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We represent a distribution Q with a Probability Density Function
(PDF) π(x), x ∈ K , where K is the support of π(x).

The support is the subset of Rn which π(x) does not map to zero.

Here the support is the polytope P and the distribution Q is the uniform
distribution over P, i.e. π(x) = 1/vol(P).
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When a random variable follows X a distribution Q with PDF π(x)
then,

Pr[X ∈ A] = Q(A) =

∫
A
π(x)dx , where A ⊆ K .∫

K π(x)dx = 1.

A function f : Rd → R+ induces a PDF π(x) ∝ f (x) when there is
(possibly unknown) normalizing constant C such that π(x) = f (x)/C .

f (x) = e−x2/2σ2

When π(x) ∝ f (x) we say that π(x) is proportional to f (x).
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Uniform Sampling from the hypersphere

To sample uniformly from the boundary of a hypersphere with radius r :

1. Sample d numbers g1, . . . , gd from N (0, 1).
2. The point v = r(g1, . . . , gd)/

√∑
g2
i is uniformly distributed on the

surface of the d-dimensional hypersphere with radius r and centered at
the origin.

To sample uniformly from the interior of a hypersphere with radius r :
1. Sample a point v ∼ U(∂Bd) and u ∼ U(0, 1).
2. The point p = ru1/dv is uniformly distributed in the interior of the

hypersphere with radius r and centered at the origin.

To pick a random direction through point p ∈ Rd we sample from the
surface of a hypersphere centered at p.
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Uniform Sampling from the simplex

1. [Smith and Tromble’04]:
Generate distinct: x0 < x1 < · · · < xd+1 ∈ N∗. Return y :

yi =
xi − xi−1

M
, i = 1, . . . , d + 1. M: largest integer.

To guarantee distinct choice we use a variation of Bloom filter.
Sampling one point takes O(d log d).

2. [Rubinstein and Melamed’98]:
Generate independent unit-exponential random variables, X1, · · · ,Xd+1.
Return Y ∈ Rd+1: Yi = Xi/

∑d+1
i=1 Xi .

Sampling one point takes O(d).
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Monte Carlo integration

The problem is the computation of a multidimensional definite integral,

I =

∫
P
f (x)dx

Given x1, . . . ,xN uniformly distributed samples from P,

RN = V
1

N

N∑
i=1

f (xi ), V = vol(P) =

∫
P
dx

Then limN→∞ RN = I

In general for E[f (x)] =
∫
P f (x)πP(x)dx sample N i.i.d. points from

πP and E[f (x)] ≈ 1
N

∑N
i=1 f (xi ).
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Volume
Some easy cases

Some elementary polytopes have determinantal formulas.

∣∣∣∣∣∣
1 2 1
3 6 1
6 1 1

∣∣∣∣∣∣ /2! = 11

∣∣∣∣2 5
4 0

∣∣∣∣ = 20
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Optimization

Problem: Minimize a linear function f (x) = c · x in body K .

Answer: Sample from πT (x) ∝ e−c·x/T , for T = T0 > · · · > TI .

T0 T1 T2 T3

A sample from πTI
is ε-close to the optimal solution with high

probability.

Apostolos Chalkis (Athens, Greece) Geometric Data analysis Autumn 2020 13 / 67



Outline

1 Introduction
Introductory Notions
Exact sampling

2 MCMC sampling
Motivation
Sampling algorithms
MCMC Diagnostics

3 Software

4 Volume approximation
Reduction to Multiphase Monte Carlo
Simulated annealing for cooling convex bodies

5 Optimization
Cutting planes
Simulated Annealing

Apostolos Chalkis (Athens, Greece) Geometric Data analysis Autumn 2020 14 / 67



Acceptance-rejection sampling

Let π(x) = f (x)/C , x ∈ Rd , where f (x) is an unnormalized density
and C ∈ R a normalizing constant.

Let h(x) a PDF that can be simulated by some known method and
f (x) ≤ kh(x), where k ∈ R is a constant.

To obtain a random variate from π(x),

1. Generate a candidate Z from h(x) and a value u from U(0, 1), the
uniform distribution on (0, 1).

2. If u ≤ f (Z )/kh(Z ) return Z.

3. Otherwise goto 1.
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Acceptance-rejection sampling
Drawbacks

Sampling/rejections techniques (sample from bounding box) fail in
high dimensions

vol(unitball)
vol(unitcube) = O((1/d)d)
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Markov Chain Monte Carlo sampling

A MCMC sampling algorithm is applied on a continuous state space
K ⊆ Rd . The algorithm,

Starts at a point x0 ∈ K .

When being at the point xi moves to the next point xi+1 according to
a transition kernel px(A).

The transition kernel of a MCMC algorithm gives the probability to
jump from x to a set A ⊆ K .

For example px(K ) = 1.
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Markov Chain Monte Carlo sampling

To sample from a density π(x) define a random walk on a continuous state
space with a transition kernel px(A) such that,

1. [Convergence] ∫
P
px(A)π(x)dx =

∫
A
π(y)dy

Then π(x) is called target density.

2. [Uniqueness] limn→∞ pnx (A) =
∫
A π(y)dy , where

pnx (A) =

∫
P
pn−1
x (y)py (A)dy ,

the transition kernel of the n-th iteration.

[Understanding the Metropolis-Hastings Algorithm, ’95].
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Ball walk

Ball Walk(P, p, δ, f ): Polytope P ⊂ Rd , point p ∈ P, radius δ, f :
Rd → R+

1. Pick a uniform random point x from the ball of radius δ centered
at p

2. return x with probability min

{
1, f (x)f (p)

}
; return p with the

remaining probability.

B

p

q

When the density is not restricted to a body then the algorithm is
known as the Metropolis-Hastings algorithm.

Task: write the pseudocode for the special case of uniform sampling.
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Hit-and-Run

Hit and Run(P, p, f ): Polytope P ⊂ Rd , point p ∈ P, f : Rd → R+

1. Pick a line ` through p.

2. return a random point on the chord ` ∩ P chosen from the
distribution π`,f restricted in P.

`

p

q

`

p q

When the density is not restricted to a body then the algorithm
samples from π`,f .

Task: write the pseudocode for the special case of uniform sampling.

Q: How can we compute the ` ∩ P?
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Billiard walk - Uniform case

BW(P, pi , τ,R) [Polyak’14]

1. Generate the length of the trajectory L = −τ lnη, η ∼ U(0, 1).

2. Pick a uniform direction v to define the trajectory.

3. When the trajectory meets a boundary with internal normal s, ||s || = 1,
the direction is changed as v ← v − 2 < v , s > s.

4. return the end of the trajectory as pi+1. If the number of reflections
exceeds R return pi+1 = pi .
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Uniform sampling from the hypercube [−1, 1]200 and projection to R3.

Rows: Ball Walk, Coordinate Directions Hit and Run, Random
Directions Hit and Run, Billiard Walk.

Columns: walk length, {1, 50, 100, 150, 200}
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Limitations of BW and HnR

Their mixing time is O∗(d3) for log-concave distributions.

Their performance is crucially affected by the starting point.

Typically a warm start is required. A distribution S is said to be
M-warm with respect to the distribution Q if,

M = sup
A∈P

S(A)

Q(A)

They perform better when the distribution is (approximately) isotropic.
A distribution Q is said to be isotropic if

EQ [X ] = 0, and EQ [XX
T ] = Id
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Limitations of BW and HnR

They spend many steps around the mode of the distribution.

Consider the spherical Gaussian centered at the origin with σ2 = 0.1.

The mode of the PDF in two dimensions it is 1/9 and in three
dimensions it is only 1/27 of the volume of the cube.

Q: In 20 dimensions?
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Typical set

The problem that motivates us is to compute the expectation of a
function f , say Eπ[f ], which reduces to the integral,

Eπ[f ] =
∫
P
f (x)π(x)dx (1)

In high dimensions a probability density, π(x), will concentrate around
its mode (local maximum of π(x)).

Contributions to the expectation are determined by the product of
density and volume, π(x)dx .

The points with dominant contribution to (1) concentrate in a
neighborhood called the typical set.
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Typical set

We can interpret the mode of the target density as a massive planet
and the gradient of the target density as that planet’s gravitational
field.

The typical set becomes the space around the planet through which we
want a satellite to orbit .
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Hamiltonian Monte Carlo

HMC defines trajectories that guide the walk inside the typical set.

The choice of the derivative of π(x) at the current point p of the walk
would be wrong as it points directly towards its mode.

The Hamiltonian dynamics behind HMC operate on a position vector p
and a velocity v.
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Hamiltonian Monte Carlo

The system is described by a function of p and v known as the
Hamiltonian,

H(p,v) = U(p) + K (v) = − log(π(p)) +
1

2
|v|2.

To sample from π, one has to solve the following system of Ordinary
Differential Equations (ODE):

dp

dt
=
∂H(p,v)

∂v
dv

dt
= −

∂H(p,v)

∂p

⇒


dp(t)
dt = v(t)

dv(t)
dt = ∇ log(π(p))

(2)
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Hamiltonian Monte Carlo

When the density is restricted in a Polytope P then HMC walks on
trajectories inside P.
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MCMC Convergence Diagnostics

How can we evaluate the quality of a sample obtained by a random walk?

[Convergence diagnostics for Markov chain Monte Carlo, Vivekananda
Roy, ’19].

[Revisiting the Gelman-Rubin Diagnostic, Dootika Vats, Christina
Knudson, ’20].

A MCMC convergence diagnostic can also be used as a termination criterion
for sampling.
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Package volesti

open source, written in C++

https://github.com/GeomScale/volume_approximation

R package in CRAN

https://CRAN.R-project.org/package=volesti.

Python interface.

since 2018.
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Problem currently soon description

volume computation X
8 algo. / thousands

of dimensions / fastest
practical estimation

sampling distributions

uniform / gaussian/ Exp X
4 algo. / thousands

of dimensions

log-concave densities X
HMC /

Langevin Diffusion

convex optimization
Semidefinite

X
beating SDPA /

Programming working to improve

Linear
X

goal: best
Programming open source

multivariate integration
simple MC

X
hundreds

integration of dimensions

importance
X

goal: best open
sampling source approximation

Preprocessing X
3 rounding algo. /

4 MCMC diagnostics
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GeomScale/volesti on Google Summer of Code 2020
Mentoring organization

https://geomscale.github.io/

https://summerofcode.withgoogle.com/organizations/5673184117915648/

Three student projects this year:

1. Sampling log-concave densities.

2. Convex optimization.

3. Uniform sampling / metabolic networks in biology.

Apostolos Chalkis (Athens, Greece) Geometric Data analysis Autumn 2020 40 / 67

https://geomscale.github.io/
https://summerofcode.withgoogle.com/organizations/5673184117915648/


Stan & cobra

stan is a platform for statistical modeling.

Provides HMC implementations.

https://mc-stan.org/.

cobra is the state-of-the-art package for the analysis of metabolic
networks.

Provides three random walks for uniform / Gaussian sampling from
convex polytopes.

https://github.com/opencobra.
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Volume
Complexity

Computing the exact volume of P,

is #P-hard for all the representations [DyerFrieze’88]

is open if both H- and V- representations available

is APX-hard (oracle model) [Elekes’86]
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Randomized approximation algorithms
Multiphase Monte Carlo

Theorem

[Dyer, Frieze, Kannan’91] For any convex body P and any 0 ≤ ε, δ ≤ 1,
there is a randomized algorithm which computes an estimate V s.t. with
probability 1 − δ we have (1 − ε)vol(P) ≤ V ≤ (1 + ε)vol(P), and the
number of oracle calls is poly(d , 1/ε, log(1/δ)).

Using randomness, we can go from an exponential approximation to an
arbitrarily small one.
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Multiphase Monte Carlo

Let a sequence of functions {f0, . . . , fm}, fi : Rd → R. Then,

vol(P) =

∫
P
dx =

∫
P
fm(x)dx

∫
P fm−1(x)dx∫
P fm(x)dx

· · ·
∫
P f0(x)dx∫
P f1(x)dx

∫
P dx∫

P f0(x)dx

Then select fi s.t.,

The number of phases, m, is as small as possible.

Each integral ratio can be efficiently estimated by sampling from
π ∝ fi restricted to P (using geometric random walks).

There is a closed formula for
∫
P fm(x)dx .

complexity = #phases × #points per phase × cost per point
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State-of-the-art

Authors-Year
Complexity

fi random walk
(oracle calls)

[Dyer, Frieze, Kannan’91] O∗(d23)
Indicator function

grid walk
of a ball

[Kannan, Lovasz, Simonovits’97] O∗(d5)
Indicator function

ball walk
of a ball

[Lovasz, Vempala’03] O∗(d4) Exponential hit-and-run
[Cousins, Vempala’15] O∗(d3) Spherical Gaussians ball walk

Can not be implemented as they are due to large constants in the
complexity and pessimistic theoretical bounds.

Practical algorithms:

Follow theory but make practical adjustments (experimental).

[Emiris, Fisikopoulos’14] Sequence of balls + coordinate hit-and-run.

[Cousins, Vempala’16] Spherical Gaussians + hit-and-run
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Contributions

Multiphase Monte Carlo algorithm with statistical tests.

Sequence of scaled copies of any convex body (generalization of
sequence of balls).

Faster practical algorithm for zonotopes and V-polytopes besides
H-polytopes. Performs computations in:

thousands of dimensions for H-polytopes in few hours.
100 dimensions for zonotopes and V-polytopes in ≤ 1hour.
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Multiphase Monte Carlo

Let Cm ⊆ · · · ⊆ C1 a sequence of concentric balls intersecting P, s.t.
Cm ⊆ P ⊆ C1.

Construct a sequence of balls intersecting P, then:

vol(P) = vol(P ∩ Cm)
vol(P ∩ Cm−1)

vol(P ∩ Cm)
· · · vol(P ∩ C1)

vol(P ∩ C2)

vol(P)

vol(P ∩ C1)
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Ratio estimation

Estimate ri =
vol(P∩Ci+1)

vol(P∩Ci )
within some target relative error εi .

Sample N uniform points from Pi = Ci ∩ P and count points in
Pi+1 = Ci+1 ∩ P ⊆ Pi .

Keep each ratio bounded, then N = O(1/ε2i ) points suffices.
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Keep ri bounded
Statistical test

Given convex bodies P1 ⊇ P2, we define two statistical tests:

[U-test(P1,P2)] H0: vol(P2)/vol(P1) ≥ r + δ
[L-test (P1,P2)] H0: vol(P2)/vol(P1) ≤ r

The U-test and L-test are successful iff both H0 are rejected.

If both U-test and L-test are successful then
ri = vol(Pi+1)/vol(Pi ) ∈ [r , r + δ], with high probability.
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How to fix the sequence of balls

Let Cd the unit ball. Given Ci = qiCd , Cm = qmCm, with qi > qm,

Problem: Compute a new ball Ci+1 with radius qm < qi+1 < qi ,

s.t. vol(P∩Ci+1)

vol(P∩Ci )
∈ [r , r + δ].

Answer: binary search to compute qi+1 ∈ [qm, qi ] until both
U-test(P ∩ Ci ,P ∩ Ci+1) and L-test(P ∩ Ci ,P ∩ Ci+1)
are successful.

Set Ci ← Ci+1, m← m + 1 and repeat.
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Bound #phases

Our algorithm terminates with constant probability.

Bound the probability that the construction of the sequence of bodies in
MMC fails.

#phases m = O

(
log(vol(P)/vol(P ∩ Cm))

)
.

If the body we use in MMC is a good fit to P the vol(P ∩ Cm)
increases and the number of phases m decreases.
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Use any body in MMC
MMC for zonotopes

Use the generators of a zonotope P to define a centrally symmetric
H-polytope that is a good fit to P.

r = 0.8, r + δ = 0.85. #phases: Left m = 5. Right m = 1.
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Comparison with other software
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Problem

Given P a convex body in Rn:

minimize a convex function f in P (convex optimization).

Goal: Randomized approximation algorithms based on sampling from P
with geometric random walks.
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Convex optimization - Special cases
Linear program

The objective function is linear f (x) = c · x.

The body is given as an intersection of m half-spaces.

H-polytope : P = {x | Ax ≤ b, A ∈ Rm×n, b ∈ Rm}
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Convex optimization - Special cases
Semidefinite program

The objective function is linear f (x) = c · x.

The body is given as a Linear Matrix Inequality (LMI).

Spectrahedron : P = {x | A0 + x1A1 + · · ·+ xdAd � 0},
where Ai : symmetric matrices, B � 0: B is positive
semidefinite
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Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

Input: convex body K , objective function c.

Sample N points under the uniform distribution.

Find the point x minimizing the objective function.

Cut the convex body at x .

Repeat I times.
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Cutting planes

Let rBd ⊆ K ⊆ RBd .

The expected number of phases s.t. |fI − f ∗| < ε is,

I =

⌈
1

ln(N + 1)
d ln(R/ε)

⌉
= O∗(d)

Total number of uniform points minimized for N = 1.

Total cost, ⌈
d ln(R/ε)

⌉
× cost per point
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Exponential sampling and Simulated Annealing
Kalai, Vempala, 06’

Problem: Minimize a linear function f (x) = c · x in body K .

Answer: Sample from πT (x) ∝ e−c·x/T , for T = T0 > · · · > TI .

T0 T1 T2 T3

A sample from πTI
is ε-close to the optimal solution with high

probability.
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Simulated Annealing
Fix the sequence of Temperatures

T0 T1 T2 T3

The sequence T0 > · · · > TI is fixed s.t. the L2 norm of πTi
w.r.t.

πTi+1
is bounded by a constant,

||πTi
/πTi+1

|| = EπTi

[
dπTi

dπTi+1

]
=

∫
K

πTi
(x)

πT i+1(x)
πTi

(x)dx = O(1)

Then πTi
is a warm start for πTi+1

(Hit-and-Run).
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Simulated Annealing
Convergence to the optimal solution

Starting with T0 = R (uniform distribution is a warm start).

Set Ti = T0(1 − 1√
d
)i , i = 1, . . . , I (Ti is a warm start for Ti+1).

Knowing that for a temp. T ,

EπT [c · x] ≤ dT + min
x∈K

c · x

I = O∗(
√
d) phases suffices to obtain a solution |fI − f ∗| ≤ ε.

No sequence of distributions ∝ fi (c · x) can, in general, solve the
problem in less than Ω(

√
d) phases.
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