Clustering algorithms

Konstantinos Koutroumbas

Unit 2

Proximity measures

Types of features

Categorized with respect to their domain

Continuous (the domain is a continuous subset of \Re).

Discrete (the domain is a finite discrete set).

Binary or dichotomous (the domain consists of two possible values).

Categorized with respect to the relative significance of the values they take

Nominal (the values code states, e.g., the gender of a person).

Ordinal (the values are meaningfully ordered, e.g., the rating of the services of a hotel (poor, good, very good, excellent)).

Interval-scaled (the difference of two values is meaningful but their ratio is meaningless, e.g., temperature in ${}^{o}C$).

Ratio-scaled (the ratio of two values is meaningful, e.g., weight).

(A) Between vectors

(1) Dissimilarity measure (between vectors of X) is a function

$$d: X \times X \to \Re$$

with the following properties

1.
$$\exists d_0 \in \Re: \mathbf{0} \leq d_0 \leq d(x, y) < +\infty, \forall x, y \in X$$

2.
$$d(\mathbf{x}, \mathbf{x}) = d_0, \forall \mathbf{x} \in X$$

3. $d(x, y) = d(y, x), \forall x, y \in X$

Examples: Euclidean distance, Manhattan distance etc.

If in addition:

4.
$$d(x, y) = d_0 \Leftrightarrow x = y$$

5. $d(x, z) \le d(x, y) + d(y, z), \forall x, y, z \in X$ (triangular inequality)

d is called **metric** dissimilarity measure.

(A) Between vectors

(2) Similarity measure (between vectors of X) is a function

$$s: X \times X \to \Re$$

Examples: inner product, Tanimoto distance etc.

with the following properties

1.
$$\exists s_0 \in \Re: 0 \leq s(x, y) \leq s_0 < +\infty, \forall x, y \in X$$

2.
$$s(x, x) = s_0, \forall x \in X$$

3.
$$s(x, y) = s(y, x), \forall x, y \in X$$

If in addition:

4.
$$s(x, y) = s_0 \Leftrightarrow x = y$$

5.
$$\frac{1}{s(x,z)} \le \frac{1}{s(x,y)} + \frac{1}{s(y,z)}, \forall x, y, z \in X$$

NOTE:

Similarity measures and dissimilarity measures are also referred as proximity measures.

NOTATION:

- Similarity measure: s dissimilarity measure: d
- proximity measures: 60

s is called **metric** similarity measure.

Exercise:

Consider the case where the elements of *X* are **scalars**.

Which of the following is

- (a) a dissimilarity measure,
- **(b)** a **metric** dissimilarity measure?

1.
$$d_1(x, y) = |x - y|$$

2.
$$d_2(x,y) = |x^2 - y^2|$$

3.
$$d_3(x, y) = \cos(x - y)$$

4.
$$d_4(x, y) = \sin(|x - y|)$$

(B) Between sets

Let
$$D_i \subset X$$
, $i = 1, ..., k$, and $U = \{D_1, ..., D_k\}$.

A **proximity measure** (similarity or dissimilarity) \wp on U is a function $\wp: U \times U \to \Re$

For dissimilarity measure the following properties should hold

1.
$$\exists d_0 \in \Re: 0 \le d_0 \le d(D_i, D_j) < +\infty, \forall D_i, D_j \in X$$

2.
$$d(D_i, D_i) = d_0, \forall D_i \in X$$

3.
$$d(D_i, D_j) = d(D_j, D_i), \forall D_i, D_j \in X$$

Question: What is the definition when \wp stands for a similarity measure?

If in addition:

$$4. \quad d(D_i, D_j) = d_0 \iff D_i = D_j$$

5.
$$d(D_i, D_k) \le d(D_i, D_j) + d(D_j, D_k), \forall D_i, D_j, D_k \in X$$

d is called **metric** dissimilarity measure.

(B) Between sets

NOTE: The **definition** of the <u>proximity functions between sets</u> **passes through** the definition of <u>proximity functions between a point and a set</u>.

Roadmap for the next few slides:

Proximity functions between a point and a set

- Nonparametric case
- Parametric case
 - Point representatives
 - Mean vector
 - Mean center
 - Median center
 - > Hyperplane representatives
 - > Hypersphere representatives
 - **>** ..

(B) Between sets

NOTE: The **definition** of the <u>proximity functions between sets</u> **passes through** the definition of <u>proximity functions between a point and a set</u>.

Roadmap for the next few slides:

Proximity functions between a point and a set

- Nonparametric case
- Parametric case
 - Point representatives
 - Mean vector
 - Mean center
 - Median center
 - > Hyperplane representatives
 - > Hypersphere representatives
 - > ...

Remark: Having in mind that a cluster is actually a set C, a proximity function between a point x and a set C actually **quantifies** the resemblance/relation of x with the cluster C.

Let
$$X = \{x_1, \dots, x_N\}$$
 and $x \in X, C \subset X$

Definitions of $\wp(x,C)$:

(a) All points of C contribute to the definition of $\mathcal{P}(x,C)$ (nonparametric repr.).

Dissimilarity functions	Similarity functions
Max dissimilarity function	Min similarity function
$d_{max}^{ps}(\mathbf{x}, C) = max_{\mathbf{y} \in C} d(\mathbf{x}, \mathbf{y})$	$s_{min}^{ps}(\boldsymbol{x},C) = min_{\boldsymbol{y} \in C} s(\boldsymbol{x}, \boldsymbol{y})$
Min dissimilarity function	<u>Max</u> similarity function
$d_{min}^{ps}(\boldsymbol{x},C) = min_{\boldsymbol{y} \in C} d(\boldsymbol{x},\boldsymbol{y})$	$s_{min}^{ps}(\boldsymbol{x},C) = max_{\boldsymbol{y} \in C} s(\boldsymbol{x},\boldsymbol{y})$
Average dissimilarity function	<u>Average</u> similarity function
$d_{avg}^{ps}(\mathbf{x}, C) = \frac{1}{n_C} \sum_{\mathbf{y} \in C} d(\mathbf{x}, \mathbf{y})$	$s_{avg}^{ps}(\mathbf{x}, C) = \frac{1}{n_C} \sum_{\mathbf{y} \in C} s(\mathbf{x}, \mathbf{y})$

 n_C is the cardinality of C.

(B) Between sets

NOTE: The **definition** of the <u>proximity functions between sets</u> **passes through** the definition of <u>proximity functions between a point and a set</u>.

Roadmap for the next few slides:

Proximity functions between a point and a set

- Nonparametric case
- Parametric case
 - Point representatives
 - Mean vector
 - Mean center
 - Median center
 - > Hyperplane representatives
 - > Hypersphere representatives
 - > ...

Definitions of $\wp(x,C)$ (cont.):

(b) A representative of C, r_C , contributes to the definition of $\wp(x,C)$ (parametric repr.).

In this case

$$\wp(\mathbf{x},C) = \wp(\mathbf{x},r_C)$$

Typical **point** representatives are:

The mean vector

$$m_p = \frac{1}{n_C} \sum_{y \in C} y$$
 $\frac{n_C}{\text{cardinality of } C}$.

The mean center

$$m_C \in C$$
: $\sum_{y \in C} d(m_C, y) \leq \sum_{y \in C} d(z, y), \forall z \in C$

- The median center

 $m_{med} \in C: med(d(m_{med}, y)|y \in C) \leq med(d(z, y)|y \in C), \forall z \in C$

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in certain applications (e.g., object identification using clustering techniques).

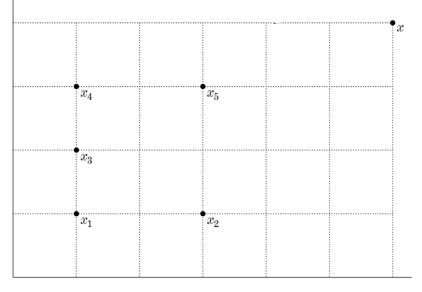
Definitions of $\wp(x, C)$ (cont.):

(b) A representative of C, r_C , contributes to the definition of $\wp(x,C)$. In this case $\wp(x,C) = \wp(x,r_C)$

Exercise 5: Let $C = \{x_1, x_2, x_3, x_4, x_5\}$, where $\mathbf{x_1} = [1,1]^T$, $\mathbf{x_2} = [3,1]^T$, $\mathbf{x_3} = [1,2]^T$, $\mathbf{x_4} = [1,3]^T$, $\mathbf{x_5} = [3,3]^T$. All points lie in the discrete space $\{0,1,2,\ldots,6\}^2$. Use the Euclidean distance to measure the dissimilarity between two vectors in C.

- (a) Determine the mean vector, the mean center and the median center of C.
- (b) Compute the distance of point $\mathbf{x} = [6,4]^T$ from \mathbf{C} using the above defined

representatives (where it is valid).



Definitions of $\wp(x,C)$ (cont.):

(b) A representative of C, r_C , contributes to the definition of $\wp(x,C)$.

In this case

$$\mathscr{D}(\mathbf{x},C)=\mathscr{D}(\mathbf{x},r_C)$$

Exercise 5:
$$\mathscr{D}(x,C) = \mathscr{D}(x,r_C)$$
Mean vector: $\frac{1}{5}(x_1 + x_2 + x_3 + x_4 + x_5) = \frac{1}{5}(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix}) = \frac{1}{5}\begin{bmatrix} 9 \\ 10 \end{bmatrix} = \begin{bmatrix} 1.8 \\ 2 \end{bmatrix}$

Mean center:

	x_1	\boldsymbol{x}_2	x_3	x_4	x_5	SUM	
x_1	0	2	1	2	2.82	7.82	
\boldsymbol{x}_2	2	0	2.23	2.82	2	9.05	
\boldsymbol{x}_3	1	2.23	0	1	2.23	6.46	\rightarrow Mean center = x_3
x_4	2	2.82	1	0	2	7.82	
x_5	2.82	2	2.23	2	0	9.05	x_4 x_5

Median center:

	x_1	x_2	x_3	x_4	x_5	Med
x_1	0	2	1	2	2.82	2
\boldsymbol{x}_2	2	0	2.23	2.82	2	2
\boldsymbol{x}_3	1	2.23	0	1	2.23	1
x_4	2	2.82	1	0	2	2
x_5	2.82	2	2.23	2	0	2

 x_1

 \rightarrow Median center = x_3

13

(B) Between sets

NOTE: The **definition** of the <u>proximity functions between sets</u> **passes through** the definition of <u>proximity functions between a point and a set</u>.

Roadmap for the next few slides:

Proximity functions between a point and a set

- Nonparametric case

Parametric case

- > Point representatives
 - Mean vector
 - Mean center
 - Median center
- Hyperplane representatives
- > Hypersphere representatives
- > ..

Definitions of $\wp(x, C)$ (cont.):

(b) A representative of C, r_C , contributes to the definition of $\mathcal{O}(x,C)$.

In this case
$$\wp(x,C) = \wp(x,r_C)$$

Linear-shaped clusters:

- Such clusters occur e.g., in computer vision applications.
- In this case, a hyperplane is a better representative for such clusters
- Equation of a hyperplane *H*:

$$\sum_{j=1}^{l} a_j x_j + a_0 = \mathbf{a}^T \mathbf{x} + a_0 = 0$$

where $\mathbf{x} = [x_1, x_2, ..., x_l]^T$, $\mathbf{a} = [a_1, a_2, ..., a_l]^T$ is the direction vector of \mathbf{H} and \mathbf{a}_0 is its offset.

- Distance of a point x from $H: d(x, H) = min_{z \in H} d(x, z)$
- If d(x, z) is the Euclidean distance, it is

$$d(x, H) = \frac{|a^T x + a_0|}{||a||} \qquad ||a|| = \sqrt{\sum_{j=1}^{l} \alpha_j^2}$$

Definitions of $\wp(x, C)$ (cont.):

(b) A representative of C, r_C , contributes to the definition of $\wp(x,C)$.

In this case
$$\wp(x,C) = \wp(x,r_C)$$

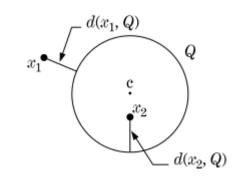
Hyperspherical clusters:

- Such clusters occur e.g., in computer vision applications.
- In this case, a hypersphere is a better representative of such clusters
- Equation of a hypersphere Q:

$$(\mathbf{x} - \mathbf{c})^T (\mathbf{x} - \mathbf{c}) = r^2$$

 $(x-c)^T(x-c)=r^2$ where $x=[x_1,x_2,...,x_l]^T$, $\mathbf{c}=[c_1,c_2,...,c_l]^T$ is the center of \mathbf{Q} and \mathbf{r} is its radius.

- Distance of a point ${m x}$ from ${m Q}$: ${m d}({m x},{m Q})=min_{{m z}\in Q}d({m x},{m z})$
- For Euclidean distance between two points, d(x, Q) has a geometric insight.



However, other non-geometric alternatives have also been proposed.

Proximity functions between two sets

Remark: Having in mind that a cluster is actually a set *C*, a proximity function between two sets actually **quantifies** the resemblance/relation between two clusters.

Let
$$X = \{x_1, ..., x_N\}$$
 and $D_i, D_j \subset X$ with $n_i = |D_i|, n_j = |D_j|$.

Definitions of $\wp(D_i, D_j)$:

(a) All points of each set **contribute** to the definition of $\wp(D_i, D_j)$.

Dissimilarity functions	Similarity functions
Max dissimilarity function $d_{max}^{SS}(D_i, D_j) = max_{x \in D_i, y \in D_j} d(x, y)$	Min similarity function $s_{min}^{SS}(D_i, D_j) = min_{x \in D_i, y \in D_j} s(x, y)$
Min dissimilarity function $d_{min}^{SS}(D_i, D_j) = min_{x \in D_i, y \in D_j} d(x, y)$	Max similarity function $s_{max}^{ss}(D_i, D_j) = max_{x \in D_i, y \in D_j} s(x, y)$
Average dissimilarity function $d_{avg}^{SS}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} d(x, y)$	Average similarity function $s_{avg}^{SS}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{y \in D_j} s(x, y)$

Proximity functions between two sets

- **Definitions** of $\wp(D_i, D_i)$ (cont.):
- (b) Each set D_i is represented by a point representative m_i .
- Mean proximity function

$$\mathcal{D}_{mean}^{SS}(D_{i}, D_{j}) = \mathcal{D}(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

$$d_{mean}^{SS}(D_{i}, D_{j}) = d(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

$$s_{mean}^{SS}(D_{i}, D_{j}) = s(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

$$d_{e}^{SS}(D_{i}, D_{j}) = \sqrt{\frac{n_{i}n_{j}}{n_{i}+n_{j}}} \mathcal{D}(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

$$d_{e}^{SS}(D_{i}, D_{j}) = \sqrt{\frac{n_{i}n_{j}}{n_{i}+n_{j}}} d(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

$$s_{e}^{SS}(D_{i}, D_{j}) = \sqrt{\frac{n_{i}n_{j}}{n_{i}+n_{j}}} s(\boldsymbol{m}_{i}, \boldsymbol{m}_{j})$$

NOTE: Proximity functions between a vector \mathbf{x} and a set \mathbf{C} may be derived from the above functions if we set $D_i = \{\mathbf{x}\}$.

In the sequel we consider the cases:

- (A) Real-valued vectors **dissimilarity** measures (DMs)
- $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$
- (B) Real-valued vectors **similarity** measures (SMs)
- (C) Discrete-valued vectors **similarity-dissimilarity** measures
- (D) Mixed-valued vectors **dissimilarity** and **similarity** measures

NOTE: Some of the measures below may seem "weird". However, they have been tailored for certain types of applications.

(A) Real-valued vectors – dissimilarity measures (DMs) $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$

• Weighted l_p metric DMs

$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^l w_i |x_i - y_i|^p\right)^{1/p}$$

Instances of special interest are obtained for:

$$p = 1 \rightarrow d_1(x, y) = \sum_{i=1}^l w_i |x_i - y_i|$$
 (l_1 or Manhattan or city block dist.)

$$p=2 \rightarrow d_2(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^l w_i (x_i - y_i)^2}$$
 (l_2 or Euclidean distance)

$$p = \infty \rightarrow d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i=1,\dots,l} w_i |x_i - y_i| (l_{\infty} \text{ or maximum distance})$$

NOTES:

 \checkmark For $w_i = 1$, we obtain the unweighted versions of the l_p metrics.

$$\checkmark$$
 It holds: $d_{\infty}(x, y) \leq d_{2}(x, y) \leq d_{1}(x, y)$

(A) Real-valued vectors – dissimilarity measures (DMs)

Mahalanobis distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T B(\mathbf{x} - \mathbf{y})}$$

$$\mathbf{x} = [x_1, ..., x_l]^T$$
$$\mathbf{y} = [y_1, ..., y_l]^T$$

B is symmetric, positive definite matrix

- Other measures
 - $-d_G(x, y) = -log_{10} \left(1 \frac{1}{l} \sum_{i=1}^{l} \frac{|x_i y_i|}{|b_i a_i|} \right)$

•Features may take positive and/or negative values

•Normalization per feature:

$$0 \le \frac{|x_i - y_i|}{|b_i - a_i|} \le 1$$

where b_i and a_i are the maximum and the minimum values of the i-th feature, among the vectors of X (dependence on the current data set)

$$-d_Q(\mathbf{x}, \mathbf{y}) = \sqrt{\frac{1}{l} \sum_{i=1}^{l} \left(\frac{x_i - y_i}{x_i + y_i}\right)^2}$$

- Features may take only non-negative values
- •Normalization per feature:

$$0 \le \frac{|x_i - y_i|}{x_i + y_i} \le 1$$

(B) Real-valued vectors -similarity measures (SMs)

Inner product

$$\mathbf{x} = [x_1, \dots, x_l]^T$$

$$\mathbf{y} = [y_1, \dots, y_l]^T$$

$$s_{inner}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y} = \sum_{i=1}^l x_i y_i$$

- It is usually used either (i) for non-negative valued vectors or (ii) for normalized vectors, i.e., $||x|| = \rho$.
- Concerning (ii), in order to comply with the non-negativity requirement in the definition of the similarity measure, we may consider the similarity measure s_{inner}(x, y) + ρ²

Cosine similarity measure

$$s_{cosine}(x, y) = \frac{x^T y}{||x|| \cdot ||y||}$$

where
$$||x|| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^l x_i^2}$$
 and $||y|| = \sqrt{y^T y} = \sqrt{\sum_{i=1}^l y_i^2}$.

- (B) Real-valued vectors –similarity measures (SMs)
- Pearson's correlation coefficient

$$r_{Pearson}(x, y) = \frac{x_d^T y_d}{||x_d|| \cdot ||y_d||} \in [-1, 1]$$

where
$$\mathbf{x}_d = [x_1 - \bar{x}, ..., x_l - \bar{x}]^T$$
, $\mathbf{y}_d = [y_1 - \bar{y}, ..., y_l - \bar{y}]^T$ with $\bar{x} = \frac{1}{l} \sum_{i=1}^l x_i$ and $\bar{y} = \frac{1}{l} \sum_{i=1}^l y_i$, respectively.

A related dissimilarity measure:

$$D(x, y) = \frac{1 - r_{Pearson}(x, y)}{2} \in [0, 1]$$

 $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$

(covariance)

between x, 3

(B) Real-valued vectors -similarity measures (SMs)

Tanimoto distance

$$\mathbf{x} = [x_1, \dots, x_l]^T$$

$$\mathbf{y} = [y_1, \dots, y_l]^T$$

$$s_T(x, y) = \frac{x^T y}{||x||^2 + ||y||^2 - x^T y}$$

Algebraic manipulations give

$$s_T(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + \frac{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}{\mathbf{x}^T \mathbf{y}}}$$

The larger the agreement between x, y, the larger the $s_T(x, y)$.

NOTE: $s_T(x, y)$ is inversely proportional to the Euclidean distance and proportional to the inner product.

Other measure:

$$s_C(x, y) = 1 - \frac{\sqrt{(x - y)^T (x - y)}}{||x|| + ||y||} \in [0, 1]$$

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs)

Let F_i be the discrete set of values the i-th feature (nominal/categorical

attribute) can take

and n_i be its cardinality, i = 1, ..., l.

$$\mathbf{x} = [x_1, \dots, x_l]^T$$

$$\mathbf{y} = [y_1, \dots, y_l]^T$$

Consider two *l*-dimensional vectors

$$\mathbf{x} = [x_1, x_2, ..., \mathbf{x}_k, ..., x_l]^T \in F_1 \times F_2 \times ... \times F_k \times ... \times F_l$$

$$\mathbf{y} = [y_1, y_2, ..., \mathbf{y}_k, ..., y_l]^T \in F_1 \times F_2 \times ... \times F_k \times ... \times F_l$$

The similarity measure s(x, y) is defined as

$$s(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{l} w_k s_k(x_k, y_k)$$

where $s_k(x_k, y_k)$ is the **feature** similarity measure between the values x_k, y_k of the k-th feature.

Thus, in order to define s(x, y), we need to **define** $s_k(x_k, y_k)$.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs)

Example: Let l=3 and

$$F_1 = \{a, b, c\}$$

 $F_2 = \{1, 2, 3, 4\}$
 $F_3 = \{A, B, C\}$

 $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$

Consider the vectors:

$$\mathbf{x} = [x_1, x_2, x_3]^T = [a, 2, A]^T$$

 $\mathbf{y} = [y_1, y_2, y_3]^T = [a, 3, B]^T$

That is,
$$x_1 = a$$
, $y_1 = a$, $x_2 = 2$, $y_2 = 3$, $x_3 = A$, $y_3 = B$.

Thus

$$s_1(x_1, y_1) = s_1(a, a)$$

 $s_2(x_2, y_2) = s_2(2, 3)$
 $s_3(x_3, y_3) = s_3(A, B)$

and

$$s(\mathbf{x}, \mathbf{y}) = w_1 \cdot s_1(a, a) + w_2 \cdot s_2(2, 3) + w_3 \cdot s_3(A, B)$$

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs)

Let F_i be the **discrete** set of values the *i*-th (nominal/categorical) feature can

take and n_i be its cardinality, i=1,...,l.

$$S(x,y) = \sum_{k=1}^{l} w_k s_k(x_k, y_k)$$

Recall that, in order to define s(x, y), we need to **define** $s_k(x_k, y_k)$.

Each $s_k(\cdot,\cdot)$ is completely **defined** by the associated similarity matrix.

If $F_k = \{1, 2, ..., q\}$, the similarity matrix associated with the k-th feature is

1	2	• • •	\boldsymbol{q}
$s_k(1,1)$	$s_k(1,2)$		$s_k(1,q)$
$s_k(2,1)$	$s_k(2,2)$		$s_k(2,q)$
		٠.	
$s_k(q,1)$	$s_k(q,2)$		$s_k(q,q)$
	$s_k(1,1)$ $s_k(2,1)$	$s_k(1,1)$ $s_k(1,2)$ $s_k(2,1)$ $s_k(2,2)$ 	$s_k(1,1)$ $s_k(1,2)$

NOTE: (a) The similarity matrix is completely defined if all of its entries are defined.
(b) Such a similarity matrix is associated with a similarity measure

for a **single** discrete-valued feature.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs)

There are plenty of similarity measures for single discrete-valued features. **Defining** such a similarity measure (*) **filling** the entries of the similarity measure.

Defining such a similarity measure ⇔ **filling** the entries of the similarity matrix. The entries filling may be carried out by utilizing:

- Simply 0 and 1 entries
- The size of the data set N
- The number of attributes/features n involved in the current problem
- The cardinality of F_q , n_q .
- The number of times, $f_k(j)$, the j-th symbol is encountered as k-th feature in the data set
- The frequency of occurrence of the j-th symbol as k-th feature in the data set, defined as $\hat{p}_k(j) = f_k(j)/N$, or, in some cases, $p_k^2(j) = \frac{f_k(j)(f_k(j)-1)}{N(N-1)}$

	1	2		q
1	$s_k(1,1)$	$s_k(1,2)$		$s_k(1,q)$
2	$s_k(2,1)$	$s_k(2,2)$		$s_k(2,q)$
			٠.	
q	$s_k(q,1)$	$s_k(q,2)$		$s_k(q,q)$

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) These similarity measures can be categorized in terms of:
- ✓ The <u>way they fill the entries of the similarity matrix</u>
 - Fill the diagonal entries only
 - II. Fill the non-diagonal entries only
 - III. Fill both diagonal and non-diagonal entries
- ✓ The <u>arguments they use to define the measure</u> (information theoretic, probabilistic etc).

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) Indicative measures from category I: Fill the diagonal entries only.

Goodall3 measure

$$s_{k}(x_{k}, y_{k}) = \begin{cases} 1 - p_{k}^{2}(x_{k}), & \text{if } x_{k} = y_{k} \\ 0, & \text{otherwise} \end{cases}, w_{k} = \frac{1}{l}$$

$$s_{k}(x_{k}, y_{k}) \in [0, 1 - \frac{2}{N(N-1)}]$$

Comment: It **assigns** a high similarity **if** the matching values are **infrequent** regardless of the frequencies of the other values.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) Indicative measures from category II: Fill the non-diagonal entries only.

• Eskin measure
$$s_k(x_k, y_k) = \begin{cases} 1, & \text{if } x_k = y_k \\ \frac{n_k^2}{n_k^2 + 2}, & \text{otherwise} \end{cases}, \quad w_k = \frac{1}{l}$$

Comments:

- It gives more weight to mismatches for attributes that take many values.
- It has been used for record-based network intrusion detection data.

Inverse Occurrence Frequency (IOF) measure
$$s_k(x_k, y_k) \in [\frac{1}{1 + (\log \frac{N}{2})^2}, 1]$$

$$s_k(x_k, y_k) = \begin{cases} 1, & \text{if } x_k = y_k \\ \frac{1}{1 + \log f_k(x_k) \cdot \log f_k(y_k)}, & \text{otherwise} \end{cases}, \quad w_k = \frac{1}{l}$$

Comments:

- It assigns lower similarity to mismatches on more frequent values...
- It is related to the concept of inverse document frequency which comes from information retrieval, where it is used to signify the relative number of documents that contain a specific word. 31

- (C) Discrete-valued vectors similarity & dissimilarity measures (SMs-DMs) Indicative measures from category III: Fill both diagonal & non-diagonal entries
- Lin measure

$$s_k(x_k, y_k) = \begin{cases} 2 \cdot \log \hat{p}_k(x_k), & \text{if } x_k = y_k \\ 2 \cdot \log (\hat{p}_k(x_k) + \hat{p}_k(y_k)), & \text{otherwise} \end{cases}$$

$$w_k = \frac{1}{\sum_{i=1}^l (\log \hat{p}_i(x_i) + \log \hat{p}_i(y_i))}$$

 $s_k(x_k, y_k) \in [-2logN, 0]$ for match $s_k(x_k, y_k) \in [-2log\frac{N}{2}, 0]$ for mismatch

Comments:

It gives

- higher weight to matches on frequent values, and
- lower weight to mismatches on infrequent values.

It has been **used** in word similarity procedure.

(*) S. Boriah, V. Chandola, and V. Kumar, "Similarity measures for categorical data: A Comparative Evaluation," in *Proc. SDM*, pp. 243-254, 2008.

(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs)

	Feat. 1	Feat. 2	Feat. 3
x_1	а	1	А
\boldsymbol{x}_2	b	4	В
\boldsymbol{x}_3	а	3	В
x_4	С	2	А
x_5	а	2	А
\boldsymbol{x}_6	а	2	В
x_7	b	1	В
x_8	С	1	Α
x_9	b	1	Α
x_{10}	а	3	В
x_{11}	а	4	Α
x_{12}	b	4	С
x_{13}	b	3	А
x_{14}	С	2	А
<i>x</i> ₁₅	a	2	С

Exercise 1: Consider the data set *X* given in the adjacent table.

Determine the similarity between the vectors

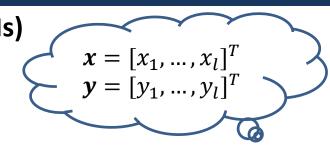
$$\mathbf{x} = [a, 2, A]^T$$
 and

$$\mathbf{y} = [a, 3, B]^T$$
 utilizing

- (a) The overlap measure
- (b) The Goodall3 measure
- (c) The Eskin measure
- (d) The IOF measure
- (e) The Lin measure.

Exercise 2: Define corresponding dissimilarity measures for the above defined similarity measures.

(D) Mixed-valued vectors –similarity measures (SMs) Here some coordinates of the feature vectors are real-valued, while others are discrete-valued.



How to **measure** the proximity between x and y?

- Adopt a proximity measure suitable for real-valued vectors (only for ordinal discrete-valued features).
- Convert the real-valued features to discrete-valued ones (e.g., via quantization) and employ a discrete proximity measure (again, only for ordinal discrete-valued features).
- For the more general case where nominal, ordinal, interval-scaled and ratio-scaled features co-exist, we treat each one of them separately, as follows:

(D) Mixed-valued vectors -similarity measures (SMs)

The similarity between x and y is defined as:

$$s(x, y) = \frac{\sum_{k=1}^{l} s_k(x_k, y_k)}{\sum_{k=1}^{l} w_k}$$

 $\mathbf{x} = [x_1, \dots, x_l]^T$ $\mathbf{y} = [y_1, \dots, y_l]^T$

where:

- $w_k = 0$, if at least one of x_k and y_k is undefined or (optionally) both x_k and y_k are equal to 0. Otherwise $w_k = 1$.
- If x_k and y_k are binary, $s_k(x_k, y_k) = \begin{cases} 1, & if x_k = y_k = 1 \ (or \ x_k = y_k) \\ 0, & otherwise \end{cases}$
- If x_k and y_k are nominal or ordinal, $s_k(x_k, y_k) = \begin{cases} 1, & x_k = y_k \\ 0, & otherwise \end{cases}$
- If x_k and y_k are interval or ratio scaled-valued

$$s_k(x_k, y_k) = 1 - \frac{|x_k - y_k|}{r_k}$$

This is the overlap measure. Other options can also be used.

where r_k is the width of the interval where the k-th coordinates of the vectors of X lie.

(D) Mixed-valued vectors –similarity measures (SMs)

Exercise 2: Consider the data set given in the following table. Each row corresponds to a vector and each column to a feature. The first three features are ratio scaled, the 4th one is nominal and the 5th one is ordinal. Utilizing the previous similarity measure, compute the similarities between any pair of feature vectors.

Company	1 st year budget	2 nd year budget	3 rd year budget	Activity abroad	Rate of services 0: not good 1: good 2: very good
$1(x_1)$	1.2	1.5	1.9	0	1
$2(x_2)$	0.3	0.4	0.6	0	0
$3(x_3)$	10	13	15	1	2
$4(x_4)$	6	6	7	1	1