Clustering algorithms

Konstantinos Koutroumbas

Unit 7

- Discussion on clustering CFO algorithms
- Hierarchical clustering (agglomerative case)

Data

$$X = \{x_j \in R^l, j = 1, ..., N\}$$

Recall the general CFO framework

Basic parameters - notation

- $\checkmark \quad \Theta = \{\theta_j, j = 1, ..., m\}$ (θ_j is the representative of cluster C_j).
 - Proximity between x_i and C_i : $d(x_i, \theta_i)$

Basic parameters – notation (cont.)

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{N1} & u_{N2} & \cdots & u_{Nm} \end{bmatrix} \equiv \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \\ \vdots \\ \boldsymbol{u}_N \end{bmatrix}$$
Recall the general CFO framework

- $u_{ij} \in [0,1]$ quantifies the "relation" between x_i and C_j .
- "Large" ("small") u_{ij} values indicate close (loose) relation between x_i and C_i .
 - $\Rightarrow u_{ij}$ varies inversely proportional wrt $d(x_i, \theta_i)$.
- u_i : vector containing the u_{ij} 's of x_i with all clusters.

^(*) Unless otherwise stated, the case where **cluster representatives** are used is considered.

Aim:

✓ To place the representatives into dense in data regions (physical) clusters). **Recall the general CFO** framework

How this is achieved:

 \checkmark Via the minimization of the following type of cost function (wrt Θ , U)

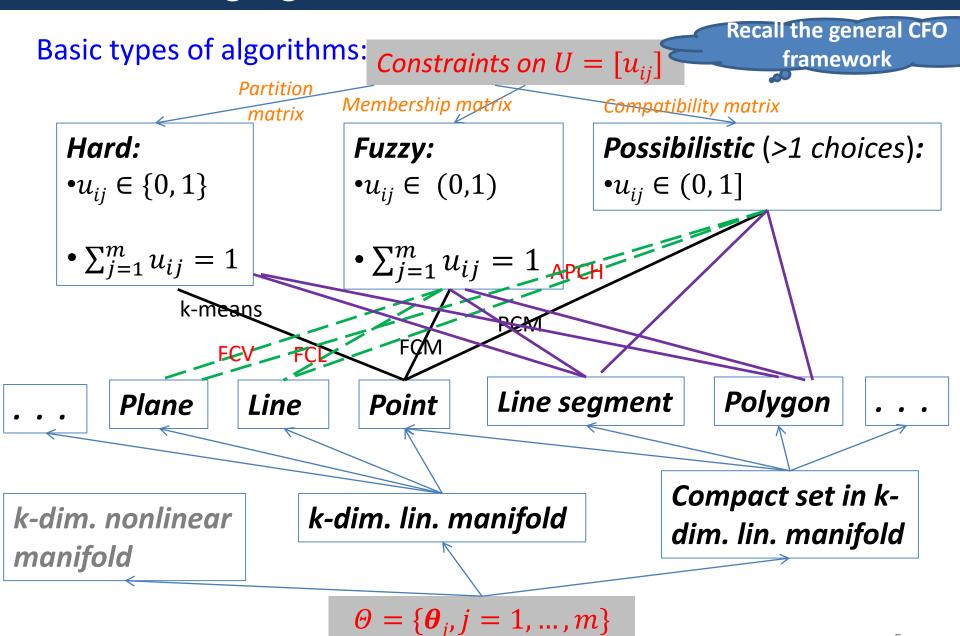
$$J(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) (q \ge 1)$$

s.t. some **constraints** on U, C(U).

For the probabilistic case $d(x_i, \theta_i)$ is embedded in the loglikelihood of suitably defined exponential distributions

Intuition:

- For fixed θ_i 's, $J(\theta, U)$ is a weighted sum of fixed distances $d(x_i, \theta_i)$.
- \Rightarrow Minimization of $J(\Theta, U)$ wrt u_{ij} instructs for large weights (u_{ij}) for small distances $d(\mathbf{x}_i, \boldsymbol{\theta}_i)$.
- \checkmark For **fixed** u_{ij} 's, **minimization** of $J(\Theta, U)$ wrt θ_i 's leads θ_i 's closer to their most relative data points.



"Array of CFO algorithms" algorithm C(U)**Recall the general CFO** Hard Possi Fuzzy framework Constr. Constr. Constr. **Point** Line Hyperplane Hyperellipsoid

There are **several** unexplored areas (groups of algorithms) in this array.

General cost function opt. (CFO) scheme:

✓ Initialize $\Theta = \Theta(0)$

Recall the general CFO framework

$$\checkmark t = 0$$

✓ Repeat

- $U(t) = argmin_U J(\Theta(t), U)$, s.t. C(U(t))
- t = t + 1
- $\Theta(t) = argmin_{\Theta} J(\Theta, U(t-1))$

✓ Until convergence

"Array of CFO algorithms"

0

C(U)

Recall the general CFO framework

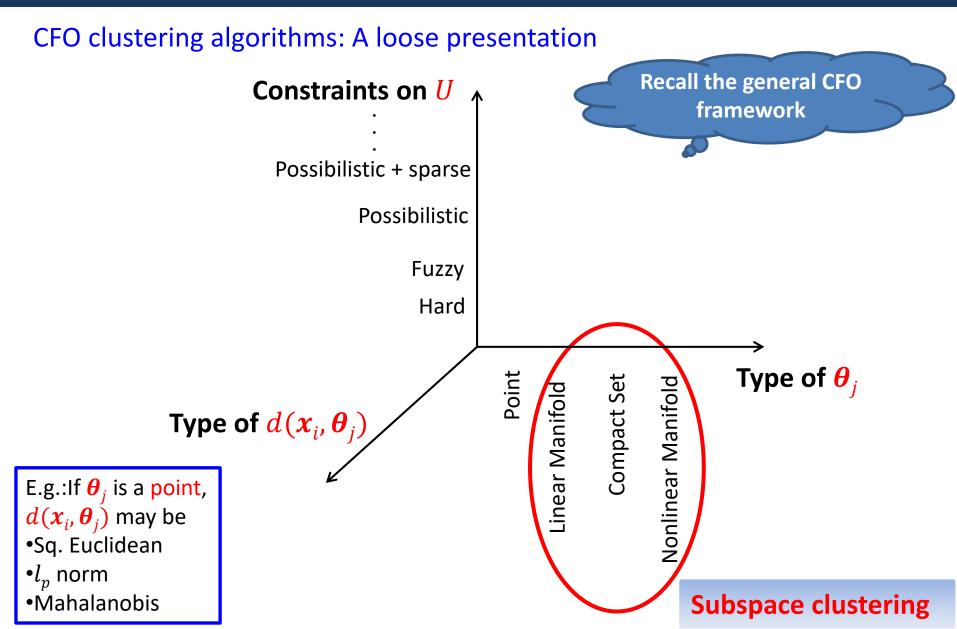
	Hard Constr.	Fuzzy Constr.	Possib. Constr.	
Point	Je	me	me	
Line	scheme	cher	che	
Hyperplane	FO S(FO S) PO	
Hyperellipsoid	2	Fuzzy (ssib. (
• • •	I	Fu	Pos	

"Array of CFO algorithms"

C(U)

Recall the general CFO framework

	Hard	Fuzzy	Possib.		
	Constr.	Constr.	Constr.		
Point	c-mea	ns sch	eme		
Line	c-line	s scher	ne (
Hyperplane	c-hyp	erplane	es sche	me	
Hyperellipsoid	c-hyp	erellips	oids so	heme	



Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

A. Generalized Hard Algorithmic Scheme (GHAS) – k-means algorithm

$$minimize_{U,\Theta}J(U,\Theta) = \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{m} u_{ij} \, |\big| \pmb{x}_i - \pmb{\theta}_j \big||^2$$
 subject to **(a)** $u_{ij} \in \{0,1\}, \ i=1,\dots,N, j=1,\dots,m,$ and **(b)** $\sum\nolimits_{j=1}^{m} u_{ij} = 1, i=1,\dots,N.$

The Isodata or k-Means or c-Means algorithm

- Choose arbitrary initial estimates $\theta_j(0)$ for the θ_j 's, j=1,...,m.
- t=0
- Repeat
 - For i=1 to N % Determination of the partition o For j=1 to m $u_{ij}(t) = \begin{cases} 1, & \text{if } ||x_i \pmb{\theta}_j(t)||^2 = min_{q=1,\dots,m}||x_i \pmb{\theta}_q(t)||^2 \\ 0, & \text{otherwise} \end{cases}$

o End {For-*j*}

- End {For-i}
- -t = t + 1
- For j=1 to m % Parameter updating o Set

$$\theta_j(t) = \frac{\sum_{i=1}^N u_{ij}(t-1)x_i}{\sum_{i=1}^N u_{ij}(t-1)}, j = 1, ..., m$$

- End {For-*j*}
- Until no change in θ_i 's occurs between two successive iterations

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

B. Generalized Fuzzy Algorithmic Scheme (GFAS) – Fuzzy c-means algorithm

$$minimize_{U,\Theta}J(U,\Theta) = \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{m} u_{ij}{}^{q} \, |\big| \boldsymbol{x}_{i} - \boldsymbol{\theta}_{j} \big| |^{2}$$
 subject to **(a)** $u_{ij} \in (0,1), \ i=1,\ldots,N, j=1,\ldots,m$, and **(b)** $\sum\nolimits_{j=1}^{m} u_{ij} = 1, i=1,\ldots,N$.

- Choose $\theta_i(0)$ as initial estimates for θ_i , j=1,...,m.
- t=0
- Repeat

- For
$$i=1$$
 to N % Determination of $u_{ij}^{\prime}s$ o For $j=1$ to m

$$u_{ij}(t) = \frac{1}{\sum_{k=1}^{m} \left(\frac{d(\mathbf{x}_i, \boldsymbol{\theta}_j(t))}{d(\mathbf{x}_i, \boldsymbol{\theta}_k(t))}\right)^{\frac{1}{q-1}}}$$

o End {For-*j*}

- End {For-i}

$$-t = t + 1$$

– For j=1 to m % Parameter updating o Set

$$\boldsymbol{\theta}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t-1)\boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t-1)}, j = 1, ..., m$$

– End {For-*j*}

Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

C. Generalized Probabilistic Algorithmic Scheme (GPrAS) – the normal pdfs case

$$minimize_{\Theta,P}J(\Theta,P) = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j})$$

It is (a) $P(j|x_i) \in (0,1), i = 1, ..., N, j = 1, ..., m$, and (b) $\sum_{j=1}^m P(j|x_i) = 1, i = 1, ..., N$.

- Choose $\mu_j(0)$, $\Sigma_j(0)$, $P_j(0)$ as initial estimates for μ_j , Σ_j , P_j , resp., $j=1,\ldots,m$
- t=0
- Repeat

- For
$$i = 1$$
 to N % Expectation step
o For $j = 1$ to m

$$P(j|x_i; \Theta^{(t)}, P^{(t)}) = \frac{p(x_i|j;\theta_j^{(t)})P_j^{(t)}}{\sum_{q=1}^{m} p(x_i|q;\theta_q^{(t)})P_q^{(t)}} \equiv \gamma_{ji}^{(t)}$$

o End {For-*j*}

- End {For-i}
- -t = t + 1
- For j=1 to m % Parameter updating Maximization step o Set

$$\mu_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} x_{i}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}}, \qquad \Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}} j = 1, \dots, m$$

$$P_j^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ji}^{(t-1)}, j = 1, ..., m$$

- End {For-*j*}
- Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

Consider the **GPrAS** cost function

$$J(\Theta, P) = -\sum_{i=1}^{N} \sum_{j=1}^{M} P(j|\mathbf{x}_i) \ln(p(\mathbf{x}_i|j; \boldsymbol{\theta}_j) P_j)$$

$$\boldsymbol{\theta}_i = \{\boldsymbol{\mu}_i, \boldsymbol{\lambda}_i\}$$

with

$$J(\Theta, P) = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln(p(\mathbf{x}_i|j; \boldsymbol{\theta}_j) P_j)$$

$$p(\mathbf{x}_i|j; \boldsymbol{\theta}_j) = \frac{1}{(2\pi)^{\frac{l}{2}} |\Sigma_j|^{\frac{1}{2}}} exp\left(-\frac{(\mathbf{x}_i - \boldsymbol{\mu}_j)^T \Sigma_j^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_j)}{2}\right)$$

It is
$$J(\Theta, P) = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln \left(\frac{1}{(2\pi)^{\frac{1}{2}} |\Sigma_j|^{\frac{1}{2}}} exp\left(-\frac{(\mathbf{x}_i - \boldsymbol{\mu}_j)^T \Sigma_j^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_j)}{2} \right) P_j \right) =$$

$$-\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln \left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma_{i}|^{\frac{1}{2}}}\right)$$

$$+\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})^{T}\Sigma_{j}^{-1}(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})$$

$$-\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})\ln P_{j}$$

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

Assumption 1: $\Sigma_j = \Sigma = constant, j = 1, ..., m$. Then

$$Term \mathbf{A} = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln \left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right)$$

$$= -\ln \left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) = -\ln \left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} 1$$

$$= -N \ln \left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) = constant$$

Assumption 2: $P_j = \frac{1}{m}$, j = 1, ..., m. Then

Term C

$$= -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln \frac{1}{m} = -\ln \frac{1}{m} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) = -N \ln \frac{1}{m} = constant$$

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

Based on the previous two results, it follows that

$$minimize\left(-\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})\ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j})\right)$$

$$\sum_{j=1}^{\infty}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})^{T}\Sigma^{-1}(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})$$

$$minimize\left(\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})^{T}\Sigma^{-1}(\mathbf{x}_{i}-\boldsymbol{\mu}_{j})\right)$$

Assumption 3(a): Approximate $P(j|x_i)$ as

$$P(j|\mathbf{x}_i) = \begin{cases} 1, & P(j|\mathbf{x}_i) = \max_{s=1,\dots,m} P(s|\mathbf{x}_i) \\ 0, & otherwise \end{cases} (\equiv u_{ij})$$

In this case, $GPrAS \Leftrightarrow k - means$ (for $\Sigma = \sigma^2 I$)

Assumption 3(b): Approximate
$$P(j|x_i)$$
 as

mate $P(j|x_i)$ as $P(j|x_i) = \frac{1}{\sum_{k=1}^m \left(\frac{d(x_i, \theta_j(t))}{d(x_i, \theta_k(t))}\right)^{\frac{1}{q-1}}}$ warning: Valid ONLY from a mathematical formulation point of view. NOT from a conceptual point of view.

In this case,
$$GPrAS \Leftrightarrow fuzzy \ c - means$$
 (for $\Sigma = \sigma^2 I$)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

Remarks:

The **hard**, **fuzzy** and **probabilistic CFO** clustering algorithms (with point representatives and squared Euclidean distance):

- are partition algorithms.
- they **share** the "**sum-to-one**" constraint.
- they can be related to each other (through the "sum-to-one" constraint).

The **possibilistic** CFO clustering algorithms (point representatives and squared Euclidean distance):

- are mode seeking algorithms
- no "sum-to-one" constraint is associated with them
- they <u>can not</u> be related to the hard, fuzzy and probabilistic CFO clustering algorithms (due to the absence of the sum-to-one constraint).

The role of q in the fuzzy clustering

Consider the minimization problem for fuzzy clustering

$$d_{ij}=d(\boldsymbol{x}_i,\boldsymbol{\theta}_j)$$

Expanding $J(U, \Theta)$, we have

$$J(U,\Theta) = \begin{array}{ccccc} u_{11}{}^{q}d_{11} + & u_{12}{}^{q}d_{12} + & \dots & u_{1m}{}^{q}d_{1m} \\ u_{21}{}^{q}d_{21} + & u_{22}{}^{q}d_{22} + & \dots & u_{2m}{}^{q}d_{2m} \\ \vdots & & \vdots & \ddots & \vdots \\ u_{N1}{}^{q}d_{N1} + & u_{N2}{}^{q}d_{N2} + & \dots & u_{Nm}{}^{q}d_{Nm} \end{array}$$

Assumption: d_{ij} 's are fixed.

Then, due to the sum-to-one constraint, $J(U,\Theta)$ is **minimized** if each of the summation in the rows of the above expansion is minimized.

Let
$$s_i$$
: $d_{is_i} = min_{j=1,...,m}d_{ij}$, $i = 1,...,N$
Then,

$$u_{i1}^{q}d_{i1}+...+u_{im}^{q}d_{im} \ge \left(\sum_{j=1}^{m} u_{ij}^{q}\right)d_{is_{i}}$$

The role of q in the fuzzy clustering

$$A_i = u_{i1}^q d_{i1} + \dots + u_{im}^q d_{im} \ge \left(\sum_{j=1}^m u_{ij}^q\right) d_{is_i}$$

For q = 1, it is $\sum_{i=1}^{m} u_{ij} = 1$. Thus

$$A_i = u_{i1}d_{i1} + ... + u_{im} d_{im} \ge d_{is_i}$$

Clearly, the equality holds for $u_{is_i} = 1$ and $u_{ij} = 0$, for $j = 1, ..., m, j \neq s_i$

In other words the minimum possible value of A_i is achieved for the hard cluster solution. Thus, **no** fuzzy clustering (where more than one u_{ij} 's are positive) **minimizes** the A_i .

For q > 1, in the hard clustering case, the minimum possible value of A_i is still d_{is_i} .

For q > 1, in the fuzzy clustering case, it is $\sum_{j=1}^{m} u_{ij}^{q} < 1$. Thus

$$d_{is_i} > \left(\sum_{j=1}^m u_{ij}^q\right) d_{is_i}$$

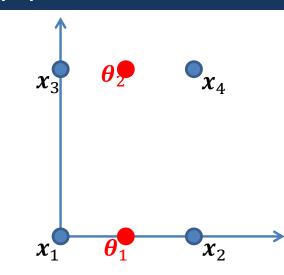
Thus, in this case, there are choices for u_{ij} 's with more than one of them being positive (fuzzy case) that achieve lower value for A_i than the best hard clustering. The larger the value of q, the more fuzzy clusterings achieve for A_i value $< d_{is_i}$. 19

The role of *q* in the fuzzy clustering

Example:
$$X = \{x_1, x_2, x_3, x_4\}$$

 $x_1 = [0,0]^T, x_2 = [2,0]^T, x_3 = [0,3]^T, x_4 = [2,3]^T$
 $\boldsymbol{\theta}_1 = [1,0]^T, \boldsymbol{\theta}_2 = [1,3]^T \text{ (fixed)}$

$$m{q}=\mathbf{1}$$
 (hard case): **Best solution** $U_{hard}=\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$, $J_{hard}=\mathbf{4}$



$$q=2$$
 (fuzzy case): **Focus** on x_1 :

Question: Is it possible to have

$$u_{11}^2 \cdot d(\mathbf{x}_1, \mathbf{\theta_1}) + u_{12}^2 \cdot d(\mathbf{x}_1, \mathbf{\theta_2}) < d(\mathbf{x}_1, \mathbf{\theta_1}) \Longrightarrow u_{11}^2 \cdot 1 + u_{12}^2 \cdot \sqrt{10} < 1?$$
 (A)

Since $u_{12} = 1 - u_{11}$, (A) becomes

$$u_{11}^{2} \cdot 1 + (1 - u_{11})^{2} \cdot \sqrt{10} < 1 \Leftrightarrow$$

$$(\sqrt{10} + 1)u_{11}^{2} - 2\sqrt{10}u_{11} + \sqrt{10} - 1 < 0 \Leftrightarrow$$

$$u_{11} \in (0.52, 1) \Rightarrow u_{12} \in (0, 0.48)$$

$$d(x_i, \theta_j)$$
 $\theta_1 = (1,0)$ $\theta_2 = (1,3)$
 $x_1 = (0,0)$ $d_{11} = 1$ $d_{12} = \sqrt{10}$
 $x_2 = (2,0)$ $d_{21} = 1$ $d_{22} = \sqrt{10}$
 $x_3 = (0,3)$ $d_{31} = \sqrt{10}$ $d_{32} = 1$
 $x_4 = (2,3)$ $d_{41} = \sqrt{10}$ $d_{42} = 1$

For example, if $u_{11} = 0.7$ ($u_{12} = 0.3$), it is

$$u_{11}^2 \cdot 1 + u_{12}^2 \cdot \sqrt{10} = 0.7^2 \cdot 1 + 0.3^2 \cdot \sqrt{10} = 0.77 < 1$$

The role of q in the possibilistic clustering

Consider the minimization problem for possibilistic clustering

$$minimize_{U,\Theta}J\big(\boldsymbol{u}_j,\boldsymbol{\theta}_j\big) = \sum\nolimits_{i=1}^N u_{ij}{}^q d_{ij} + \eta_j \sum\nolimits_{i=1}^N (1-u_{ij})^q$$
 subject to $u_{ij} \in (0,1), \ i=1,\ldots,N, j=1,\ldots,m.$

For q = 1, $J(u_i, \theta_i)$ is written as

$$J(\boldsymbol{u}_j,\boldsymbol{\theta}_j) = \sum_{i=1}^{N} \left[u_{ij} (d_{ij} - \eta_j) + \eta_j \right]$$

Thus, minimizing $J(oldsymbol{u}_j,oldsymbol{ heta}_j)$ is equivalent to minimizing

$$\sum_{i=1}^{N} u_{ij} (d_{ij} - \eta_j)$$

For fixed θ_j (\Rightarrow fixed $d(x_i, \theta_j) \equiv d_{ij}$), the latter achieves it **minimum** (negative) value by selecting $u_{ij} = 1$, for $d_{ij} < \eta_j$ and $u_{ij} = 0$, for $d_{ij} > \eta_j$.

However, in the above situation, all points having distance less than η_j from θ_j share the same weight in the determination of θ_j ($u_{ij}=1$), while all the other points have no influence in the determination of θ_j ($u_{ij}=0$).

21

The role of q in the possibilistic clustering

Consider the minimization problem for possibilistic clustering

$$\begin{aligned} minimize_{U,\Theta}J\big(\boldsymbol{u}_j,\boldsymbol{\theta}_j\big) = \sum\nolimits_{i=1}^N u_{ij}{}^q d_{ij} + \eta_j \sum\nolimits_{i=1}^N (1-u_{ij})^q \\ \text{subject to } u_{ij} \in (0,1), \ i=1,\dots,N, j=1,\dots,m. \end{aligned}$$

For q>1, (for fixed $\theta_j(\Rightarrow \text{fixed } d\big(x_i,\theta_j\big)\equiv d_{ij})$) it is $u_{ij}=\frac{1}{1+\left(\frac{d_{ij}}{\eta_j}\right)^{\frac{1}{q-1}}}$

Thus, points for which $d_{ij} > \eta_j$ have $(0 <) u_{ij} < \frac{1}{2}$.

Furthermore, as $q \to \infty$, (for fixed $\theta_j (\Rightarrow \text{fixed } d(x_i, \theta_j) \equiv d_{ij})$) it is $u_{ij} \to \frac{1}{2}$

Thus, all points have the same degree of compatibility with all clusters.

The role of q in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the squared Euclidean distance case (fuzzy and 1st possibilistic clust. algorithms)

$$\theta_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t-1)x_{i}}{\sum_{i=1}^{N} u_{ii}^{q}(t-1)}, j = 1, ..., m$$

For q > 1, and since $u_{ij} \in (0,1)$, the previous observation indicates that the x_i 's with high (low) u_{ij} , will have more (much less) significant contribution to the estimation of $\theta_i(t)$, compared with the q = 1 case.

Example: Let
$$\mathbf{x}_1 = [0, 0]^T$$
 and $\mathbf{x}_2 = [10, 10]^T$, and $u_{1j} = 0.1$, $u_{2j} = 0.9$. Then $\boldsymbol{\theta}_j = \frac{u_{1j}\mathbf{x}_1 + u_{2j}\mathbf{x}_2}{u_{1j} + u_{2j}} = \begin{bmatrix} 9 \\ 9 \end{bmatrix}$ $(\mathbf{q} = \mathbf{1})$

and

$$\boldsymbol{\theta}_{j} = \frac{u_{1j}^{q} \boldsymbol{x}_{1} + u_{2j}^{q} \boldsymbol{x}_{2}}{u_{1j}^{q} + u_{2j}^{q}} = \begin{bmatrix} 9.9 \\ 9.9 \end{bmatrix} \quad (q = 2)$$

- ✓ They produce a hierarchy of (hard) clusterings instead of a single clustering.
- ✓ They find applications in:
 - Social sciences
 - Biological taxonomy
 - Modern biology
 - Medicine
 - Archaeology
 - Computer science and engineering

Let $X = \{x_1, \dots, x_N\}, \quad x_i = [x_{i1}, \dots, x_{il}]^T$. Recall that:

- In hard clustering each vector belongs exclusively to a single cluster.
- An m-(hard) clustering of X, \Re , is a partition of X into m sets (clusters) C_1, \ldots, C_m , so that:
 - $C_j \neq \emptyset, j = 1, ..., m$
 - $\bullet \quad \cup_{j=1}^m C_j = X$
 - $C_i \cap C_j = \emptyset, i \neq j, i, j = 1, 2, \dots, m$

By the definition: $\Re = \{C_j, j = 1, ... m\}$

▶ **Definition:** A clustering \Re_1 consisting of k clusters is said to be nested in the clustering \Re_2 consisting of r (< k) clusters, if **each** cluster in \Re_1 is a subset of a cluster in \Re_2 . We write $\Re_1 \angle \Re_2$

Example: Let
$$\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}, \ \Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}, \ \Re_3 = \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}, \ \Re_4 = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}\}.$$
 It is $\Re_1 \angle \Re_2$, but not $\Re_1 \angle \Re_3$, $\Re_1 \angle \Re_4$, $\Re_1 \angle \Re_1$.

Remarks:

- Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
- They involve N steps at the most.
- At each step t, the clustering \Re_t is produced by \Re_{t-1} .
- Main strategies:

Agglomerative hierarchical clustering algorithms	Divisive hierarchical clustering algorithms		
$\mathfrak{R}_0 = \{\{x_1\}, \dots, \{x_N\}\}$	$\mathfrak{R}_0 = \{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}\}$		
$\mathfrak{R}_{N-1} = \{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}\}\$	$\Re_{N-1} = \{ \{ \boldsymbol{x}_1 \}, \dots, \{ \boldsymbol{x}_N \} \}$		
$\mathfrak{R}_0 \angle \ \dots \angle \mathfrak{R}_{N-1}$	\mathfrak{R}_{N-1} \mathcal{R}_0		

Let $g(C_i, C_j)$ be a proximity function between two clusters C_i and C_j of X.

Generalized Agglomerative Scheme (GAS)

- Initialization
 - Choose $\Re_0 = \{\{x_1\}, \dots, \{x_N\}\}$
 - t = 0
- > Repeat
 - t = t + 1
 - Choose (C_i, C_i) in \Re_{t-1} such that

$$g(C_i, C_j) = \begin{cases} \min_{r,s} g(C_r, C_s), & \text{if } g \text{ is a disim. function} \\ \max_{r,s} g(C_r, C_s), & \text{if } g \text{ is a sim. function} \end{cases}$$

- Define $C_q = C_i \cup C_j$ and produce $\Re_t = (\Re_{t-1} \{C_i, C_j\}) \cup \{C_q\}$
- Until all vectors lie in a single cluster.

Remarks:

- If two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings. As a consequence, there is no way to recover a "poor" clustering that may have occurred in an earlier level of hierarchy.
- Number of operations: $O(N^3)$

Definitions of some useful quantities:

Let
$$X = \{x_1, x_2, ..., x_N\}$$
, with $x_i = [x_{i1}, x_{i2}, ..., x_{il}]^T$.

- Pattern matrix (D(X)): An Nxl matrix whose i-th row is x_i (transposed).
- Proximity (similarity or dissimilarity) matrix (P(X)): An NxN matrix whose (i,j) element equals the proximity $\wp(x_i,x_j)$ (similarity $s(x_i,x_j)$, dissimilarity $d(x_i,x_j)$).

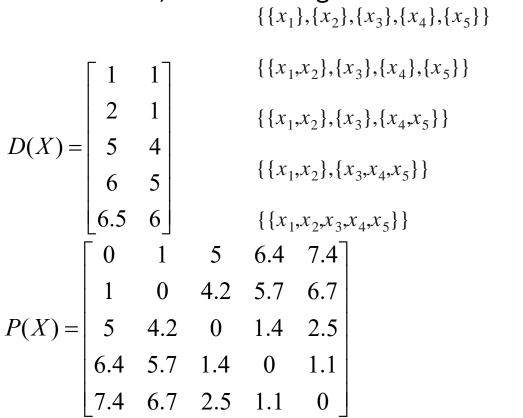
Example 1: Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}$$
, with $x_1 = [1, 1]^T$, $x_2 = [2, 1]^T$, $x_3 = [5, 4]^T$, $x_4 = [6, 5]^T$, $x_5 = [6.5, 6]^T$ Pattern matrix Euclidean distance Tanimoto distance

$$D(X) = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 5 & 4 \\ 6 & 5 \\ 6.5 & 6 \end{bmatrix} \quad P(X) = \begin{bmatrix} 0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0 \end{bmatrix} P'(X) = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$$

Definitions of some useful quantities:

Threshold dendrogram (or dendrorgram): It is an effective way of representing the sequence of clusterings, which are produced by an agglomerative algorithm.

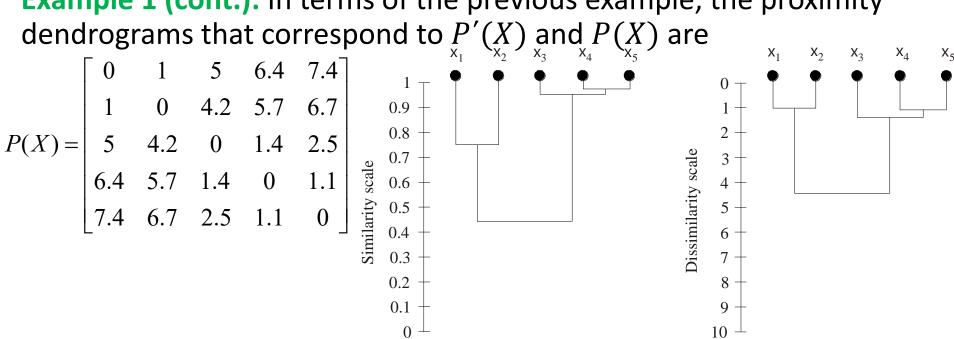
Example 1 (cont.): If $d_{min}^{SS}(C_i, C_j)$ is employed as the distance measure between two sets and the Euclidean one as the distance measure between two vectors, the following series of clusterings are produced:



Definitions of some useful quantities:

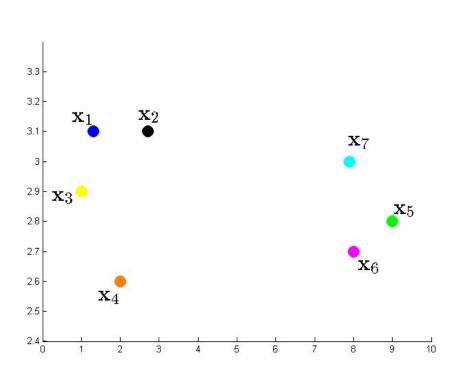
> Proximity (dissimilarity or similarity) dendrogram: A dendrogram that takes into account the **level of proximity** (dissimilarity or similarity) where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity dendrograms that correspond to P'(X) and P(X) are



Remark: One can readily observe the level in which a cluster is formed and the level in which it is absorbed in a larger cluster (indication of the natural clustering).

Example:



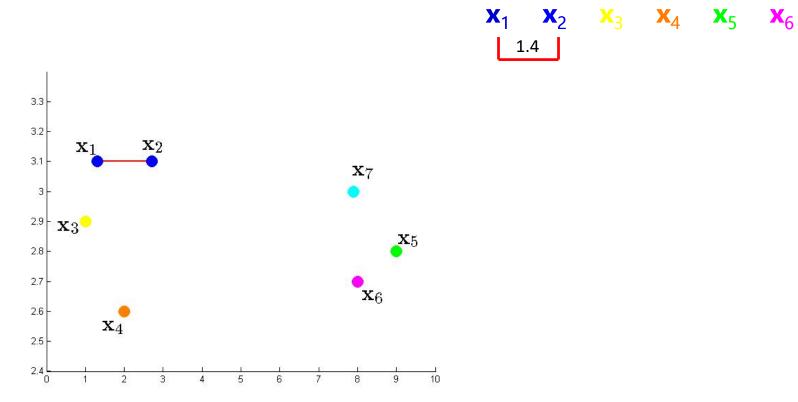
<u>Agglomerative philosophy:</u>

- In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.

 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_4 \mathbf{X}_5 \mathbf{X}_6 \mathbf{X}_7

•At the final clustering all vectors belong to the same cluster.

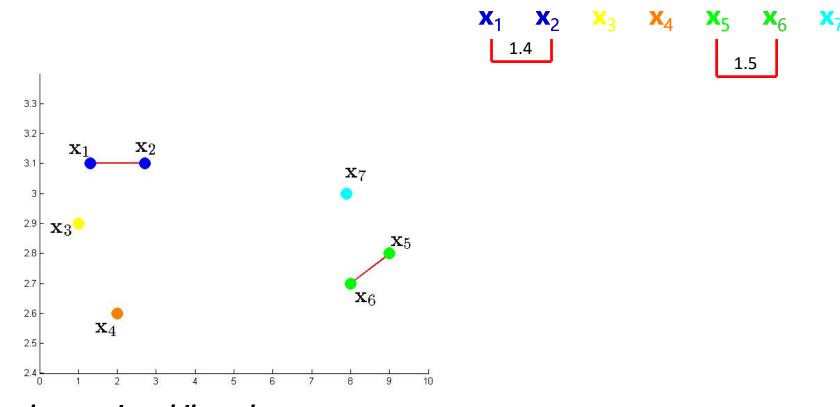
Example:



<u>Agglomerative philosophy:</u>

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

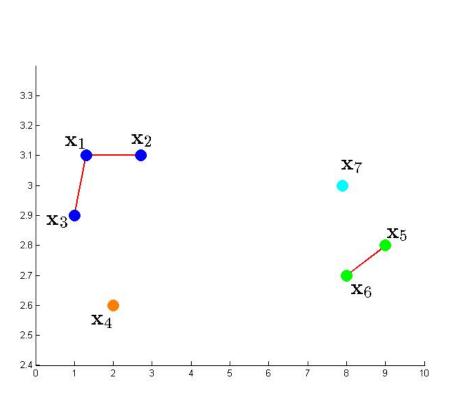
Example:



<u>Agglomerative philosophy:</u>

- In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

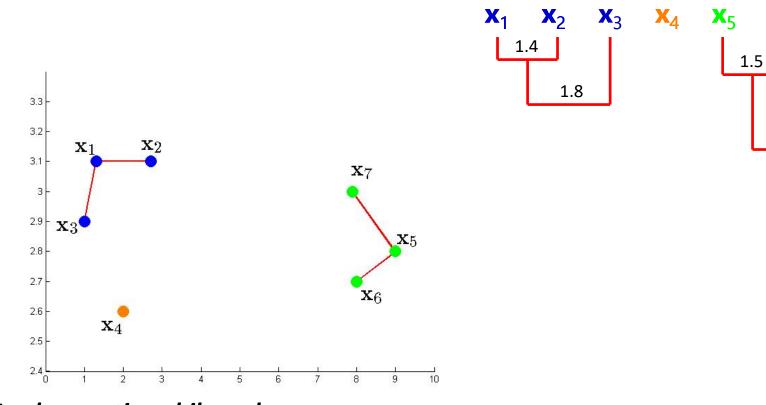
Example:



Agglomerative philosophy:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:



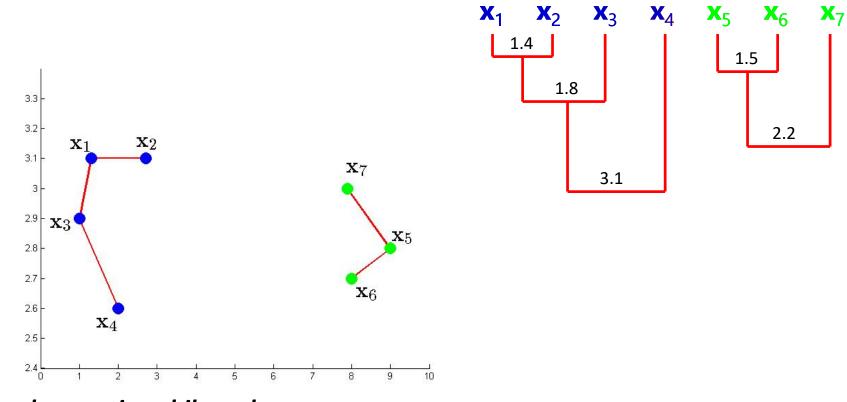
<u>Agglomerative philosophy:</u>

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.

2.2

•At the final clustering all vectors belong to the same cluster.

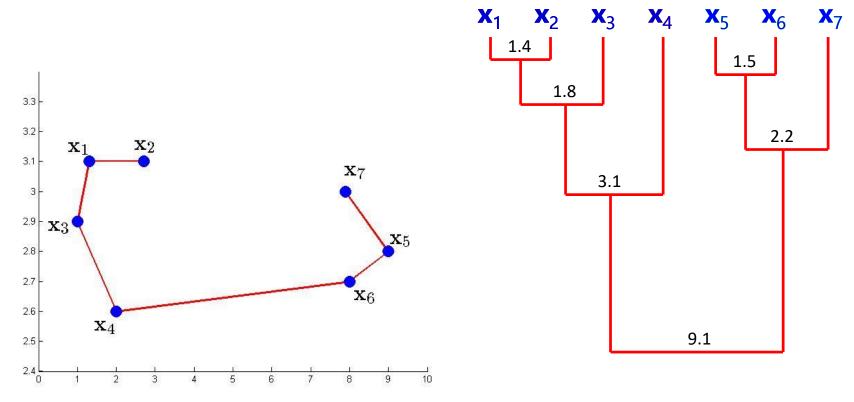
Example:



<u>Agglomerative philosophy:</u>

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

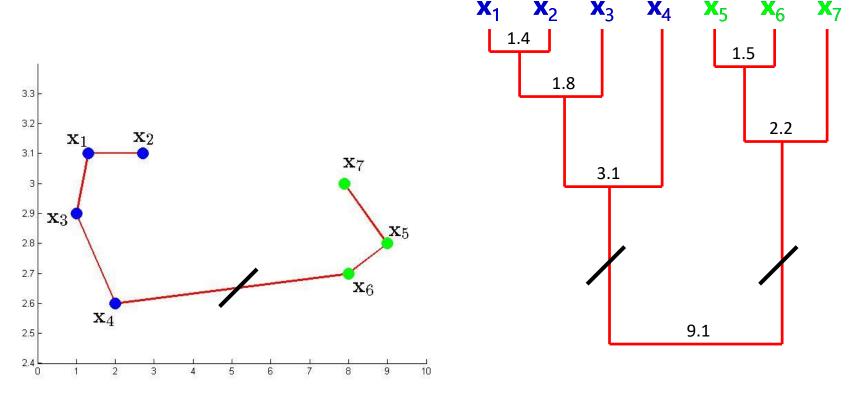
Example:



Agglomerative philosophy:

- In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:



Agglomerative philosophy:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

According to the mathematical tools used for their expression, **agglomerative algorithms** are divided into:

- Algorithms based on matrix theory.
- Algorithms based on graph theory.

NOTE: In the sequel we consider only dissimilarity measures.

- Algorithms based on matrix theory.
 - They take as input the $N \times N$ dissimilarity matrix $P_0 = P(X)$.
 - At each level t where two clusters C_i and C_j are **merged** to C_q , the dissimilarity matrix P_t is extracted from P_{t-1} by:
 - -**Deleting** the two rows and columns of P_t that correspond to C_i and C_j .
 - -Adding a new row and a new column that contain the distances of newly formed $C_q = C_i \cup C_j$ from each of the remaining clusters C_s , via a relation of the form

$$d(C_q, C_S) = f(d(C_i, C_S), d(C_i, C_S), d(C_i, C_j))$$

•A number of distance functions comply with the following update equation

$$C_{q} = C_{i} \cup C_{j}$$

$$d(C_{q}, C_{s}) = a_{i}d(C_{i}, C_{s}) + a_{j}(d(C_{j}, C_{s}) + bd(C_{i}, C_{j}) + c|d(C_{i}, C_{s}) - d(C_{j}, C_{s})|$$

(1)

Algorithms that follow the above equation are:

> Single link (SL) algorithm ($a_i=1/2, a_j=1/2, b=0, c=-1/2$). In this case

 $d(C_a, C_S) = \min\{d(C_i, C_S), d(C_i, C_S)\}$ (2)

$$\triangleright$$
 Complete link (CL) algorithm ($a_i=1/2, a_i=1/2, b=0, c=1/2$). In this

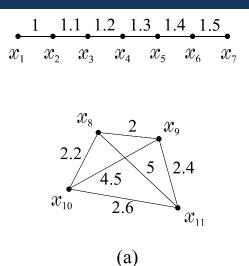
case

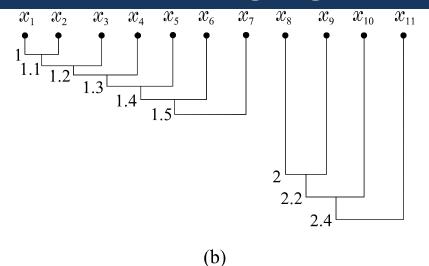
$$d(C_a, C_s) = \max\{d(C_i, C_s), d(C_i, C_s)\}$$

Remarks:

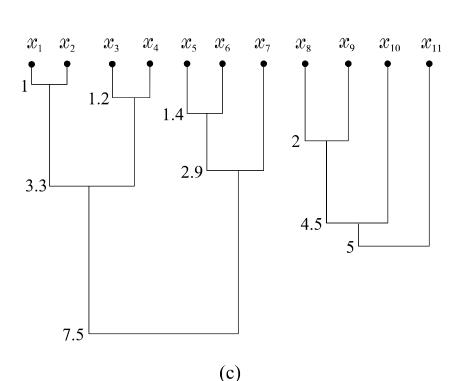
- Single link forms clusters at low dissimilarities while complete link forms clusters at high dissimilarities.
- Single link tends to form elongated clusters (chaining effect) while complete link tends to form compact clusters.
- The rest algorithms are compromises between these two extremes.

Example:





- (a) The data set X.
- (b) The single link algorithm dissimilarity dendrogram.
- (c) The complete link algorithm dissimilarity dendrogram.



$$d(C_q, C_s) = \frac{1}{2} (d(C_i, C_s) + d(C_j, C_s))$$

Unweighted Pair Group Method Average (UPGMA) $(a_i = n_i/(n_i + n_j), a_j = n_j/(n_i + n_j), b = 0, c = 0$, where n_i is the cardinality of C_i . In this case:

$$d(C_q, C_S) = \frac{n_i}{n_i + n_j} d(C_i, C_S) + \frac{n_j}{n_i + n_j} d(C_j, C_S)$$

Unweighted Pair Group Method Centroid (UPGMC) $(a_i = n_i/(n_i + n_j), a_j = n_j/(n_i + n_j), b = -n_i n_j/(n_i + n_j)^2, c = 0$). In this case:

$$d_{qs} = \frac{n_i}{n_i + n_i} d_{is} + \frac{n_j}{n_i + n_i} d_{js} - \frac{n_i n_j}{(n_i + n_i)^2} d_{ij}$$

For the UPGMC, if d_{ij} is defined as the squared Euclidean distance between the means of C_i and C_j , then it holds that $d_{qs} = ||m_q - m_s||^2$, where m_q , m_s are the means of C_q , C_s , respectively.

Weighted Pair Group Method Centroid (WPGMC) ($a_i = 1/2, a_j = 1/2, b = -1/4, c = 0$). In this case $d(C_q, C_s) = a_i d(C_i, C_s) + a_j (d(C_j, C_s) + b d(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$

For WPGMC there are cases where $d_{gs} \leq \max\{d_{is}, d_{is}\}$ (crossover)

ightharpoonup Ward or minimum variance algorithm. Here the distance d'_{ij} between C_i and C_j is defined as

$$d'_{ij} = \frac{n_i n_j}{n_i + n_j} || \boldsymbol{m}_i - \boldsymbol{m}_j ||^2$$
 (3)

 d^{\prime}_{qs} can be expressed in terms of d^{\prime}_{is} , d^{\prime}_{js} , d^{\prime}_{ij} as

$$d'_{qs} = \frac{n_i + n_s}{n_i + n_j + n_s} d'_{is} + \frac{n_j + n_s}{n_i + n_j + n_s} d'_{js} - \frac{n_s}{n_i + n_j + n_s} d'_{ij}$$

Remark: Ward's algorithm forms \Re_{t+1} by merging the two clusters that lead to the smallest possible increase of the total variance, i.e.,

$$E_t = \sum_{r=1}^{N-t} \sum_{\boldsymbol{x} \in C_r} ||\boldsymbol{x} - \boldsymbol{m}_r||^2$$

Example 3: Consider the following dissimilarity matrix (Euclidean

distance)
$$P_{0} = \begin{bmatrix} 0 & 1 & 2 & 26 & 37 \\ 1 & 0 & 3 & 25 & 36 \\ 2 & 3 & 0 & 16 & 25 \\ 26 & 25 & 16 & 0 & 1.5 \\ 37 & 36 & 25 & 1.5 & 0 \end{bmatrix}$$

$$\mathcal{R}_{0} = \{\{\underline{x}_{1}\}, \{\underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, \\ \mathcal{R}_{1} = \{\{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, \\ \mathcal{R}_{2} = \{\{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, \\ \mathcal{R}_{3} = \{\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, \\ \mathcal{R}_{4} = \{\{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\}\}$$

$$\mathcal{R}_{0} = \{ \{ \underline{x}_{1} \}, \{ \underline{x}_{2} \}, \{ \underline{x}_{3} \}, \{ \underline{x}_{4} \}, \{ \underline{x}_{5} \} \}, \\
\mathcal{R}_{1} = \{ \{ \underline{x}_{1}, \underline{x}_{2} \}, \{ \underline{x}_{3} \}, \{ \underline{x}_{4} \}, \{ \underline{x}_{5} \} \}, \\
\mathcal{R}_{2} = \{ \{ \underline{x}_{1}, \underline{x}_{2} \}, \{ \underline{x}_{3} \}, \{ \underline{x}_{4}, \underline{x}_{5} \} \}, \\
\mathcal{R}_{3} = \{ \{ \underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3} \}, \{ \underline{x}_{4}, \underline{x}_{5} \} \}, \\
\mathcal{R}_{4} = \{ \{ \underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5} \} \}$$

All the algorithms produce the same sequence of clusterings shown above, yet at different proximity levels:

	SL	CL	WPGMA	UPGMA	WPGMC	UPGMC	Ward
\mathcal{R}_0	0	0	0	0	0	0	0
\mathscr{R}_1	1	1	1	1	1	1	0.5
\mathcal{R}_2	1.5	1.5	1.5	1.5	1.5	1.5	0.75
\mathscr{R}_3	2	3	2.5	2.5	2.25	2.25	1.5
\mathscr{R}_4	16	37	25.75	27.5	24.69	26.46	31.75

 $\{\boldsymbol{x}_5\}$

Example 3 (in detail): (a) The single-link case

$$(\underline{C_q} = C_i \cup C_j, \underline{d(C_q, C_s)} = \min(\underline{d(C_i, C_s)}, \underline{d(C_j, C_s)})$$

 $d(\{x_1, x_2\}, \{x_3\}) = \min(d(\{x_1\}, \{x_3\}), d(\{x_2\}, \{x_3\}))$ $= \min(2,3) = 2$

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$
$\{x_1\}$	0	1	2	26	37
$\{x_2\}$	1	0	3	25	36

	$\{x_1\}$	$\{\boldsymbol{x}_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$
$\{x_1\}$	0	1	2	26	37
$\{x_2\}$	1	0	3	25	36

$$d(\{x_1, x_2\}, \{x_4\}) = \min(26,25) = 25$$

$$\{x_3\}$$
 2 3 0 16 25 $\{x_4\}$ 26 25 16 0 1.5 $\{x_5\}$ 37 36 25 1.5 0

$$\{x_3\}$$
 2 3 0 16 25 $\{x_4\}$ 26 25 16 0 1.5

25

1.5

36

37

$$d(\{x_1, x_2\}, \{x_5\}) = \min(37,36) = 36$$

		$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$
	$\{x_1,x_2\}$	0	2	25	36
P ₁ :	$\{x_3\}$	2	0	16	25
	$\{x_4\}$	25	16	0	1.5
	$\{x_5\}$	36	25	1.5	0

				a	. (
	$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$	
$\{x_1,x_2\}$	0	2	25	36	
$\{x_3\}$	2	0	16	25	
$\{x_4\}$	25	16	0	1.5	
$\{x_5\}$	36	25	1.5	0	

 $d(\{x_1, x_2\}, \{x_4, x_5\}) = min(25,36) = 25$ $d(\{x_3\}, \{x_4, x_5\}) = min(16,25) = 16$

Example 3 (in detail): (a) The single-link case

$$(\underline{C_q} = C_i \cup C_j, \underline{d(C_q, C_s)} = \min(\underline{d(C_i, C_s)}, \underline{d(C_j, C_s)})$$

		$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4, x_5\}$		
D .	$\{x_1,x_2\}$	0	2	25	_	$\{x_1, x_2, x_3\}$
P_2 :	$\{x_3\}$	2	0	16	>	$\{x_3\}$
	$\{x_4,x_5\}$	25	16	0		$\{x_4, x\}$

	$ \{x_1,x_2\} $	$\{x_3\}$	$\{x_4,x_5\}$
$\{x_1,x_2\}$	0	2	25
$\{x_3\}$	2	0	16
$\{x_4,x_5\}$	25	16	0

$$d(\{x_1, x_2, x_3\}, \{x_4, x_5\}) =$$

$$= \min(25,16) = 16$$

		$\{x_1,x_2,x_3\}$	$\{x_4,x_5\}$			$\{x_1,x_2,x_3\}$	$\{x_4,x_5\}$
P_3 :	$\{x_1,x_2,x_3\}$	0	16	>	$\{x_1,x_2,x_3\}$	0	16
	$\{x_4, x_5\}$	16	0		$\{x_4,x_5\}$	16	0

$$P_4: \frac{\{x_1, x_2, x_3, x_4, x_5\}}{\{x_1, x_2, x_3, x_4, x_5\}}$$

$$\mathcal{R}_{0} = \{ \{\underline{x}_{1}\}, \{\underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, (\mathbf{0}) \\
\mathcal{R}_{1} = \{ \{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, (\mathbf{1}) \\
\mathcal{R}_{2} = \{ \{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{1}.5) \\
\mathcal{R}_{3} = \{ \{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{2}) \\
\mathcal{R}_{4} = \{ \{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{16})$$

 $\{\boldsymbol{x}_5\}$

Example 3 (in detail): (b) The complete-link case

$$(\underline{C_q} = C_i \cup C_j, \underline{d(C_q, C_s)} = \max(\underline{d(C_i, C_s)}, \underline{d(C_j, C_s)})$$

 $d(\{x_1, x_2\}, \{x_3\}) = \max(d(\{x_1\}, \{x_3\}), d(\{x_2\}, \{x_3\}))$ $= \max(2,3) = 3$

	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{\boldsymbol{x}_4\}$	$\{x_5\}$
$\{x_1\}$	0	1	2	26	37
6 3		_	_	0-	0.0

	$\{x_1\}$	$\{\boldsymbol{x}_2\}$	$\{\boldsymbol{x}_3\}$	$\{x_4\}$	$\{x_5\}$
$\{x_1\}$	0	1	2	26	37
$\{x_2\}$	1	0	3	25	36

$$d(\{x_1, x_2\}, \{x_4\}) =$$

$$max(26,25) = 26$$

$$\{x_2\}$$
 1 0 3 25 36 $\{x_3\}$ 2 3 0 16 25 $\{x_4\}$ 26 25 16 0 1.5 $\{x_5\}$ 37 36 25 1.5 0

$$\{x_3\}$$
 2 3 0 16 25 $\{x_4\}$ 26 25 16 0 1.5

25

1.5

36

37

$$d(\{x_1, x_2\}, \{x_5\}) =$$

$$max(37,36) = 37$$

		$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$		
	$\{x_1,x_2\}$	0	3	26	37		
D	$\{x_3\}$	3	0	16	25	>	
	$\{x_4\}$	26	16	0	1.5		
	$\{x_5\}$	37	25	1.5	0		

					a	!(
		$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4\}$	$\{x_5\}$	
	$\{x_1,x_2\}$	0	3	26	37	(
>	$\{x_3\}$	3	0	16	25	
	$\{x_4\}$	26	16	0	1.5	
	$\{x_5\}$	37	25	1.5	0	

 $d(\{x_1, x_2\}, \{x_4, x_5\}) =$ max(26,37) = 37 $d(\{x_3\}, \{x_4, x_5\}) =$ max(16,25) = 25

Example 3 (in detail): (b) The complete-link case

$$(C_q = C_i \cup C_j, d(C_q, C_s)) = \max(d(C_i, C_s), d(C_j, C_s))$$

		$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4,x_5\}$		
P_2	$\{x_1,x_2\}$	0	3	37	_	$\{x_1,x_2\}$
1 2	$\{x_3\}$	3	0	25		$\{x_3\}$
	$\{x_4,x_5\}$	37	25	0		$\{x_4,x_5\}$

	$\{x_1,x_2\}$	$\{x_3\}$	$\{x_4,x_5\}$
$\{x_1,x_2\}$	0	3	37
$\{x_3\}$	3	0	25
$\{x_4,x_5\}$	37	25	0

$$d(\{x_1, x_2, x_3\}, \{x_4, x_5\}) =$$

$$= \max(37,25) = 37$$

		$\{x_1,x_2,x_3\}$	$\{x_4,x_5\}$		
P_3 :	$\{x_1,x_2,x_3\}$	0	37	>	$\{x_1,$
	$\{x_4,x_5\}$	37	0		{ x

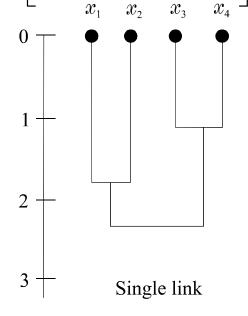
		$\{\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3\}$	$\{x_4,x_5\}$
•	$\{x_1,x_2,x_3\}$	0	37
	$\{x_4,x_5\}$	37	0

$$\mathcal{R}_{0} = \{ \{\underline{x}_{1}\}, \{\underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, (\mathbf{0}) \\
\mathcal{R}_{1} = \{ \{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}\}, \{\underline{x}_{5}\}\}, (\mathbf{1}) \\
\mathcal{R}_{2} = \{ \{\underline{x}_{1}, \underline{x}_{2}\}, \{\underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{1}.5) \\
\mathcal{R}_{3} = \{ \{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}\}, \{\underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{3}) \\
\mathcal{R}_{4} = \{ \{\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}, \underline{x}_{4}, \underline{x}_{5}\}\}, (\mathbf{37})$$

Monotonicity and crossover:

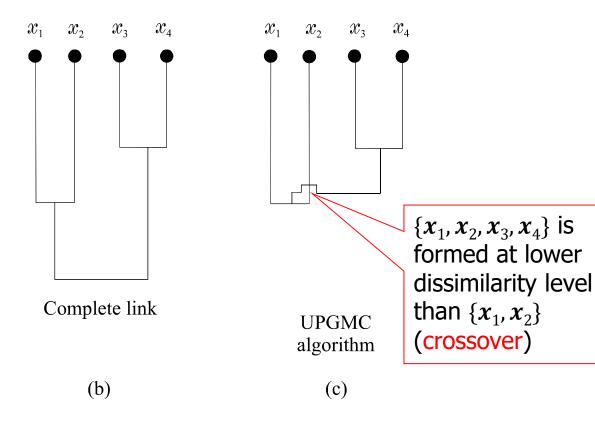
For the following dissimilarity matrix

$$P = \begin{bmatrix} 0 & 1.8 & 2.4 & 2.3 \\ 1.8 & 0 & 2.5 & 2.7 \\ 2.4 & 2.5 & 0 & 1.2 \end{bmatrix}$$



(a)

the dissimilarity dendrograms produced by single link, complete link and UPGMC (the same result is produced if WPGMC is employed) are:



Example (in detail): The WPGMC case

$$(C_q = C_i \cup C_j, \frac{d_{qs}}{d_{qs}} = \frac{1}{2}d_{is} + \frac{1}{2}d_{js} - \frac{1}{4}d_{ij})$$

		$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$	
	$\{x_1\}$	0	1.8	2.4	2.3	
0	$\{x_2\}$	1.8	0	2.5	2.7	>
	$\{x_3\}$	2.4	2.5	0	1.2	
	$\{x_4\}$	2.3	2.7	1.2	0	

		$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_4\}$
	$\{x_1\}$	0	1.8	2.4	2.3
•	$\{x_2\}$	1.8	0	2.5	2.7
	$\{x_3\}$	2.4	2.5	0	1.2
	$\overline{\{x_4\}}$	2.3	2.7	1.2	0

$$d_{(3,4),1} = \frac{1}{2}d_{3,1} + \frac{1}{2}d_{4,1} - \frac{1}{4}d_{3,4}$$

$$= \frac{1}{2}2.4 + \frac{1}{2}2.3 - \frac{1}{4}1.2 = 2.05$$

$$d_{(3,4),2} = \frac{1}{2}d_{3,2} + \frac{1}{2}d_{4,2} - \frac{1}{4}d_{3,4}$$

$$= \frac{1}{2}2.5 + \frac{1}{2}2.7 - \frac{1}{4}1.2 = 2.3$$

		$\{x_1\}$	$\{x_2\}$	$\{x_3,x_4\}$
D . •	$\{x_1\}$	0	1.8	2.05
' 1 ·	$\{x_2\}$	1.8	0	2.3
	$\{x_3, x_4\}$	2.05	2.3	0

	$\{x_1\}$	$\{x_2\}$	$\{x_3,x_4\}$		
$\{x_1\}$	0	1.8	2.05		
$\{x_2\}$	1.8	0	2.3		
$\{x_3, x_4\}$	2.05	2.3	0		
d					

}	$\mathfrak{R}_0 = \{\{\underline{x}_1\}, \{\underline{x}_2\}, \{\underline{x}_3\}, \{\underline{x}_4\}\}, (0)$
	$\mathcal{R}_1 = \{\{\underline{x}_1\}, \{\underline{x}_2\}, \{\underline{x}_3, \underline{x}_4\}\}, (1.2)$
	$\mathcal{R}_2 = \{\{\underline{x}_1, \underline{x}_2\}, \{\underline{x}_3, \underline{x}_4\}\}, (1.8)$
	$\mathcal{R}_3 = \{\{\underline{x}_1, \underline{x}_2, \underline{x}_3, \underline{x}_4\}\}, (1. 275 !!)$

 P_2 : $\begin{cases} x_1, x_2 \\ x_3, x_4 \end{cases}$ 0 1.275 $\begin{cases} x_3, x_4 \\ x_3, x_4 \end{cases}$ 1.275 0

$d_{(1,2),(3,4)}$	$d_{1,(3,4)} = \frac{1}{2}d_{1,(3,4)}$	$+\frac{1}{2}d_{2,(3,4)}$	$-\frac{1}{4}d_{1,2}$
$= \frac{1}{2}2$	$2.05 + \frac{1}{2}2.3$	$-\frac{1}{4}1.8 = 1.2$	275

 $\{x_1, x_2, x_3, x_4\}$ $\{x_1, x_2, x_3, x_4\}$ 0

Monotonicity condition:

If clusters C_i and C_j are selected to be merged in cluster C_q , at the tth level of the hierarchy, the condition

$$d(C_q, C_k) \ge d(C_i, C_j)$$

must hold for all C_k , $k \neq i, j, q$.

In other words, the monotonicity condition implies that a clustering is formed at higher dissimilarity level than any of its components.

Remarks:

- Monotonicity is a property that is exclusively related to the clustering algorithm and not to the (initial) proximity matrix.
- An algorithm that does not **satisfy** the monotonicity condition, does not necessarily **produce** dendrograms with crossovers.
- Single link, complete link, UPGMA, WPGMA and the Ward's algorithm satisfy the monotonicity condition, while UPGMC and WPGMC do not satisfy it.

Complexity issues:

- GAS requires, in general, $O(N^3)$ operations.
- More efficient implementations require $O(N^2 \log N)$ computational time.
- For a class of widely used algorithms, implementations that require $O(N^2)$ computational time and $O(N^2)$ or O(N) storage have also been proposed.
- Parallel implementations on SIMD machines have also been considered.