
Proximity search in high dimensions

Ioannis Psarros

Institute of Computer Science,
University of Bonn

November 5, 2020

Ioannis Psarros November 5, 2020 1 / 39

Outline

1. Introduction

2. When the dimension is constant

3. When the dimension is high

4. When the data are trajectories

Ioannis Psarros November 5, 2020 2 / 39

Outline

1. Introduction

2. When the dimension is constant

3. When the dimension is high

4. When the data are trajectories

Ioannis Psarros November 5, 2020 3 / 39

The main problem

Definition (c-Approximate Nearest Neighbor problem)

Given a finite set P ⊂M, a distance function d(·, ·), and an
approximation factor c > 1, preprocess P into a data structure which
supports the following type of queries:

given q ∈M, find p∗ such that ∀p ∈ P : dM(q, p∗) ≤ c · dM(q, p).

Our focus: M is Rd or {0, 1}d , dM is ‖ · ‖2 or ‖ · ‖1.

Ioannis Psarros November 5, 2020 4 / 39

The main problem

Hopefully the following problem is easier.

Definition ((c , r)-Approximate Near Neighbor (ANN) problem)

Given a finite set P ⊂ Rd , an approximation factor c > 1, and a range
r > 0, preprocess P into a data structure which supports the following
type of queries:
• if ∃p∗ ∈ P s.t. ‖p∗ − q‖ ≤ r , then it returns any point p′ ∈ Rd s.t.
‖p′ − q‖ ≤ c · r ,
• if ∀p ∈ P, ‖p − q‖ > c · r , then report “Fail”.

The data structure returns either a point at distance ≤ c · r or “Fail”.

Ioannis Psarros November 5, 2020 5 / 39

Outline

1. Introduction

2. When the dimension is constant

3. When the dimension is high

4. When the data are trajectories

Ioannis Psarros November 5, 2020 6 / 39

Computational model

Assumption
We assume that every hashing operation takes worst-case O(1) time.

See e.g. Perfect Hashing in CLRS.

Assumption
We use the unit cost RAM model. Every operation on reals in O(1) time,
including b·c.

Ioannis Psarros November 5, 2020 7 / 39

The grid
Gδ is the grid of side-length δ.

Grid in R2.

Ioannis Psarros November 5, 2020 8 / 39

The grid

Store points for point location.

Ioannis Psarros November 5, 2020 9 / 39

The grid

For any x ∈ Rd , we define

gδ(x) =
(⌊x1

δ

⌋
,

⌊x2
δ

⌋
, . . . ,

⌊xd
δ

⌋)
.

Idea: Use gδ(·) as a key; store cells in buckets. Each bucket contains a
linked list of pointers to the points lying in the corresponding cell.

Store a set P of n points in a grid using O(dn) storage.
Queries of the form: “for q ∈ Rd , return a pointer to the list of
points of P which lie in the same cell” in O(d) time.

Ioannis Psarros November 5, 2020 10 / 39

The grid

gδ(·)
Bucket1

...

Bucketm

Point1,
Point2,

...

...

...

...

...

Ioannis Psarros November 5, 2020 11 / 39

ANN data structure-fast query

Improve resolution.

Ioannis Psarros November 5, 2020 12 / 39

ANN data structure-fast query

For each p ∈ P, store a pointer to p in the cells intersecting the ball of radius 1
centered at p.

Ioannis Psarros November 5, 2020 13 / 39

ANN data structure-fast query

To answer a query: compute gδ(q), probe the hash-table.

Ioannis Psarros November 5, 2020 14 / 39

ANN data structure-fast query

How many non-empty cells?

For a set P of n points, we have O(n · Nd
δ) non-empty cells.

In order to achieve 1 + ε approximation, we set δ = ε/
√

d .

For δ = ε/
√

d ,

Nd
δ = O

(1
ε

)d
.

It suffices to bound the volume of a ball of radius 2/δ in Rd :

Nd
δ ≤

vol(©(2))
vol(�(δ)) = vol(©(2/δ))

vol(�(1)) = (2 · Γ(1 + 1/2))d

Γ(1 + d/2) ·
(2
δ

)d
= O

(1
ε

)d
.

Ioannis Psarros November 5, 2020 15 / 39

ANN data structure-efficient space

To answer a query: compute gδ(q), make all necessary probes.

Ioannis Psarros November 5, 2020 16 / 39

Outline

1. Introduction

2. When the dimension is constant

3. When the dimension is high

4. When the data are trajectories

Ioannis Psarros November 5, 2020 17 / 39

Random projections

Idea: Randomly project points to reduce the dimension.

2-stability property
For any vector g of d independent random variables following N(0, 1) and
any vector u ∈ Rd , we have 〈g , u〉 ∼ N(0, ‖u‖2).

Moment generating function of X 2

Let X ∼ N(0, 1). Then if t < 1/2,

E
[
etX2] = 1√

1− 2t
.

Ioannis Psarros November 5, 2020 18 / 39

Random projections

Let G be a matrix of size k × d with elements i.i.d. random variables
following N(0, 1). Sample G and set A := 1√

k G .

Lemma
For any x ∈ Rd and ε < 1/2,

Pr [‖Ax‖ /∈ (1± ε)‖x‖] ≤ 2

e
ε2k

8

Proof
Let ‖x‖ = 1,

Pr
[
‖Ax‖2 ≥ (1 + ε)

] t>0= Pr
[
et‖Ax‖2 ≥ et(1+ε)

]
≤

E
[
et‖Ax‖2

]
et(1+ε)

Ioannis Psarros November 5, 2020 19 / 39

Random projections

Proof (cont.)
But we can use the 2-stability property, to obtain:

E
[
et‖Ax‖2] = E

Xi∼N(0,1)

[
et
∑k

i=1 X2
i

]
=
(

E
X∼N(0,1)

[
etX2])k

=
(1√

1− 2t

)k

So, we have

Pr
[
‖Ax‖2 ≥ (1 + ε)

]
≤
(1√

1− 2t

)k
· e−t(1+ε)

t=ε/(2(1+ε))
≤ e−ε2k/8.

Bounding the probability of having large contraction is similar.

Ioannis Psarros November 5, 2020 20 / 39

Johnson Lindenstrauss lemma

Suppose that we have n points in Rd . What target dimension k is
needed so that all pairwise distances are approximately preserved?

Mapping A is linear. We have
(n

2
)

vectors, so the probability that there
exists one which is arbitrarily distorted is:(

n
2

)
· Pr [‖Ax‖ /∈ (1± ε)‖x‖] ≤

(
n
2

)
· 2

e
ε2k

8

.

So there exists k = O(ε−2 log n) such that all distances are approximately
preserved.

Ioannis Psarros November 5, 2020 21 / 39

ANN data structure

Fast query time.

Randomly project points, then use the grid.
• Space: nO(1/ε2) +O(dn)
• Query: O(d)

Efficient space.

• Space: O(dn)
• Query: nO(1/ε2))

Ioannis Psarros November 5, 2020 22 / 39

ANN data structure

Fast query time.

Randomly project points, then use the grid.
• Space: nO(1/ε2) +O(dn)
• Query: O(d)

Efficient space.

• Space: O(dn)
• Query: nO(1/ε2))

Ioannis Psarros November 5, 2020 23 / 39

Random projections with false positives

Idea: Further reduce the dimension, check more candidate points.

When we project to dimension k, the expected number of false pos-
itives

n · 2

e
ε2k

8

.

In the randomly projected space, check at most m ≈ n · 2

e
ε2k

8
points.

Query time:

O
(1
ε

)k
+ n · 2

e
ε2k

8

= n1−O(ε2/ log(1/ε)).

Ioannis Psarros November 5, 2020 24 / 39

Locality sensitive hashing

Definition
Let reals r1 < r2 and p1 > p2 > 0. We call a family F of hash functions
(p1, p2, r1, r2)-sensitive for a metric space M if, for any x , y ∈M, and h
distributed randomly in F , it holds:
• dM(x , y) ≤ r1 =⇒ Pr [h(x) = h(y)] ≥ p1,

• dM(x , y) ≥ r2 =⇒ Pr [h(x) = h(y)] ≤ p2.

We will now focus on the Hamming space ({0, 1}d , ‖ · ‖1).

Ioannis Psarros November 5, 2020 25 / 39

Locality sensitive hashing

For any x = (x1, . . . , xd) ∈ {0, 1}d , hi (x) = xi .

H = {hi | ∀i ∈ [d]}.

Pick uniformly at random h ∈ H. Then

Pr[h(x) = h(y)] = 1− ‖x − y‖1
d .

The family H is (r , cr , 1− r
d , 1−

cr
d)-sensitive, where r > 0, c > 1.

However the probability of having a false positive is quite large.

Ioannis Psarros November 5, 2020 26 / 39

Locality sensitive hashing

Define new family G(H) := Hk .

Preprocessing:
1. Pick uniformly at random L functions g1, . . . , gL ∈ G(H)
2. For each p ∈ P, assign p in bucket with key gi (p)

Query:
1. For each i = 1, . . . , L:

1 for each p in bucket gi (q):
1 if number of retrieved points > 3L then return “no”
2 if ‖q − p‖1 < cr then return p

Space usage: O(Ln + dn).
Query time: O(L(k + d)).

Ioannis Psarros November 5, 2020 27 / 39

Locality sensitive hashing

Let p1 = 1− r
d , p2 = 1− cr

d .
The probability of having a false positive:

Pr[gi (p) = gi (q) | ‖p − q‖1 ≥ cr] ≤
(

1− cr
d

)k
= 1

n

for k = log1/p2 n. So the total number of expected false positives:

L · n · 1
n = L,

And by Markov’s inequality, the probability that the number of false
positives exceeds 3L is at most 1/3.

Ioannis Psarros November 5, 2020 28 / 39

Locality sensitive hashing

The probability of finding a near neighbor in one hashtable is(
1− r

d

)k
= 1

n
log(1/p1)
log(1/p2)

.

So the probability of not finding it in the L hashtables:(
1− 1

n
log(1/p1)
log(1/p2)

)L

= 1
e ,

for L = n
log(1/p1)
log(1/p2) ≤ n

1
1+ε .

Ioannis Psarros November 5, 2020 29 / 39

Outline

1. Introduction

2. When the dimension is constant

3. When the dimension is high

4. When the data are trajectories

Ioannis Psarros November 5, 2020 30 / 39

Discrete Fréchet Distance

What is a polygonal curve?
A sequence of vertices v1, . . . , vm in Rd , with edges v1v2, v2v3, . . . vm−1vm.

Why curves?
Trajectories, data from mobiles, GPS sensors, video analysis etc.

Ioannis Psarros November 5, 2020 31 / 39

Discrete Fréchet Distance

Definition (Traversal)
Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , a traversal
T = (i1, j1), . . . , (it , jt) is a sequence of pairs of indices s.t.:

1. i1, j1 = 1, it = m1, jt = m2.
2. ∀(ik , jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.
3. ∀(ik , jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.

Ioannis Psarros November 5, 2020 32 / 39

Discrete Fréchet Distance

Starting position

Ioannis Psarros November 5, 2020 33 / 39

Discrete Fréchet Distance

1st jump

Ioannis Psarros November 5, 2020 34 / 39

Discrete Fréchet Distance

2nd jump

Ioannis Psarros November 5, 2020 35 / 39

Discrete Fréchet Distance

Final position

Ioannis Psarros November 5, 2020 36 / 39

Discrete Fréchet Distance

Definition (Discrete Fréchet Distance)

Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , we define the
discrete Fréchet distance between V and U as the following function:

ddF (V ,U) = min
T∈T

max
(ik ,jk)∈T

‖vik − ujk‖,

where T denotes the set of all possible traversals for V and U.

Ioannis Psarros November 5, 2020 37 / 39

Data structure

p1

p2

q1

q2
p3

Enumerate candidate query sequences. How many?

Ioannis Psarros November 5, 2020 38 / 39

Data structure

Each polygonal curve has at most m vertices.
Enumerate all possible (approximate) query sequences: use the m · Nd

δ

near points.
Naive upper bound:

mm · O
(1
ε

)dm

candidate curves.

Better bound possible if we take into account the ordering of the vertices.

Ioannis Psarros November 5, 2020 39 / 39

	Introduction
	When the dimension is constant
	When the dimension is high
	When the data are trajectories

