}_{g} [\#x : g(x) = g(q), \|x - q\| \ge cr] \le n \cdot p_{2}^{k} = 1.$$

For L hashtables, the expected number of false positives is $\leq L$. Markov's inequality: $\mathrm{P}[X \geq a] \leq \mathbb{E}[X]/a, \ X \geq 0$. Hence, $\mathrm{P}[\# \text{falsePositives} \geq 3L] \leq 1/3$.

Analysis (cont'd)

True positive:

$$\|p-q\| \leq r \implies \mathrm{P}_{g}\left[g(p)=g(q)\right] \geq n^{-\frac{\log(1/p_1)}{\log(1/p_2)}}.$$

Set $\lambda = \frac{\log(1/p_1)}{\log(1/p_2)} < 1$, thus missing probability $\leq 1 - n^{-\lambda}$.

Probability missing one true positive (false negative) in L tables =

$$P_{g_1,...,g_L}\left[\forall i\in[L]:g_i(p)\neq g_i(q)\right]\leq \left(1-\frac{1}{n^\lambda}\right)^L\leq e^{-\frac{L}{n^\lambda}},$$

using $1+x \le \mathrm{e}^x$. Set $L=n^\lambda$, and by union bound over two bad events, the total failure probability $\le \mathrm{P}_1+\mathrm{P}_2=1/3+1/\mathrm{e}$.

The constant probability of success can be amplified to 1-o(1) by building logarithmically many independent data structures.

- ◆□▶◆@▶◆意▶◆意▶ · 意 · かへぐ

Known LSH-able metrics

- Hamming distance,
- ℓ_2 (Euclidean) distance,
- ℓ_1 (Manhattan) distance,
- ℓ_k distance for any $k \in [1, 2)$,
- ℓ_2 distance on a sphere,
- Cosine similarity,
- Jaccard coefficient.

Recall
$$\ell_k$$
 norm: $\operatorname{dist}_{\ell_k}(x,y) = \sqrt[k]{\sum_{i=1}^d |x_i - y_i|^k}.$

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

2 General Metric spaces

Hamming distance

Definition

Given strings x, y of length d, their Hamming distance $d_H(x,y)$ is the number of positions at which x and y differ.

Example

Let x = 10010 and y = 10100. Then, $d_H(x, y) = 2$.

Definition of hash functions

Given
$$x = (x_1, ..., x_d) \in \{0, 1\}^d$$
:

$$H = \{h_i(x) = x_i : i = 1, ..., d\}.$$

Obviously, |H| = d.

Pick uniformly at random $h \in_R H$: Then $prob[h(x) \neq h(y)] = d_H(x,y)/d$,

$$prob[h(x) = h(y)] = 1 - d_H(x, y)/d.$$

Corollary

The family H is $(r_1, r_2, 1 - r_1/d, 1 - r_2/d)$ -sensitive, for $r_1 < r_2$.

LSH in Hamming Space

However probabilities $1 - r_1/d$, $1 - r_2/d$ can be close to each other.

Amplification

Given parameter k, define new family G by concatenation. G is the set of all functions

$$g: \{0,1\}^d \to \{0,1\}^k : g(x) = [h_{i_1}(x) \mid \cdots \mid h_{i_k}(x)],$$

where $h_{i_i} \in_R H$ is uniformly chosen for j = 1, ..., k.

- We must have $L < |G| = d^k$, so as to pick L different g's.
- The range of each g is $[0, 2^k)$, so $k < \lg n$.
- So k may be close to $\lg n 1$ (unlike later cases where k = 4, 5)

Build Hash-tables

Build

```
Pick uniformly at random L functions g_1, \ldots, g_L \in_R G, using h_i \in_R H (chosen uniformly with repetition). 

for i from 1 to L do

Initialize (one-dim) hash-table T_i of size 2^k:

for each p \in P, store p in bucket g_i(p).

end for
```

Complexity

```
Build = O(Lnk) H-function calls, where L \simeq n^{\rho}.
Store n strings = O(dn) bits,
L hashtables and n pointers to strings per table = O(Ln) pointers.
(r,c)-Neighbors: Query = O(L(k+d)), assuming O(1) strings per bucket.
```

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

2 General Metric spaces

Euclidean Space

Recall:
$$dist_{\ell_2}(x, y)^2 = \sum_{i=1}^d (x_i - y_i)^2$$
.

Definition

Let d-vector $v \sim \mathcal{N}(0,1)^d$ have coordinates identically independently distributed (i.i.d.) by the standard normal (next slide). Set "window" $w \in \mathbb{N}^*$ for the entire algorithm, pick single-precision re-

Set "window" $w \in \mathbb{N}^*$ for the entire algorithm, pick single-precision real t uniformly $\in_R [0, w)$. For point $p \in \mathbb{R}^d$, define:

$$h(p) = \lfloor \frac{p \cdot v + t}{w} \rfloor \in \mathbb{Z}.$$

- Essentially project p on line of v, shift by t, partition in cells of length w
- Generally w = 4 is OK but should increase for range queries of large r
- Also k = 4 (but can go up to 10), and L may be 5 (up to 30).

Normal distribution

Vector $v \sim \mathcal{N}(0,1)^d$ has single-precision real coordinates distributed according to the standard normal (Gaussian) distribution:

$$v_i \sim \mathcal{N}(0,1), \quad i=1,2,\ldots,d,$$

with mean $\mu = 0$, variance $\sigma^2 = 1$ (σ is the standard deviation).

The bell curve:

Normal from Uniform

Given uniform generator [Wikipedia]:

• Marsaglia: Use independent uniform $U, V \in_R (-1,1)$, $S = U^2 + V^2$. If S > 1 then start over, otherwise:

$$X = U\sqrt{\frac{-2\ln S}{S}}, \qquad Y = V\sqrt{\frac{-2\ln S}{S}}$$

are independent and standard normally distributed.

The U, V, X, Y are single-precision reals.

Implementation

Given (elementary) hash h_i , set amplified hash $g = [h_1(p)| \cdots | h_k(p)]$. Yields huge table, many empty buckets. Use random linear combination:

Implement a 1-dim hash-table with indexing function:

$$\phi(p) = (r_1h_1(p) + r_2h_2(p) + \cdots + r_kh_k(p) \bmod M) \bmod TableSize,$$

int $r_i \in_R \mathbb{Z}$, prime $M = 2^{32-2}$, TableSize = n/8 (e.g.).

Note ϕ computed in int arithmetic, if all $h_i(p)$, r_i are int (\leq 32 bits). Recall $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$.

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

2 General Metric spaces

LSH for Cosine similarity

Consider \mathbb{R}^d , equipped with cosine similarity of two vectors:

$$\cos(x,y) = \frac{x \cdot y}{\|x\| \cdot \|y\|},$$

which expresses the angle between vectors x, y.

Similarity is inversely proportional of distance: For unit x, y, $dist^2(x, y) = 2 - 2\cos(x, y)$. (not a metric: no triangular ineq.)

For comparing documents or, generally, very long vectors (typically sparse), based on direction only, not length.

Hyperplane LSH

Definition

Let $r_i \sim \mathcal{N}(0,1)^d$, with each real coordinate iid $\mathcal{N}(0,1)^d$. Define

$$h_i(x) = \begin{cases} 1, & \text{if } r_i \cdot x \geq 0 \\ 0, & \text{if } r_i \cdot x < 0 \end{cases}.$$

Then $H = \{h_i(x) \mid \text{ for every } r_i\}$ is a locality sensitive family.

Hyperplane LSH (cont'd)

Intuition

Each r_i is normal to a hyperplane. Two vectors lying on same side of many hyperplanes are very likely similar.

Lemma

Two vectors match with probability proportional to their cosine.

Amplification: Given parameter k, define new family G by concatenation:

$$G = \{g : \mathbb{R}^d \to \{0,1\}^k \mid g(x) = [h_1(x) \mid h_2(x) \mid \cdots \mid h_k(x)]\}.$$

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

2 General Metric spaces

Hash-function

$$\operatorname{dist}_{\ell_1}(x,y) = \sum_{i=1}^d |x_i - y_i|.$$

Consider \mathbb{R}^d , r is the radius of range search. Pick real $w \gg r$ once, then h specified by independent, real, uniformly distributed $s_0, \ldots, s_{d-1} \in_R [0, w)$.

Let
$$x \mapsto a \in \mathbb{Z}^d$$
: $a_i = \left\lfloor \frac{x_i - s_i}{w} \right\rfloor \in \mathbb{Z}, i = 0, 1, \dots, d - 1,$

shifts x by s, then projects to bottom-left corner of its cell in d-dimensional grid of size w.

LSH function for 1-dim hashtable

$$h(x) = a_{d-1} + m \cdot a_{d-2} + \cdots + m^{d-1} \cdot a_0 \mod M \in \mathbb{N},$$

for $\max_i a_i < m < M/2$ for entire algorithm, e.g. $M = 2^{\lfloor 32/k \rfloor}$.

By concatenation, amplified function $g(x) = [h_1(x)|h_2(x)|\cdots|h_k(x)].$

Lemma. (c,r)-Near-Neighbor decided whp: check 3L candidate points, $L=n^{\rho},~\rho=\ln p_1/\ln p_2=1/c+O(r/w)$ [TarsosLSH software]

Outline

- Locality sensitive hashing
 - Hamming space
 - Euclidean space
 - Cosine similarity (Hyperplane LSH)
 - Manhattan distance

Distance Metric

Definition (Distance Metric)

A distance metric $d: D^2 \to \mathbb{R}$ is a function that satisfies:

- Non-negativity: $d(x, y) \ge 0$
- Isolation: $x \neq y \Leftrightarrow d(x,y) > 0$
- Symmetry: d(x, y) = d(y, x)
- Triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$

It follows that d(x,x) = 0, and $|d(x,z) - d(z,y)| \le d(x,y)$.

Example

Distances in vector spaces (e.g. Hamming, Euclidean, Manhattan, any ℓ_k metric) are all distance metrics. Compact (vector) representation allow to compute mean, total order. . .

Distance Based Hashing (DBH)

- LSH needs specific families of LSH functions, so it is not applicable to novel, or not studied, metrics.
- DBH produces hash functions tailored to the space by considering only calls to the distance measure and by making no assumptions about the domain.
- Due to the generality of the method there are no theoretical guarantees

[Athitsos, et al.08]

DBH family of functions

Consider metric space (D, d) and data $P \subset D$. Construct family of functions H that behaves like LSH.

Definition (Line projection)

Given $x_1, x_2 \in P \subset D$ define the line projection function

$$h^{x_1,x_2}:D\to\mathbb{R}:x\mapsto \frac{\mathrm{d}(x,x_1)^2+\mathrm{d}(x_1,x_2)^2-\mathrm{d}(x,x_2)^2}{2\mathrm{d}(x_1,x_2)}.$$

If D is Euclidean, this is the signed length of projecting vector (x_1, x) on line (x_1, x_2) , x_2 lying on the positive axis.

Discretization and balancing

Definition (Discretization)

For hashing, discretize h^{x_1,x_2} by using thresholds $t_1,t_2 \in \mathbb{R} \cup \{\pm \infty\}$:

$$h_{t_1,t_2}^{x_1,x_2}: D \to \{0,1\}: x \mapsto \left\{ \begin{array}{ll} 1, & \textit{if } h^{x_1,x_2}(x) \in [t_1,t_2] \\ 0, & \textit{otherwise} \end{array} \right.$$

The t_1, t_2 should map half the objects of P to 0 and the other half to 1:

Definition (Set of valid thresholds V)

For $x_1, x_2 \in P$, the set of thresholds yielding "balanced" h is

$$V(x_1, x_2) = \{[t_1, t_2] : prob_{x \in P}[h_{t_1, t_2}^{x_1, x_2}(x) = 0] = 1/2\}.$$

Hash functions

Definition

Consider the "balanced" functions

$$H = \{h_{t_1,t_2}^{x_1,x_2} : x_1, x_2 \in P \text{ and } [t_1,t_2] \in V(x_1,x_2) \}.$$

Using random $h_i \in_R H$ we define L hash functions by concatenation

$$g_i(x) = [h_{i1}(x) | h_{i2}(x) | \cdots | h_{ik}(x)], i = 1, \ldots, L.$$

Implement:

- Pick $x_1, x_2 \in_R P$ uniformly among points for which oracle/distance matrix defined; this defines $h^{x_1,x_2}(\cdot)$.
- Evaluate $h^{x_1,x_2}(x) \in \mathbb{R}$ for all $x \in P$ (or a large sample).
- Set $t_1 = \text{median of } \{h^{x_1,x_2}(x) : x \in P\}, \ t_2 = \infty; \text{ or at the } 1/4,3/4 \text{ mark.}$