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The ROCK (RObust Clustering using linKs) algorithm

It is best suited for nominal (categorical) features.

» Some preliminaries
* Two points x, ye X are considered neighbors if s(x,y) > 68, where s(.) is
a similarity function and 6 a user-defined similarity threshold between
two vectors (0 < s(x,y) < 1 and, consequently, 0 <6 < 1).

* link(x,y) is the number of common neighbors between x andy.
°0 — Y
In the graph whose vertices correspond to data points and
edges connect neighboring points, link(x,y) is the number

of distinct paths of length 2 that connect X,
—

» Assumption: There exists a function f(6) (< 1) such that:

“Each point assigned to a cluster C; has approximately n;’ ®) neighbors in
C; (n; is the number of points in C;)”

It can be proved that the expected total number of links among all pairs

in C. icn.11t2f(0)
in Cl‘Is n; . 5 émk(c) = z E mk(x y) ;,

= XEC; YyEC; A




The ROCK (RObust Clustering using linKs) algorithm

» ROCK is a special case of GAS where
eThe closeness between two clusters is defined as

ék(g,c) z E link(%,y)
—o = XEC;YEC; A

lile(Ci, C])

C., C =
9(Ci. ) (n + 1) T @ 1420) _ 14250

The denominator is the expected total number of links between the two
clusters.
The larger the g(+), the more similar the clusters (; and (; are.

» The stopping criterion is:
ethe number of clusters becomes equal to a predefined number m or

. link(Ci, Cj) = 0 for every pair in a clustering 9.

» Time complexity for ROCK: Similar to CURE for large N.
» Prohibitive for very large data sets.
» Solution: Adoption of random sampling techniques.




The ROCK (RObust Clustering using linKs) algorithm

» ROCK utilizing Random Sampling
e|dentification of clusters

—Select a subset X” of X via random sampling
—Run the original ROCK algorithm on X~
e Assignment of points to clusters
—For each cluster (; select a set L; of n;, points
—ForeachzeX — X~
oCompute ¢; = N;/(n;, + 1)7®), where N; is the no of neighbors of z in L;.
0Assign z to the cluster with the maximum t;.

Remarks:
*A choicefor f(0)is f(0) = (1 —6)/(1+ 0), with (8 < 1).

e f(0) depends on the data set and the type of clusters we are interested in.

e The hypothesis about the existence of f (@) is very strong. It may lead to poor
results if the data do not satisfy it.

e [t can be used for discrete-valued data sets.



The ROCK (RObust Clustering using linKs) algorithm

An application:
eGrouping the customers of supermarket according to their purchases.
eEach customer (entity) is represented by the set of goods he/she buys
(categorical data representation).

eThe similarity between two customers may be quantified via the Jaccard
coefficient o o o

or twotinite sets T;and T}, the
Jaccard coefficient is defined as

|T:nT |
I 1) = e

—

eFor example, assuming that T; = {4,B,C},T, ={A,B,D},T; = {A,B,D,E}
are the sets corresponding to three customers, it is
J(IL,T)=35=1 J(T,T)=3=05 J(T,Ts) =5 =04,
J(T2,T3) =5 =0.75
Choosing 8 = 0.45, T; and T, are neighbors, T5 and T35 are neighbors but
T, and T35 are not neighbors. However, T; and T3 share a common neighbor.

eFor this application, a good choice for f(0)is f(0) = (1 —8)/(1 + 0), with
(0 < 1).



The ROCK (RObust Clustering using linKs) algorithm

Example: Consider a three-cluster clustering {C, C,, C3}, where the number
of points in each one of them is n; = 500, n, = 500 and n; = 100,

=

respectively. 5(C.C) = = link(C;, C;)
T (et n)" ©) _ pas2r®) _ g 1+27(6)
Define f(8) as f(0) =+, with 0 = -, o ©

Let link(Cy, C,) = 100 and lmk(Cl,Cg) = 100
Compute g(Cy, C,) and g(Cy, C3) and draw your conclusions

1

Answer: It|51+2f(9)—1+2——1+21—+i—2

(ng + ny) 12 (0) _p 1+27(0) _p 1+2f(0) = (500 + 500)% — 5002 — 5007
= 500000
(ng + ny) +2/(0) _p 1427(0) _pn 142 (6)= (500 + 100)% — 5002 — 10072
= 100000
100 100
Then g(Cy,C,) = —soogq = 0-0002 and g(Cy,C3) = ——=0.001

Thus, among the clusters that have the same degree of similarity with C; wrt
the link(.) criterion, according to the normalized link criterion (g (-)) C; is
more similar with the smallest cluster (C3), and not with the equally sized ;.




The Chameleon algorithm

» This algorithm is not based on a “static” modeling of clusters like CURE
(where each cluster is represented by the same number of

representatives) and ROCK (where constraints are posed through the
function f(9)).

» It enjoys both divisive and agglomerative features.

» Some preliminaries:
Let ¢ = (V,E) be a graph where:
* each vertex of V corresponds to a data pointin X.

* £ is a set of edges connecting pairs of vertices in V. Each edge is
weighted by the similarity of the corresponding points.

* Edge cut set: Let C be a set of points corresponding to a subset of V.
Assume that C is partitioned into two nonempty sets C; and C;.

The subset E’l-j of the edges of E that connect points of C; with points
of C; is called edge cut set.



The Chameleon algorithm

* Minimum cut set: Let C be a set of points corresponding to a subset of V.
If |[E";;| = minge, c.). c,uc,=c|E"wl, then (C;, C;) is the minimum cut set of C,

where |E",,,, | be the sum of weights of the edges in E",,.

*  Minimum cut bisector: If C;, C; are constrained to be of approximate
equal size, the minimum cut set (over all possible partitions of
approximately equal size) is known as the minimum cut bisector.

Example: The graph in the following figure consists of the 5 vertices and the

edges shown, each one weighted by the similarity of the points that

correspond to the vertices it connects. The minimum cut set and the

minimum cut bisector are shown. mlnlmum o
cut blsgctor minimum

cut set




The Chameleon algorithm

Measuring the similarity between clusters
Relative interconnectivity:
—Let E;; be the set of edges connecting points in (; with points in ;.
—Let E; be the set of edges corresponding to the minimum cut bisector of C;.
—Let |E;], |E;;| be the sum of the weights of the edges of E}, E;;, respectively.
—Absolute interconnectivity between C;, C; = |Ejj|
—Internal interconnectivity of C; = |E;|
—Relative interconnectivity between C;, (;:
- |Eyl
Yo |E] + | E
2

RI

Relative closeness:
—Let §;; be the average weight of the edges in E;; .
—Let S; be the average weight of the edges in E; .
—Relative closeness between C; and (;:
Sij [ni, n;: Number of J

points in C;, Cj, resp.

RCU —




The Chameleon algorithm

The Chameleon algorithm

Preliminary phase

Create a k-nearest neighbor graph G = (V, E) such that:

e Each vertex of V corresponds to a data point.

* The edge between two vertices v; and v; is added to E if v; is one of the
k-nearest neighbors of v; or vise versa.

* Each connected component of the resulting graph is associated with a
cluster. Let 'R be the clustering consisting of these clusters.

Divisive phase

Set ¥y = X
t=20
Repeat

e t=t+1

* Select the largest cluster C in %7, _;.
* Referring to E, partition C into two sets so that:
—the sum of the weights of the edge cut set between the resulting
clusters is minimized.
—each cluster contains at least 25% of the vertices of C.
Until each cluster in ¥/, contains fewer than g points.



The Chameleon algorithm

The Chameleon algorithm (cont)

Agglomerative phase
Set f}?’o = "}?t
t=0
Repeat
et=t+1

*Merge C;, Cj in ¥7_; to a single cluster if
RIijZTRI and RCijZTRC (A)
(if more than one (; satisfy the conditions for a given C;, the C; with the
highest |Ej;| is selected).
Until (A) does not hold for any pair of clustersin % ,_;.
Return %',

NOTE: The internal structure of two clusters to be merged is of significant
importance. The more similar the elements within each cluster the higher
“their resistance” in merging with another cluster.



The Chameleon algorithm

Remarks:

Condition (A) can be replaced by (Ci, Cj) = max, c,) Rl - RCy

Chameleon is not very sensitive to the choice of the user-defined
parameters k (typically it is selected between 5 and 20), g (typically
chosen in the range 1% to 5% of the total number of data points), Tr;,
Trc and/or a.

Chameleon is well suited for large data sets (more accurate estimation of
|Eijl, |E:], Sij, i)

For large N, the worst-case time complexity of the algorithm is

O(N(log ,N 4+ m)), where m is the number of clusters formed by the
divisive phase.



The Chameleon algorithm

Example: For the clusters shown in

the figure we have: The values in the figjre

E;| =0.48, |E,| = 0.48, stand for similarities.

Es| = 1.45, |E,| = 1.45, o ° |

S,| = 0.48, |S,| = 0.48, | |

Ei,| = 0.4, |E34| = 0.6,
S12| = 0.4, |S34] = 0.6.
Thus,

RI;, = 0.833, RI;, = 0.414
RC;, = 0.833, RC3, = 0.828

All edge weights which
are not denoted explicitly .
are equal to 0.9.

In conclusion: Both RI and RC favor  Note that the single-link algorithm
the merging C, and C, against the would merge C5 and C, instead of
mergine of C» and C,. Cy and C,.



Other clustering algorithms
» The following types of algorithms will be considered:

» Graph theory based clustering algorithms.
» Competitive learning algorithms.
» Valley seeking clustering algorithms.
» Cost optimization clustering algorithms based on:
* Branch and bound approach.
* Simulated annealing methodology.
e Deterministic annealing.
* Genetic algorithms.
» Density-based clustering algorithms.
» Clustering algorithms for high dimensional data sets.



Graph theory based clustering algorithms

In principle, such algorithms are capable of detecting clusters of various
shapes, at least when they are well separated.

In the sequel we discuss algorithms that are based on:
» The Minimum Spanning Tree (MST).
» Regions of influence.

> Directed trees.



Graph theory based clustering algorithms
vViinimum panning iree V dalgoritnms

Preliminaries: Let
» G be the complete graph, each node of which corresponds to a point of
the data set X.

» e = (x;,x;) denote an edge of G connecting x; and x;.
» we=d(x;, x;) denote the weight of the edge e.

Definitions:

» Two edges e; and e, are k steps away from each other if the minimum
path that connects a vertex of e; and a vertex of e, contains k — 1 edges.

» A Spanning Tree of G is a connected graph that:
* Contains all the vertices of the graph.
* Has no loops.

» The weight of a Spanning Tree is the sum of weights of its edges.

» A Minimum Spanning Tree (MST) of G is a spanning tree with minimum
weight (when all w,’s are different from each other, the MST is unique).



Graph theory based clustering algorithms

Minimum Spanning Tree (MST) algorithms (cont)
Sketch of the algorithm:

» Determine the MST of G.

» Remove the edges that are “unusually” large compared with their
neighboring edges (inconsistent edges).

» |dentify as clusters the connected components of the MST, after the
removal of the inconsistent edges.

Identification of inconsistent edges.
For a given edge e of the MST of G

= Consider all the edges (except e) that lie k steps away (at the most) from e.
"= Determine the mean m, and the standard deviation g, of their weights.

= |If w, lies more than g (typically g = 2) standard deviations g, away from
m,, then:
* e is characterized as inconsistent.
= Else

e e is characterized as consistent.
= End if



Graph theory based clustering algorithms

Minimum Spanning Tree (MST) algorithms (cont)
Example:
» For the MST in the figure and for k = 2 and g = 3 we have:
» Foreg:we, =17, m,, = 2.3, 0., = 0.95. w, lies 15.5 standard
deviations g, away from m,_, hence it is inconsistent.

» Fore;:iwe . =3,m, = 25,0, =212.w,  lies 0.24 standard
deviations g, , away from m,__, hence itis consistent.




Graph theory based clustering algorithms

Minimum Spanning Tree
ol n * (MST) graph-based algorithm
_|_
+ Prerequisite: Definition of
il N a threshold for identifying
“large” edges.
oL
_|_
_|_
Al -
+ +
oL
_|_
or +
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*Define a complege grapzh with4verticés the ?Jlata points and edges the segments
connecting every pair of vertices.

*Weight each edge by the distance between its two end-points.

*Define the MIST of the graph and cut the “unusually large” edges.

*The remaining sub-graphs correspond to the clusters.



Graph theory based clustering algorithms
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*Define a complete graph with vertices the data points and edges the segments

connecting every pair of vertices.

*Weight each edge by the distance between its two end-points.
*Define the MIST of the graph and cut the “unusually large” edges.
*The remaining sub-graphs correspond to the clusters.



Graph theory based clustering algorithms
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Graph theory based clustering algorithms
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Graph theory based clustering algorithms
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Graph theory based clustering algorithms
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Graph theory based clustering algorithms

Minimum Spanning Tree (MST) algorithms (cont)
Remarks:

» The algorithm depends on the choices of k and g.

» The algorithm is insensitive to the order of consideration of the data
points.

» No initial conditions are required, no convergence issues are arised.

» The algorithm works well for many cases where the clusters are well
separated.



Graph theory based clustering algorithms

Minimum Spanning Tree (MST) algorithms (cont)

Remarks:

» A problem may occur when a “large” edge e has another “large” edge as
its neighbor. In this case, e is likely not to be characterized as inconsistent
and the algorithm may fail to unravel the underlying clustering structure

correctly.
N\ Ry
i L
Tﬁ /' Example: The vectors of the regions R, and R,
~— will probably be assigned to the same cluster.




Graph theory based clustering algorithms

Algorithms based on Regions of Influence (ROI)
Definition: The region of influence of two distinct vectors x;, x; € X is defined

as:
R(x;,xj) = {x: cond(d(x, x;),d(x, x;),d(x;, x;)), x; # xj}

where cond(d(x, x;), d(x, x;), d(x;, x;)) may be defined as:

a) d?(x,x;) +d*(x,x;) < d?(x;, %),

b) max{d(x, x;),d(x,x;))} < d(x;,x,)},

c) (d?(x,x)) + d?(x,x;) < d?(x;,x;)) OR (o min{d(x, x;),d(x, x))} < d(x;,x;)),
d) (max{d(x,x;),d(x, x;)} < d(x;,x;)}) OR (0 min{d(x, x;), d(x,x;)} < d(x;,%;))

where o affects the size of the ROl defined by x;, X; and is called relative edge

consistency. ‘

(a) (b) (©) (d)



Graph theory based clustering algorithms

Algorithms based on Regions of Influence (cont)
Algorithm based on ROI

» Fori=1toN
* Forj=i+1toN
— Determine the region of influence R(x;, x;)
— IfR(x;,x) N (X — {x;,x;}) = @ then
o Add the edge connecting x;, x;.

—End if
e End For
> End For

Determine the connected components of the resulted graph and identify
them as clusters.

In words:
> The edge (x;, x;) is added to the graph if no other x, € X lies in R(x;, x;).

»> Since for x; and x; close to each other it is likely that R(x;, x;) contains no

other vectors in X, it is expected that close to each other points will be
assigned to the same cluster.



Graph theory based clustering algorithms

Algorithms based on Regions of Influence (cont)
Remarks:

The algorithm is insensitive to the order in which the pairs are considered.

In order to exclude (possible) edges connecting distant points, one could
use a procedure like the one described previously for removing “unusually
large” edges.

In the choices of cond in (c) and (d), o must be chosen a priori.

For the resulting graphs:

—if the choice (a) is used for cond, they are called relative neighborhood
graphs (RNGs)

—if the choice (b) is used for cond , they are called Gabriel graphs (GGs)

Experimental results show that better clusterings are produced when (c)
and (d) conditions are used in the place of cond, instead of (a) and (b).



Graph theory based clustering algorithms

Algorithms based on Directed Trees

Definitions:
» A directed graph is a graph whose edges are directed.

» Asetofedgese;, .., e, constitute a directed path from a vertex A to a
vertex B, if,

* Aistheinitial vertex of e;

* B isthe final vertex of €,

 The destination vertex of the edge el-j,j =1,..,qg—1,isthe
departure vertex of the edgeeij+1.

(In figure (a) the sequence e4, e,, 3 constitute a directed path
connecting the vertices A and B). A

(a) (b)



Graph theory based clustering algorithms

Algorithms based on Directed Trees (cont)

» A directed tree is a directed graph with a specific node A4, known as root,
such that,

* From every node B # A of the tree departs exactly one edge.
* No edge departs from A.

* No circles are encountered (see figure (b) in the previous slide).

» The neighborhood of a point x; €X is defined as

pl(H) = {Xj € X: d(xl-,xj) <0,x; # x]'}
where 0 determines the neighborhood size.

> Also let

« n; =|p;(0)| be the number of points of X lying within p;(6)
gij = (nj —ny)/d(x;, x;)

Main philosophy of the algorithm

Identify the directed trees in a graph whose vertices are points of X, so that
each directed tree corresponds to a cluster.



Graph theory based clustering algorithms

Algorithms based on Directed Trees (cont.)
Clustering Algorithm based on Directed Trees

—

> Set 6 to a specific value. é = (n]

N

o)

» Determinen;,i=1,..,N. o
» Compute g;;,i,j = 1, f..,N, [ #].
» Fori=1to N
* Ifn; = 0then
— Xx; is the root of a new directed tree.
* Else
— Determine x,- such that g;, = MaXy ep;(0)9ij
— If gir < Othen

0 X;istheroot of a new directed tree.
— Else if g;- > 0 then

o x, isthe parent of x; (there exists a directed edge from x; to x,.).



Graph theory based clustering algorithms

Algorithms based on Directed Trees (cont.)
Clustering Algorithm based on Directed Trees

— Else if g;; = 0 then
o Define T; = {xj:xj € pi(0),9i; = 0}.
o Eliminate all the elements x; € T;, for which there exists a directed
path from x; to x;.
o If the resulting T; is empty then
* x; is the root of a new directed tree
o Else
* The parent of x; is x, such that d(x;, x;) = min, er,d(x;, X5).
o Endif
— End if
e Endif
» End for
» ldentify as clusters the directed trees formed above.



Graph theory based clustering algorithms

Algorithms based on Directed Trees (cont.)

Remarks:

* The root x; of a directed tree is the point in p;(#) with the most dense
neighborhood.

* The branch that handles the case g;, = 0 ensures that no circles occur.

 The algorithm is sensitive to the order of consideration of the data points.

* For proper choice of 8 and large N, this scheme behaves as a mode-
seeking algorithm (see below).

Example: In the figure below, the size of the edge of the gridis 1 and 6 = 1.1.
The above algorithm gives the directed trees shown in the figure.

° o
Xs X 2, %o
2@ ® ® ® ® ® ® 1o




Competitive learning clustering algorithms
The main idea

» Employ a set of representatives w; (in the sequel we consider only point
representatives).

» Move them to regions of the vector space that are “dense” in vectors of X.

Comments
» In general, representatives are updated each time a new vector x € X is
presented to the algorithm (pattern mode algorithms).

» These algorithms do not necessarily stem from the optimization of a cost
function.

The strateqy
» For a given vector x
* All representatives compete to each other
 The winner (representative that lies closest to x) moves towards x.
* The losers (the rest of the representatives) either remain unchanged or
they move towards x but at a much slower rate.




Competitive learning clustering algorithms
Generalized Competitive Learning Scheme (GCLS)

t=20
m = m;y;; (initial number of representatives)
(A) Initialize any other necessary parameters (depending on the specific

algorithm).
Repeat maximum allowable
>»t=t+1 number of clusters

> Present a new randomly selected x € X to the algorithm.

» (B) Determine the winning representative w;. c?

> (C) If ((x is not “similar” to w;(t — 1)) OR (other condition)) AND (m < m....) then
-m=m-+1
- W, =X
Else

— (D) Paramete(r updating

w,(t—1) +nh (x, w,(t — 1)) , if wg =w; (winner)
w,(t) = 1

wq(t—1)+n’h(x,wq(t—1) , :
End \ o maximum allowable
tna ° © number of iterations
(E) Until (convergence occurred) OR (t > t;,qx)

Assign each x € X to the cluster whose representative w; lies closest to x.




Competitive learning clustering algorithms

Remarks:
h(x, wq) is an appropriately defined function (see below).

n and n’ are the learning rates controlling the updating of the winner and
the losers, respectively (n' may differ from looser to looser).

A threshold of similarity @ (carefully chosen) controls the similarity
between x and its closest representative w;.
—Ifd(x,w;) > 0, for some distance measure, x and w; are considered as
dissimilar.

A termination criterion may be the small variation of W = [w1, ..., wl ]T
for at least N iterations (N is the cardinality of X), i.e., for any pair of t{, t,,
with(p —1)-N <ty,t, <p:-N,p € Z,tohold [|W(t,) —W(t)]| < e.

With appropriate choices of (A), (B), (C) and (D), most competitive learning
algorithms may be viewed as special cases of GCLS.



Competitive learning clustering algorithms

Basic Competitive Learning Algorithm
Here the number of representatives m is constant.
The algorithm

> t=0
> Repeat
e t=t+1
* Present a new randomly selected x € X to the algorithm.
* (B) Determine the winning representative w; on x as the one for which

d(x,w;(t — 1)) = mingey_nd(Ewi (6= 1) ().
* (D) Parameter updating- o 0 = 1n€(0L) -
wy(t—1)+n (x —wg(t — 1)), ifw, = w; (winner)

w,(t —1), otherwise

W, (t) =

* End
» (E) Until (convergence occurred) OR (t > t,,4x)
» Assign each xeX to the cluster whose representative w; lies closest to x.

(*) d(-) may be any distance (e.g., Euclidean dist., Itakura-Saito distortion).
Alco <imilaritv meastirec mav be used (in thics case min is renlaced bv max)



Competitive learning clustering algorithms
Basic Competitive Learning Algorithm (cont.)

Remarks:
* In this scheme losers remain unchanged. The winner, after the updating,
lies in the line segment formed by w; (t — 1) and x.

w;(t) =w;(t—1) +nT; w;(t 1)) ; Wj(t - 1)
J — Wi\t ROASE
e e ot

* A priori knowledge of the number of clusters m is required.

* |f a representative is initialized far away from the regions where the points
of X lie, it will never win.
Possible solution: Initialize all representatives using vectors of X.

e Versions of the algorithm with variable learning rate have also been
studied. Specifically, n; = 0, ast = oo, but not too fast(*)

(*) X2 .1, = 0 and Y22, 1,2 < oo (stochastic algorithms)



Competitive learning clustering algorithms

Leaky Learning Algorithm
The same with the Basic Competitive Learning Algorithm except part (D), the
updating equation of the representatives, which becomes

w,(t) = 1

where 1,, and 1), are the learning rates in (0,1) and 1, > 7,.

Remarks:

(wq(t —1) +n, (x —w(t — 1)), if wg = w; (winner)

\Wq (t—1)+mn (x —wy(t - 1)), otherwise

w;i(t — 1) w;(t)

w,(t—1 o (®

* All representatives move towards x but the losers move at a much slower
rate than the winner does.

* The algorithm does not suffer from the problem of poor initialization of
the representatives (why?).

* An algorithm

in the same spirit is the “neural-gas” algorithm, where n;

varies from loser to loser and decays as the corresponding representatives
lie away from x. This algorithm results from the optim. of a cost function.
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Conscientious Competitive Learning Algorithms
Main Idea: Discourage a representative w, from winning if it has won many

times in the past. Do this by assigning a “conscience” to each representative.
A simple implementation

» Equip each representative w,, ¢ = 1, ..., m, with a counter f, that counts
the times that w, wins.
> At (initialization stage) of GCLSset f, = 1,9 =1, ..., m.
» Define the distance d*(x, Wq) as
d*(x, Wq) = d(x, Wq)fq-
(the distance is penalized to discourage representatives that have won
many times)

becomes
* The representative w; is the winner on x if
d*(x,w;) = ming=y_nmd*(x,w,)
« Setf; (1) =fit—-1)+1

and are the same as in the Basic Competitive Learning
Algorithm

» Alsom = My, = Mgy



Competitive learning clustering algorithms

Conscientious Competitive Learning Algorithms
The algorithm

» Setf,=1,q=1,..,m
> t=0
> Repeat
e t=t+1
* Present a new randomly selected xeX to the algorithm.
* (B) Compute d*(x,w,(t — 1)) =d(x,wo(t —1))f, . g=1,..,m.
Determine the winning representative w; on x as the one for which
d*(x,w;(t — 1)) = ming=y_md*(x,w,(t — 1)).
Setf; (t)=f;(t—1)+1
e (D) Parameter updating

W (£) = wy(t—1)+7 (x —wgy(t - 1)), if wg =w; (winner)
1 w,(t —1), otherwise
* End
» (E) Until (convergence occurred) OR (t > t,,4x)
» Assign each x € X to the cluster whose representative w; lies closest to x.



Supervised Learning Vector Quantization (VQ)

In this case
» each cluster is treated as a class (m compact classes are assumed)
» the available vectors have known class labels.

The goal:
Use a set of m representatives and place them in such a way so that each
class is “optimally” represented.

The simplest version of VQ (LVQ1) may be obtained from GCLS as follows:
» Parts (A), (B) and (C) are the same with the basic competitive learning
scheme. w;(t — 1) w;(t)
> In part (D) the updating for w;’ s is carried out as follows
w,(t =
wy (1)

(wj (t—1) +n(t) (x —w;(t — 1)), if w; correctly wins on x

w;(t) = < w;(t—1) —n() (x —w;(t — 1)), if wiwrongly wins on x

\ w;(t — 1), otherwise



Supervised Learning Vector Quantization (VQ)
The algorithm

> t=0
> Repeat
c t=t+1
* Present a new randomly selected x € X to the algorithm.
(B) Determine the winning representative w; on x as the one for which
d(x,wi(t — 1)) = min gy _,nd(x, wi(t — 1))
(D) Parameter updating

» (E) Until (convergence occurred) OR (t > t,,4,) (max allowable no of iter.)
In words:
> w;j is moved:
* Towards x if w; wins and x belongs to the j-th class.
* Away from x if w; wins and x does not belong to the j-th class.
» All other representatives remain unaltered.



