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Cluster validity

» Consider a data set X. Then
(a) application of an inappropriate algorithm or
(b) application of an appropriate algorithm with inappropriate values of its

(hyper)parameters
may lead to poor results. Hence the need for further evaluation of

clustering results is apparent.

» Cluster validity: a task that evaluates quantitatively the results of a
clustering algorithm.

» A clustering structure C, resulting from an algorithm may be either
* A hierarchy of clusterings or
* Asingle clustering.



Cluster validity

Cluster validity may be approached through three possible directions:

* C is evaluated in terms of an independently drawn structure, imposed on X
a priori. The criteria used in this case are called external criteria.

* C is evaluated in terms of quantities that involve the vectors of X themselves
(e.g., proximity matrix). The criteria used in this case are called internal
criteria.

 C is evaluated by comparing it with other clustering structures, resulting
from the application of the same clustering algorithm but with different
parameter values, or other clustering algorithms, on X. Criteria of this kind
are called relative criteria.



Cluster validity

» Cluster validity for the cases of external and internal criteria

e Hypothesis testing is employed.

e The null hypothesis Hj,, which is a statement of randomness concerning
the structure of X, is defined.

e The generation of a reference data population of size v under the random
hypothesis takes place.

e An appropriate statistic, g, whose values are indicative of the structure of
a data set, is defined. The value of g that results for our data set X, g7, is
compared against the r values of g, q4, ..., q,, associated with the r
members of the reference (random) population.

oIf g* is (a) greater than (1 — p) - r, (b) less than p - r, (c) less than g -7 OR
greater than (1 — g) - 1, the null hypothesis is rejected(*).

Ways for generating reference populations under the null hypothesis (each
one used in different situations) (**):
*Random position hypothesis. Monte Carlo simulations.

*Random graph hypOthe?‘is' (**)The three cases are related to the kind of
eRandom label hypothesis. the adopted statistic g (see next slide).

(*)Actually, we approximate the p(q|H,), via
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Cluster validity

» Cluster validity for the cases of external and internal criteria

eRandom position hypothesis.
It requires that “all the arrangements of the N vectors in a specific region of
the [-dimensional data space are equally likely to occur”.

It can be used with respect to both external and internal criteria.



Cluster validity

» Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

e For the comparison of C with an independently drawn partition P of X
—Rand statistic
—Jaccard statistic
—Fowlkes-Mallows index
—Hubert’s I' statistic
—Normalized I’ statistic

eFor assessing the agreement between P and the proximity matrix P.
—I" statistic.

Statistics suitable for internal criteria
eValidation of hierarchy of clusterings
—Cophenetic correlation coefficient (CPCC)
— Y statistic
—Kudall’s T statistic.
eValidation of individual clusterings
—I" statistic
—Normalized I' statistic



Cluster validity

» Cluster validity for the cases of external and internal criteria
Statistics suitable for external criteria
e For the comparison of € with an independently drawn partition P of X
—Rand statistic
Let P be an external partition of X into groups and C a clustering

A pair (xl-, xj) is denoted as

SS if x;, x; belong to the same cluster in € and to the same group in P.
SD if x;, x; belong to the same cluster in € and to different groups in P.
DS if x;, x; belong to different clusters in € and to the same group in P.
DD if x;, x; belong to different clusters in € and to different groups in P.

Let a= number of SS, b= number of SD, c=number of DS, d= number of DD
M=total number of pairs of points (= a + b + ¢ + d)

Rand statistic R = (a + d)/M

The greater the value of R the greater the degree of agreement between
P and C.
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» Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

Example: Consideradataset X = {x; € H; = [O,l]l,i =1,...,100} so that
the first 25 (x; — x,c) stem from N(u,0.2 - I), the next 25 (x5, — xz() from
N(p,,0.2 - 1), the next 25 (xs; — x-c) from N (3, 0.2 - I') and the final 25
(X76 — X100) from N(u,, 0.2 - 1), where

pn, = [0.2,0.2,0.21%, p, = [0.5,0.2,0.8]%, u; = [0.5,0.8,0.2]7, p, =
[0.8,0.8,0.8]" and / is the 3 x 3

External information: The points form the following four different groups P; =

X1, s X35}, Pp = {X26, ..., X50}, P3= {Xs51, ..., X785}, Pa= {X76, ..., X100}-
Thus, we have the partition P = {P;, P,, P3, P, }.

We run the k-means algorithm for m = 4 and let C = {C;, C,, C3,C4} be the
resulting clustering.

Question: Are C and P in good agreement with each other?
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» Cluster validity for the cases of external and internal criteria
Statistics suitable for external criteria
Example (cont.):
* Compute the Rand(C,P) (= 0.91).
*Fori=1tor (=100)
> Generate a data set X' of 100 vectors in Hz, so the vectors are uniformly
distributed in it.
» Assign each vector yji € X' to the group where the respective xXj €X
belongs according to P.

> Run the k-means algorithm for X* and let C' be the resulting clustering
> Compute Rand(C' , P)
* End for

* Set the significance level p to 0.05.

It turns out that Rand (C, P) is greater than (1 — p) - r = 95 values
Rand(Ci ,P),i =1, ...,r (actually, it is greater than all 100 values).

Thus, the null hypothesis that C is in agreement with P by chance is rejected
at significance level 0.05.

Exercise: What would be the case if the clusters variances where 0.8 - I?
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» Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria
Example (cont.): External information: P = {P;, P,, P3, P,} =

{{xp o X5 h X6, s X105 (X110, o X155 {X16, o :xzo}}

Data set under study
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C = {ClJ CZJ C3, C4}

.

{X1, X2, X14, X16)
{X12, X4, X11, X13, X15, X17, X190},
{x6' x7» x8» xlOi x5}, {x31 .X'9, x18' xZO}
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» Cluster validity for the cases of external and internal criteria
Statistics suitable for internal criteria
eValidation of individual clusterings

—[ "statistic

Consider two N X N matrices X = [x;;] and Y = [y;;], drawn independently
from each other. Then

1 N N
rx,y) = mzizl 2}_:1 XijVij

or, for symmetric matrices,

1 ~—N N
p(X,y):_z z N
o MLai=1laj=i e

°
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» Cluster validity for the cases of external and internal criteria

Statistics suitable for internal criteria

eValidation of individual clusterings

Example: Consider adataset X = {x; € H; = [0,1]1,1' =1,...,100} so that the
first 25 (x; — x,5) stem from N (4, 0.1 - I), the next 25 (x5, — x5() from
N(p,,0.1-1),the next 25 (xs; — x-c) from N(us3, 0.1 - I') and the final 25
(X76 — X100) from N(u,, 0.1 - 1), where

pu, =1[0.2,0.21", u, =[0.8,0.2]", u; = [0.2,0.8]%, u, = [0.8,0.8]" and / is
the 2 X 2 .

Run the k-means algorithm and let C = {C;, C,, C3, C,} be the resulting
clustering.

Question: Does the clustering agrees with the “internal structure” of the data
by chance (Hy hypothesis) or not (alternative hypothesis)?

Let the internal structure of X be reflected in the dissimilarity matrix Py,
based on the squared Euclidean distance.
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» Cluster validity for the cases of external and internal criteria
Statistics suitable for internal criteria

eValidation of individual clusterings

Example (cont.):

Define the matrix Yyxn = [v;;] as follows

|1, if x; and x;j belong to dif ferent clusters
Yij = {O, otherwise
Compute I'(Y, P)(= 0.57).
*Fori=1tor (=100)
> Generate a data set X' of 100 vectors uniformly distributed in H,.
> Compute the associated P’ dissimilarity matrix.
> Run the k-means algorithm forX! and let C' be the resulting clustering
> Form the N X N matrix Y’ as above and compute F(Yi , P! )
* End for
* Set the significance level p to 0.05.
It turns out that I'(Y, P) is greater than (1 — p) - r = 95 values F(Yi  P* ), i =
1, ..., 7 (actually, it is greater than 99 values).
Thus, the null hypothesis that C is in agreement with P by chance is rejected

o -




Cluster validity

» Cluster validity for the cases of external and internal criteria
Statistics suitable for internal criteria

eValidation of individual clusterings
Exercise 1: What would be the case if the clusters variances where 0.2 - [?

Exercise 2: What would change in the above procedure of y;;’s were defined
as

|1, if x; and x; belong to the same cluster
Yij 0, otherwise
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» Cluster validity for the cases of relative criteria
Let A denote the set of parameters of a clustering algorithm.
Statement of the problem
e “Among the clusterings produced by a specific clustering algorithm, for

different values of the parameters in A, choose the one that best fits the
data set X”.

We consider two cases
(a) A does not contain the number of clusters m.

The estimation of the best set of parameter values is carried out as
follows:

* Run the algorithm for a wide range of values of its parameters.

e Plot the number of clusters, m, versus the parameters of A.

e Choose the widest range for which m remains constant.

e Adopt the clustering that corresponds to the values of the parameters
in A that lie in the middle of this range.
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Cluster validity

» Cluster validity for the cases of relative criteria

(b) A does contain the number of clusters m.

The estimation of the best set of parameter values is carried out as
follows:
Select a suitable performance index g (the best clustering is identified
in terms of q).
For m = m,,i;, 1o My, 04

— Run the algorithm 7 times using different sets of values for the

other parameters of A and each time compute q.

— Choose the clustering that corresponds to the best q.
End for
Plot the best values of g for each m versus m.
The presence of a significant knee indicates the number of clusters
underlying X. Adopt the clustering that corresponds to that knee.
The absence of such a knee indicates that X possesses no clear
clustering structure.
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Cluster validity

» Cluster validity for the cases of relative criteria

» Statistics suitable for relative criteria
eHard clustering
— Modified Hubert I statistic

— Dunn and Dunn-like indices —
200 — b = mimr— min._ wr )
m — mlnlzl,...,m mln]:l+1,...,‘m maxk=1,__,mdiam(Ck)

d(CiJ Cj) = mianCi,yEde(xr y)
diam(C) = maxyyecd(x,y) L
— Davies-Bouldin (DB) and DB-like indices —— -
—The silhouette index
eFuzzy clustering

— Indices for clusters with point representatives

o Partition coefficient (PC)

o Partition entropy coefficient (PE)

o Xie-Beni (XB) index

o Fukuyama-Sugeno index

o Total fuzzy hypervolume

o Average partition density

o Partition density

—
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» Cluster validity for the cases of relative criteria
» Statistics suitable for relative criteria
eFuzzy clustering (cont.)
— Indices for shell-shaped clusters
o Fuzzy shell density
o Average partition shell density
o Shell partition density
o Total fuzzy average shell thickness
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» Cluster validity for the cases of relative criteria
» Statistics suitable for relative criteria

eHard clustering - The silhouette index

Cc,: The cluster where x; belongs.

a;: The average distance of x; from all x; € (..

b;: The average distance of x; from its closest cluster (.
__bi—ai | - (s, € [—
Si = Taxbuad) Silhouette width of x; (s; € [—1,1]).
Values of s; close to
+1 indicate that x; is well clustered,
0 indicate that x; is at the border of two clusters

—1 indicate that x; is poorly clustered.

Silhouette index of a cluster: §; = %Zi:xiecj si,J=1,...,m(S; € [-1,1])
J

Global silhouette index: S,,, = %Z}":lSj (S, € [—-1,1])

Note: The higher the value of §,,, the better the clustering.
Usage: Plot §,,, versus m. The position of the maximum indicates the true
number of clusters.



Clustering tendency

Facts

* Most clustering algorithms impose a clustering structure to the data set X at
hand.

* However, X may not possess a clustering structure.

» Before we apply any clustering algorithm on X, it must first be verified that X
possesses a clustering structure. This is known as the clustering tendency
procedure.

* Clustering tendency is heavily based on hypothesis testing.

Specifically, it is based on testing the randomness (null) hypothesis (H,)

against the regularity (H;) hypothesis and the clustering (H,) hypothesis .

» Randomness hypothesis (Hp): “The vectors of X are randomly distributed,
according to the uniform distribution in the sampling window (the
compact convex support set for the underlying distribution of the vectors
of the data set X) of X”.

» Regularity hypothesis (H;): “The vectors of X are regularly spaced (that is
they are not too close to each other) in the sampling window”.

» Clustering hypothesis (H,): “The vectors of X form clusters”.



Clustering tendency

en(q|Hy), p(q|H;) , p(q|H,) are estimated via Monte Carlo simulations

Some tests for spatial randomness, when the input space dimensionality
greater than or equal to 2 are:

eTests based on structural graphs

—Test that utilizes the idea of the minimum spanning tree (MST)
eTests based on nearest neighbor distances

—The Hopkins test

—The Cox-Lewis test

A method based on sparse decomposition.

* kX
*E ok %
¥ *




Clustering tendency

» Important notes:

e Clustering algorithms should be applied on X, only if the randomness and
the regularity hypotheses are rejected. Otherwise, methods different than
clustering must be used to describe the structure of X.

e Most studies in clustering tendency focus on the detection of compact
clusters.

» The basic steps of the clustering tendency philosophy are:
e Definition of a test statistic g suitable for the detection of clustering
tendency.

e Estimation of the pdf of g under the null (H,) hypothesis, p(q|H,).

e Estimation of p(q|H,) and p(q|H,) (they are necessary for measuring the
power of g (the probability of making a correct decision when Hj is
rejected) against the regularity and the clustering tendency hypotheses).

e Evaluation of g for the data set at hand, X, and examination whether it lies
in the critical interval of p(q|H,), which corresponds to a predetermined
significance level p.



Clustering Algorithms: case study 1

The problem: Propose a method/methodology in order to have an indication
of whether the data s set under study possesses a clustering structure or not.
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Cluste®ng Algorithms: case study 1

The problem: Propose a method/methodology in order to have an indication
of whether the data s set under study possesses a clustering structure or not.
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Clustering Algorithms: case studies

The problem: Propose a method/methodology in order to have an indication
of whether the data s set under study possesses a clustering structure or not.

A possible solution (applied to all but the compact and overlapping clusters case):

* Consider the associated graph where the edges are weighted by the distance
of the corresponding data points.

* Determine the Minimum Spanning Tree (MST) of the graph.

* Check whether its largest edge is “several standard deviations” away from
the mean of the weights of the edges of the MST.

* Alternatively, one can use the statistical hypothesis testing path. That is, to
generate a set of N uniformly randomly distributed data in the space where
the data live and to check the distance of the largest MST edge weight from
the mean of the MST edge weights.

Limitations:

- Overlapping clusters. A possible solution: If we know the “shape” of the
clusters that are expected to be formed by the data, we can run e.g., k-means
(for compact clusters) or algorithms like Fuzzy C Ellipsoidal Shells (FCES) for the
case of ellipsoidally-shaped clusters, or Gustafson-Kessel for linearly-shaped
clusters, we can run the algorithm for a range of the number of clusters m and
to search for a significant “knee” in the graph of the cost function vs m.
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THE END



