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The main problem

Definition (c-Approximate Nearest Neighbor problem)

Given a finite set P ⊂M, a distance function d(·, ·), and an
approximation factor c > 1, preprocess P into a data structure which
supports the following type of queries:

given q ∈M, find p∗ such that ∀p ∈ P : dM(q, p∗) ≤ c · dM(q, p).

Our focus: M is Rd or {0, 1}d , dM is ‖ · ‖2 or ‖ · ‖1.

Ioannis Psarros November 5, 2020 4 / 39



The main problem

Hopefully the following problem is easier.

Definition ((c , r)-Approximate Near Neighbor (ANN) problem)

Given a finite set P ⊂ Rd , an approximation factor c > 1, and a range
r > 0, preprocess P into a data structure which supports the following
type of queries:
• if ∃p∗ ∈ P s.t. ‖p∗ − q‖ ≤ r , then it returns any point p′ ∈ Rd s.t.
‖p′ − q‖ ≤ c · r ,
• if ∀p ∈ P, ‖p − q‖ > c · r , then report “Fail”.

The data structure returns either a point at distance ≤ c · r or “Fail”.
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Computational model

Assumption
We assume that every hashing operation takes worst-case O(1) time.

See e.g. Perfect Hashing in CLRS.

Assumption
We use the unit cost RAM model. Every operation on reals in O(1) time,
including b·c.
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The grid
Gδ is the grid of side-length δ.

Grid in R2.
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The grid

Store points for point location.
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The grid

For any x ∈ Rd , we define

gδ(x) =
(⌊x1

δ

⌋
,

⌊x2
δ

⌋
, . . . ,

⌊xd
δ

⌋)
.

Idea: Use gδ(·) as a key; store cells in buckets. Each bucket contains a
linked list of pointers to the points lying in the corresponding cell.

Store a set P of n points in a grid using O(dn) storage.
Queries of the form: “for q ∈ Rd , return a pointer to the list of
points of P which lie in the same cell” in O(d) time.
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The grid

gδ(·)
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ANN data structure-fast query

Improve resolution.
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ANN data structure-fast query

For each p ∈ P, store a pointer to p in the cells intersecting the ball of radius 1
centered at p.
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ANN data structure-fast query

To answer a query: compute gδ(q), probe the hash-table.
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ANN data structure-fast query

How many non-empty cells?

For a set P of n points, we have O(n · Nd
δ ) non-empty cells.

In order to achieve 1 + ε approximation, we set δ = ε/
√

d .

For δ = ε/
√

d ,

Nd
δ = O

(1
ε

)d
.

It suffices to bound the volume of a ball of radius 2/δ in Rd :

Nd
δ ≤

vol(©(2))
vol(�(δ)) = vol(©(2/δ))

vol(�(1)) = (2 · Γ(1 + 1/2))d

Γ(1 + d/2) ·
(2
δ

)d
= O

(1
ε

)d
.
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ANN data structure-efficient space

To answer a query: compute gδ(q), make all necessary probes.
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Random projections

Idea: Randomly project points to reduce the dimension.

2-stability property
For any vector g of d independent random variables following N(0, 1) and
any vector u ∈ Rd , we have 〈g , u〉 ∼ N(0, ‖u‖2).

Moment generating function of X 2

Let X ∼ N(0, 1). Then if t < 1/2,

E
[
etX2] = 1√

1− 2t
.
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Random projections

Let G be a matrix of size k × d with elements i.i.d. random variables
following N(0, 1). Sample G and set A := 1√

k G .

Lemma
For any x ∈ Rd and ε < 1/2,

Pr [‖Ax‖ /∈ (1± ε)‖x‖] ≤ 2

e
ε2k

8

Proof
Let ‖x‖ = 1,

Pr
[
‖Ax‖2 ≥ (1 + ε)

] t>0= Pr
[
et‖Ax‖2 ≥ et(1+ε)

]
≤

E
[
et‖Ax‖2

]
et(1+ε)
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Random projections

Proof (cont.)
But we can use the 2-stability property, to obtain:

E
[
et‖Ax‖2] = E

Xi∼N(0,1)

[
et
∑k

i=1 X2
i

]
=
(

E
X∼N(0,1)

[
etX2])k

=
( 1√

1− 2t

)k

So, we have

Pr
[
‖Ax‖2 ≥ (1 + ε)

]
≤
( 1√

1− 2t

)k
· e−t(1+ε)

t=ε/(2(1+ε))
≤ e−ε2k/8.

Bounding the probability of having large contraction is similar.
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Johnson Lindenstrauss lemma

Suppose that we have n points in Rd . What target dimension k is
needed so that all pairwise distances are approximately preserved?

Mapping A is linear. We have
(n

2
)

vectors, so the probability that there
exists one which is arbitrarily distorted is:(

n
2

)
· Pr [‖Ax‖ /∈ (1± ε)‖x‖] ≤

(
n
2

)
· 2

e
ε2k

8

.

So there exists k = O(ε−2 log n) such that all distances are approximately
preserved.

Ioannis Psarros November 5, 2020 21 / 39



ANN data structure

Fast query time.

Randomly project points, then use the grid.
• Space: nO(1/ε2) +O(dn)
• Query: O(d)

Efficient space.

• Space: O(dn)
• Query: nO(1/ε2))
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Random projections with false positives

Idea: Further reduce the dimension, check more candidate points.

When we project to dimension k, the expected number of false pos-
itives

n · 2

e
ε2k

8

.

In the randomly projected space, check at most m ≈ n · 2

e
ε2k

8
points.

Query time:

O
(1
ε

)k
+ n · 2

e
ε2k

8

= n1−O(ε2/ log(1/ε)).
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Locality sensitive hashing

Definition
Let reals r1 < r2 and p1 > p2 > 0. We call a family F of hash functions
(p1, p2, r1, r2)-sensitive for a metric space M if, for any x , y ∈M, and h
distributed randomly in F , it holds:
• dM(x , y) ≤ r1 =⇒ Pr [h(x) = h(y)] ≥ p1,

• dM(x , y) ≥ r2 =⇒ Pr [h(x) = h(y)] ≤ p2.

We will now focus on the Hamming space ({0, 1}d , ‖ · ‖1).
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Locality sensitive hashing

For any x = (x1, . . . , xd ) ∈ {0, 1}d , hi (x) = xi .

H = {hi | ∀i ∈ [d ]}.

Pick uniformly at random h ∈ H. Then

Pr[h(x) = h(y)] = 1− ‖x − y‖1
d .

The family H is (r , cr , 1− r
d , 1−

cr
d )-sensitive, where r > 0, c > 1.

However the probability of having a false positive is quite large.
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Locality sensitive hashing

Define new family G(H) := Hk .

Preprocessing:
1. Pick uniformly at random L functions g1, . . . , gL ∈ G(H)
2. For each p ∈ P, assign p in bucket with key gi (p)

Query:
1. For each i = 1, . . . , L:

1 for each p in bucket gi (q):
1 if number of retrieved points > 3L then return “no”
2 if ‖q − p‖1 < cr then return p

Space usage: O(Ln + dn).
Query time: O(L(k + d)).
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Locality sensitive hashing

Let p1 = 1− r
d , p2 = 1− cr

d .
The probability of having a false positive:

Pr[gi (p) = gi (q) | ‖p − q‖1 ≥ cr ] ≤
(

1− cr
d

)k
= 1

n

for k = log1/p2 n. So the total number of expected false positives:

L · n · 1
n = L,

And by Markov’s inequality, the probability that the number of false
positives exceeds 3L is at most 1/3.
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Locality sensitive hashing

The probability of finding a near neighbor in one hashtable is(
1− r

d

)k
= 1

n
log(1/p1)
log(1/p2)

.

So the probability of not finding it in the L hashtables:(
1− 1

n
log(1/p1)
log(1/p2)

)L

= 1
e ,

for L = n
log(1/p1)
log(1/p2) ≤ n

1
1+ε .
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Discrete Fréchet Distance

What is a polygonal curve?
A sequence of vertices v1, . . . , vm in Rd , with edges v1v2, v2v3, . . . vm−1vm.

Why curves?
Trajectories, data from mobiles, GPS sensors, video analysis etc.
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Discrete Fréchet Distance

Definition (Traversal)
Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , a traversal
T = (i1, j1), . . . , (it , jt) is a sequence of pairs of indices s.t.:

1. i1, j1 = 1, it = m1, jt = m2.
2. ∀(ik , jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.
3. ∀(ik , jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.
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Discrete Fréchet Distance

Starting position
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Discrete Fréchet Distance

1st jump
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Discrete Fréchet Distance

2nd jump
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Discrete Fréchet Distance

Final position
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Discrete Fréchet Distance

Definition (Discrete Fréchet Distance)

Given polygonal curves V = v1, . . . , vm1 , U = u1, . . . , um2 , we define the
discrete Fréchet distance between V and U as the following function:

ddF (V ,U) = min
T∈T

max
(ik ,jk)∈T

‖vik − ujk‖,

where T denotes the set of all possible traversals for V and U.
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Data structure

p1

p2

q1

q2
p3

Enumerate candidate query sequences. How many?
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Data structure

Each polygonal curve has at most m vertices.
Enumerate all possible (approximate) query sequences: use the m · Nd

δ

near points.
Naive upper bound:

mm · O
(1
ε

)dm

candidate curves.

Better bound possible if we take into account the ordering of the vertices.
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