

Clustering algorithms

Konstantinos Koutroumbas

Unit 12

- Cluster validity
- Clustering tendency

Cluster validity

- Consider a data set X . Then
 - (a) application of an **inappropriate algorithm** **or**
 - (b) application of an appropriate algorithm with **inappropriate values** of its (hyper)parametersmay lead **to poor results**. Hence the need for **further evaluation** of clustering results is apparent.
- **Cluster validity**: a task that **evaluates** **quantitatively** the **results** of a clustering algorithm.
- A **clustering structure** C , resulting from an algorithm may be either
 - A **hierarchy of clusterings** or
 - A **single clustering**.

Cluster validity

Cluster validity may be approached through three possible directions:

- C is evaluated in terms of an independently drawn structure, imposed on X *a priori*. The criteria used in this case are called external criteria.
- C is evaluated in terms of quantities that involve the vectors of X themselves (e.g., proximity matrix). The criteria used in this case are called internal criteria.
- C is evaluated by comparing it with other clustering structures, resulting from the application of the same clustering algorithm but with different parameter values, or other clustering algorithms, on X . Criteria of this kind are called relative criteria.

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

- Hypothesis testing is employed.
- The null hypothesis H_0 , which is a statement of randomness concerning the structure of X , is defined.
- The generation of a reference data population of size r under the random hypothesis takes place.
- An appropriate statistic, q , whose values are indicative of the structure of a data set, is defined. The value of q that results for our data set X , q^* , is compared against the r values of q , q_1, \dots, q_r , associated with the r members of the reference (random) population.
- If q^* is (a) greater than $(1 - \rho) \cdot r$, (b) less than $\rho \cdot r$, (c) less than $\frac{\rho}{2} \cdot r$ OR greater than $\left(1 - \frac{\rho}{2}\right) \cdot r$, the null hypothesis is rejected(*).

Ways for generating reference populations under the null hypothesis (each one used in different situations) (**):

- Random position hypothesis.
- Random graph hypothesis.
- Random label hypothesis.

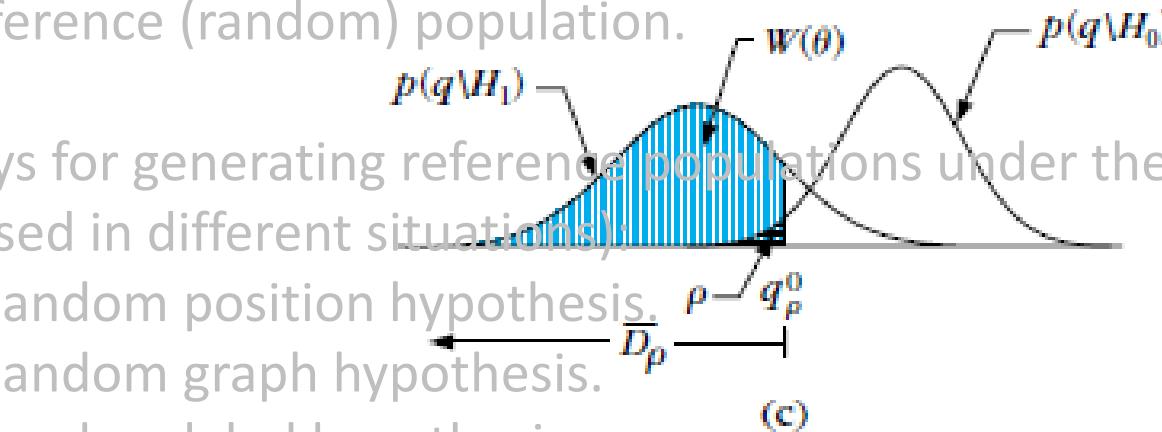
(*)Actually, we approximate the $p(q|H_0)$, via Monte Carlo simulations.

(**)The three cases are related to the kind of the adopted statistic q (see next slide).

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

- Hypothesis testing is employed.
- The null hypothesis H_0 , which is a statement of randomness concerning the structure of X , is defined.
- The generation of a reference data population of size r under the random hypothesis takes place.
- An appropriate statistic, q , whose values are indicative of the structure of a data set, is defined. The value of q that results from our data set X is compared against the r values of q associated with the members of the reference (random) population.



Ways for generating reference populations under the null hypothesis (each one used in different situations):

- Random position hypothesis.
- Random graph hypothesis.
- Random label hypothesis.

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

• Random position hypothesis.

It **requires** that “all the arrangements of the N vectors in a specific region of the l -dimensional data space are equally likely to occur”.

It can be used with respect to both external and internal criteria.

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

- For the comparison of C with an independently drawn partition P of X
 - Rand statistic
 - Jaccard statistic
 - Fowlkes-Mallows index
 - Hubert's Γ statistic
 - Normalized Γ statistic
- For assessing the agreement between P and the proximity matrix P .
 - Γ statistic.

Statistics suitable for internal criteria

- Validation of hierarchy of clusterings
 - Cophenetic correlation coefficient (CPCC)
 - γ statistic
 - Kudall's τ statistic.
- Validation of individual clusterings
 - Γ statistic
 - Normalized Γ statistic

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

- For the comparison of C with an independently drawn partition P of X
 - Rand statistic

Let P be an **external partition** of X into **groups** and C a **clustering**

A pair (x_i, x_j) is denoted as

SS if x_i, x_j belong to the **same cluster** in C and to the **same group** in P .

SD if x_i, x_j belong to the **same cluster** in C and to **different groups** in P .

DS if x_i, x_j belong to **different clusters** in C and to the **same group** in P .

DD if x_i, x_j belong to **different clusters** in C and to **different groups** in P .

Let a = number of SS, b = number of SD, c =number of DS, d = number of DD
 M =total number of pairs of points ($= a + b + c + d$)

Rand statistic $R = (a + d)/M$

The **greater** the value of R the **greater** the **degree of agreement** between P and C .

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

Example: Consider a data set $X = \{x_i \in H_l \equiv [0,1]^l, i = 1, \dots, 100\}$ so that the first 25 ($x_1 - x_{25}$) stem from $N(\mu_1, 0.2 \cdot I)$, the next 25 ($x_{26} - x_{50}$) from $N(\mu_2, 0.2 \cdot I)$, the next 25 ($x_{51} - x_{75}$) from $N(\mu_3, 0.2 \cdot I)$ and the final 25 ($x_{76} - x_{100}$) from $N(\mu_4, 0.2 \cdot I)$, where

$\mu_1 = [0.2, 0.2, 0.2]^T$, $\mu_2 = [0.5, 0.2, 0.8]^T$, $\mu_3 = [0.5, 0.8, 0.2]^T$, $\mu_4 = [0.8, 0.8, 0.8]^T$ and I is the 3×3 identity matrix.

External information: The points form the following four different groups $P_1 = \{x_1, \dots, x_{25}\}$, $P_2 = \{x_{26}, \dots, x_{50}\}$, $P_3 = \{x_{51}, \dots, x_{75}\}$, $P_4 = \{x_{76}, \dots, x_{100}\}$. Thus, we have the partition $P = \{P_1, P_2, P_3, P_4\}$.

We run the k -means algorithm for $m = 4$ and let $C = \{C_1, C_2, C_3, C_4\}$ be the resulting clustering.

Question: Are C and P in good agreement with each other?

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for external criteria

Example (cont.):

- Compute the $\text{Rand}(\mathbf{C}, \mathbf{P})$ ($= 0.91$).
- For $i = 1$ to r ($= 100$)
 - Generate a data set X^i of 100 vectors in H_3 , so the vectors are uniformly distributed in it.
 - Assign each vector $\mathbf{y}_j^i \in X^i$ to the group where the respective $\mathbf{x}_j \in X$ belongs according to \mathbf{P} .
 - Run the k -means algorithm for X^i and let \mathbf{C}^i be the resulting clustering
 - Compute $\text{Rand}(\mathbf{C}^i, \mathbf{P})$
- End for
- Set the significance level ρ to 0.05.

It turns out that $\text{Rand}(\mathbf{C}, \mathbf{P})$ is greater than $(1 - \rho) \cdot r = 95$ values

$\text{Rand}(\mathbf{C}^i, \mathbf{P}), i = 1, \dots, r$ (actually, it is greater than all 100 values).

Thus, the null hypothesis that \mathbf{C} is in agreement with \mathbf{P} by chance is rejected at significance level 0.05.

Exercise: What would be the case if the clusters variances were $0.8 \cdot I$?

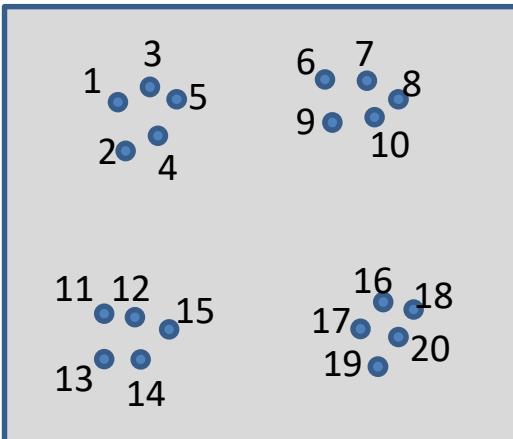
Cluster validity

➤ Cluster validity for the cases of external and internal criteria

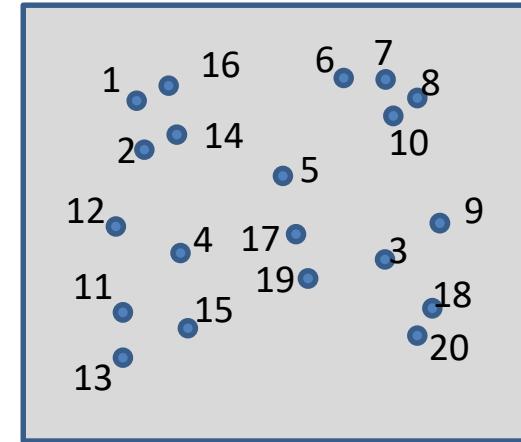
Statistics suitable for external criteria

Example (cont.): External information: $P = \{P_1, P_2, P_3, P_4\} = \{\{x_1, \dots, x_5\}, \{x_6, \dots, x_{10}\}, \{x_{11}, \dots, x_{15}\}, \{x_{16}, \dots, x_{20}\}\}$

Data set under study



Randomly generated data set



Clustering result

$$\begin{aligned}C &= \{C_1, C_2, C_3, C_4\} \\&= \left\{ \{x_1, \dots, x_5\}, \{x_6, \dots, x_{10}\}, \right. \\&\quad \left. \{x_{11}, \dots, x_{15}\}, \{x_{16}, \dots, x_{20}\} \right\}\end{aligned}$$

Clustering result

$$\begin{aligned}C &= \{C_1, C_2, C_3, C_4\} \\&= \left\{ \begin{array}{l} \{x_1, x_2, x_{14}, x_{16}\}, \\ \{x_{12}, x_4, x_{11}, x_{13}, x_{15}, x_{17}, x_{19}\}, \\ \{x_6, x_7, x_8, x_{10}, x_5\}, \{x_3, x_9, x_{18}, x_{20}\} \end{array} \right\}\end{aligned}$$

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for internal criteria

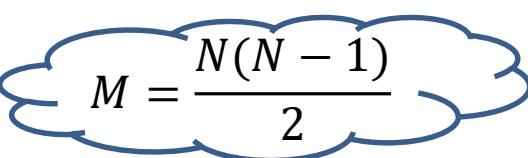
- Validation of individual clusterings
 - Γ statistic

Consider two $N \times N$ matrices $X = [x_{ij}]$ and $Y = [y_{ij}]$, drawn **independently** from **each other**. Then

$$\Gamma(X, Y) = \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N x_{ij} y_{ij}$$

or, for **symmetric matrices**,

$$\Gamma(X, Y) = \frac{1}{M} \sum_{i=1}^N \sum_{j=i+1}^N x_{ij} y_{ij}$$


$$M = \frac{N(N - 1)}{2}$$

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for internal criteria

- Validation of individual clusterings

Example: Consider a data set $X = \{x_i \in H_l \equiv [0,1]^l, i = 1, \dots, 100\}$ so that the first 25 ($x_1 - x_{25}$) stem from $N(\mu_1, 0.1 \cdot I)$, the next 25 ($x_{26} - x_{50}$) from $N(\mu_2, 0.1 \cdot I)$, the next 25 ($x_{51} - x_{75}$) from $N(\mu_3, 0.1 \cdot I)$ and the final 25 ($x_{76} - x_{100}$) from $N(\mu_4, 0.1 \cdot I)$, where

$\mu_1 = [0.2, 0.2]^T$, $\mu_2 = [0.8, 0.2]^T$, $\mu_3 = [0.2, 0.8]^T$, $\mu_4 = [0.8, 0.8]^T$ and I is the 2×2 identity matrix.

Run the k-means algorithm and let $C = \{C_1, C_2, C_3, C_4\}$ be the resulting clustering.

Question: Does the clustering agrees with the “internal structure” of the data by chance (H_0 hypothesis) or not (alternative hypothesis)?

Let the internal structure of X be reflected in the dissimilarity matrix $P_{N \times N}$, based on the squared Euclidean distance.

Cluster validity

- Cluster validity for the cases of external and internal criteria

Statistics suitable for internal criteria

- Validation of individual clusterings

Example (cont.):

Define the matrix $Y_{N \times N} = [y_{ij}]$ as follows

$$y_{ij} = \begin{cases} 1, & \text{if } x_i \text{ and } x_j \text{ belong to different clusters} \\ 0, & \text{otherwise} \end{cases}$$

Compute $\Gamma(Y, P)$ ($= 0.57$).

- **For** $i = 1$ to r ($= 100$)

- **Generate** a data set X^i of 100 vectors **uniformly distributed** in H_2 .
- **Compute** the associated P^i dissimilarity matrix.
- **Run** the k -means algorithm for X^i and let C^i be the resulting clustering
- **Form** the $N \times N$ matrix Y^i as above and **compute** $\Gamma(Y^i, P^i)$

- **End for**

- Set the significance level ρ to **0.05**.

It turns out that $\Gamma(Y, P)$ is greater than $(1 - \rho) \cdot r = 95$ values $\Gamma(Y^i, P^i)$, $i = 1, \dots, r$ (actually, it is greater than 99 values).

Thus, the **null hypothesis** that C is in **agreement** with P by chance is **rejected**

Cluster validity

➤ Cluster validity for the cases of external and internal criteria

Statistics suitable for internal criteria

- Validation of individual clusterings

Exercise 1: What would be the case if the clusters variances were $0.2 \cdot I$?

Exercise 2: What would change in the above procedure if y_{ij} 's were defined as

$$y_{ij} = \begin{cases} 1, & \text{if } x_i \text{ and } x_j \text{ belong to the same cluster} \\ 0, & \text{otherwise} \end{cases}$$

Cluster validity

➤ Cluster validity for the cases of relative criteria

Let A denote the set of parameters of a clustering algorithm.

Statement of the problem

- “Among the clusterings produced by a specific clustering algorithm, for different values of the parameters in A , choose the one that best fits the data set X ”.

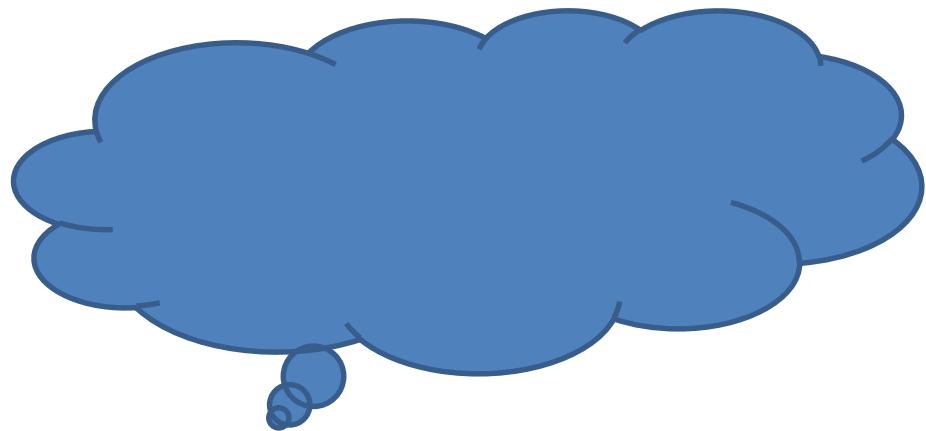
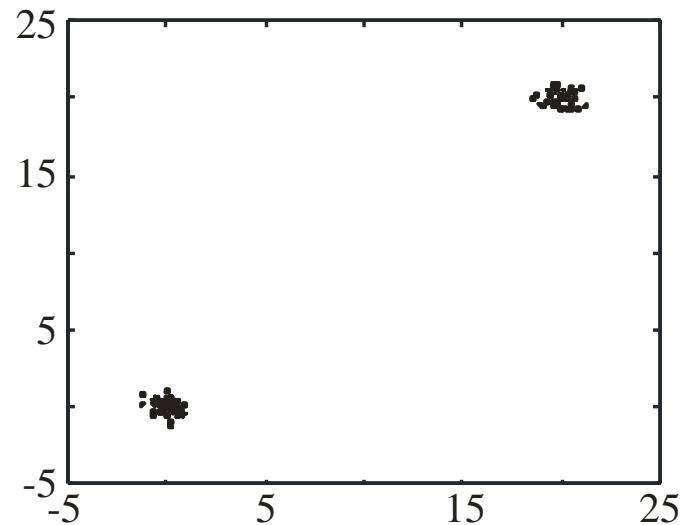
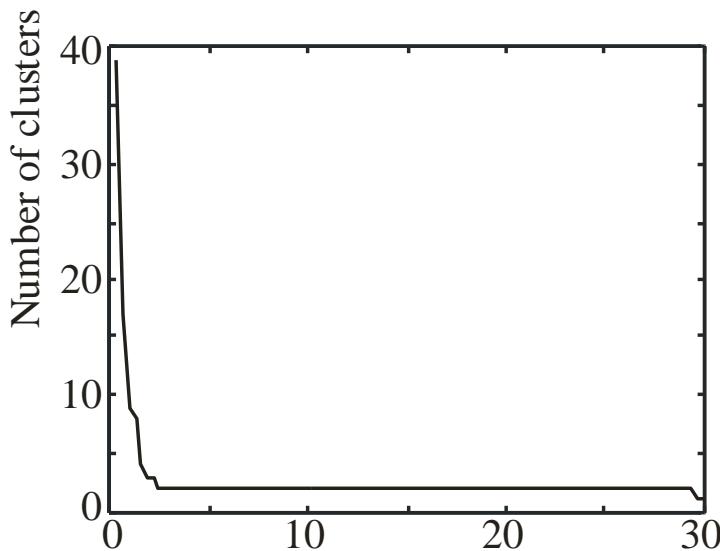
We consider two cases

(a) A **does not** contain the number of clusters m .

The estimation of the best set of parameter values is carried out as follows:

- **Run** the algorithm for a **wide range** of **values of its parameters**.
- **Plot** the number of clusters, m , **versus** the **parameters** of A .
- **Choose** the **widest range** for which m remains **constant**.
- **Adopt** the **clustering** that **corresponds** to the **values** of the parameters in A that **lie** in the **middle** of this **range**.

Example:



Cluster validity

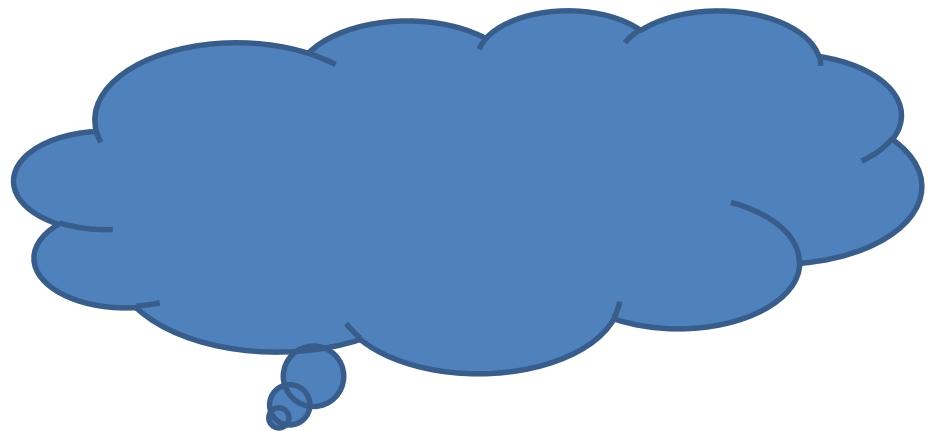
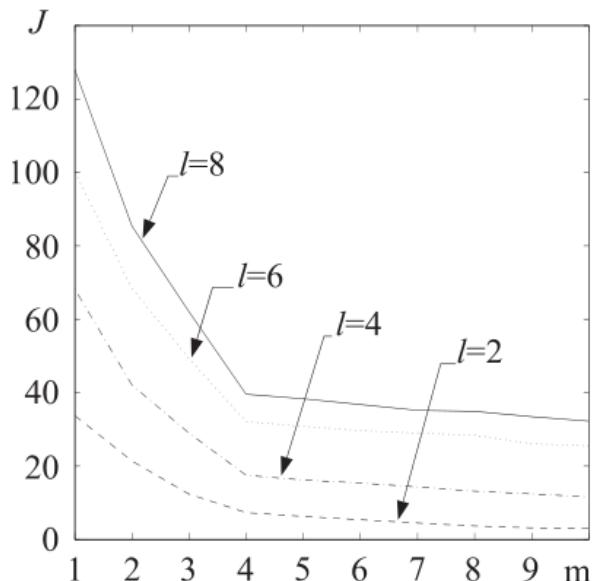
➤ Cluster validity for the cases of relative criteria

(b) A **does** contain the number of clusters m .

The estimation of the best set of parameter values is carried out as follows:

- **Select** a suitable **performance index q** (the best clustering is identified in terms of q).
- **For** $m = m_{min}$ to m_{max}
 - **Run** the **algorithm r times** using different sets of values for the other parameters of A and **each time** compute q .
 - **Choose** the clustering that corresponds to the best q .
- **End for**
- **Plot** the **best values of q** for each m versus m .
- The **presence** of a **significant knee indicates** the number of clusters underlying X . **Adopt the clustering that corresponds to that knee.**
- The **absence** of such a **knee indicates** that X possesses **no** clear clustering structure.

Example:



Clustered data

Non-clustered
data



Cluster validity

➤ Cluster validity for the cases of relative criteria

➤ *Statistics suitable for relative criteria*

- Hard clustering

- Modified Hubert Γ statistic
 - **Dunn** and Dunn-like indices

$$D_m = \min_{i=1, \dots, m} \left\{ \min_{j=i+1, \dots, m} \left(\frac{d(C_i, C_j)}{\max_{k=1, \dots, m} \text{diam}(C_k)} \right) \right\}$$
$$d(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$$
$$\text{diam}(C) = \max_{x, y \in C} d(x, y)$$

- Davies-Bouldin (DB) and DB-like indices
 - The **silhouette index**

- Fuzzy clustering

- Indices for clusters with point representatives
 - o Partition coefficient (PC)
 - o Partition entropy coefficient (PE)
 - o Xie-Beni (XB) index
 - o Fukuyama-Sugeno index
 - o Total fuzzy hypervolume
 - o Average partition density
 - o Partition density

Cluster validity

➤ *Cluster validity for the cases of relative criteria*

➤ *Statistics suitable for relative criteria*

- Fuzzy clustering (cont.)

- Indices for shell-shaped clusters

- Fuzzy shell density

- Average partition shell density

- Shell partition density

- Total fuzzy average shell thickness

Cluster validity

➤ Cluster validity for the cases of relative criteria

➤ *Statistics suitable for relative criteria*

- Hard clustering - The silhouette index

C_{c_i} : The cluster where x_i belongs.

a_i : The **average distance** of x_i from all $x_j \in C_{c_i}$.

b_i : The **average distance** of x_i from its closest cluster C_q .

$s_i = \frac{b_i - a_i}{\max(b_i, a_i)}$: **Silhouette width** of x_i ($s_i \in [-1, 1]$).

Values of s_i close to

+1 indicate that x_i is **well clustered**,

0 indicate that x_i is at the **border** of two clusters

-1 indicate that x_i is **poorly clustered**.

Silhouette index of a cluster: $S_j = \frac{1}{n_j} \sum_{i: x_i \in C_j} s_i, j = 1, \dots, m$ ($S_j \in [-1, 1]$)

Global silhouette index: $S_m = \frac{1}{m} \sum_{j=1}^m S_j$ ($S_m \in [-1, 1]$)

Note: The higher the value of S_m the better the clustering.

Usage: Plot S_m versus m . The **position** of the **maximum** indicates the **true number** of clusters.

Clustering tendency

Facts

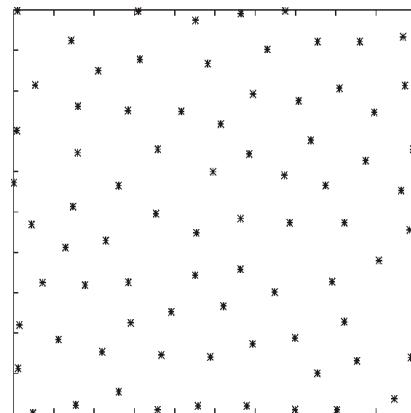
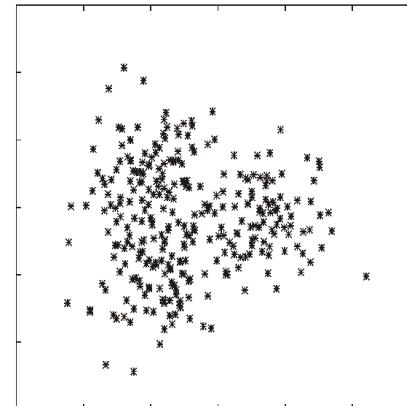
- Most clustering algorithms **impose** a clustering structure to the data set X at hand.
- However, X may not possess a clustering structure.
- Before we apply any clustering algorithm on X , **it must first be verified that X possesses a clustering structure**. This is known as the **clustering tendency** procedure.
- Clustering tendency is heavily based on **hypothesis testing**. Specifically, it is based on testing the randomness (null) hypothesis (H_0) against the regularity (H_1) hypothesis and the clustering (H_2) hypothesis .
 - **Randomness hypothesis (H_0)**: “The vectors of X are randomly distributed, according to the uniform distribution in the sampling window (**the compact convex support set for the underlying distribution of the vectors of the data set X**) of X ”.
 - **Regularity hypothesis (H_1)**: “The vectors of X are regularly spaced (that is they are not too close to each other) in the sampling window”.
 - **Clustering hypothesis (H_2)**: “The vectors of X form clusters”.

Clustering tendency

- $p(q|H_0)$, $p(q|H_1)$, $p(q|H_2)$ are estimated via Monte Carlo simulations

Some tests for spatial randomness, when the input space dimensionality greater than or equal to 2 are:

- Tests based on **structural graphs**
 - *Test that utilizes the idea of the minimum spanning tree (MST)*
- Tests based on **nearest neighbor distances**
 - *The Hopkins test*
 - *The Cox-Lewis test*
- A method based on **sparse decomposition**.



Clustering tendency

➤ Important notes:

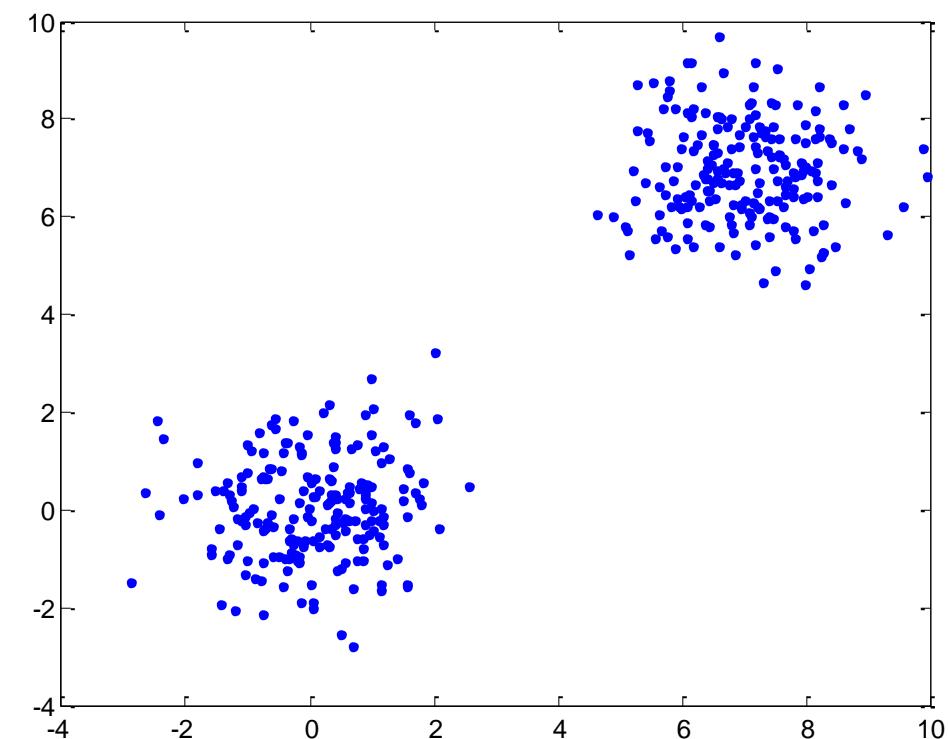
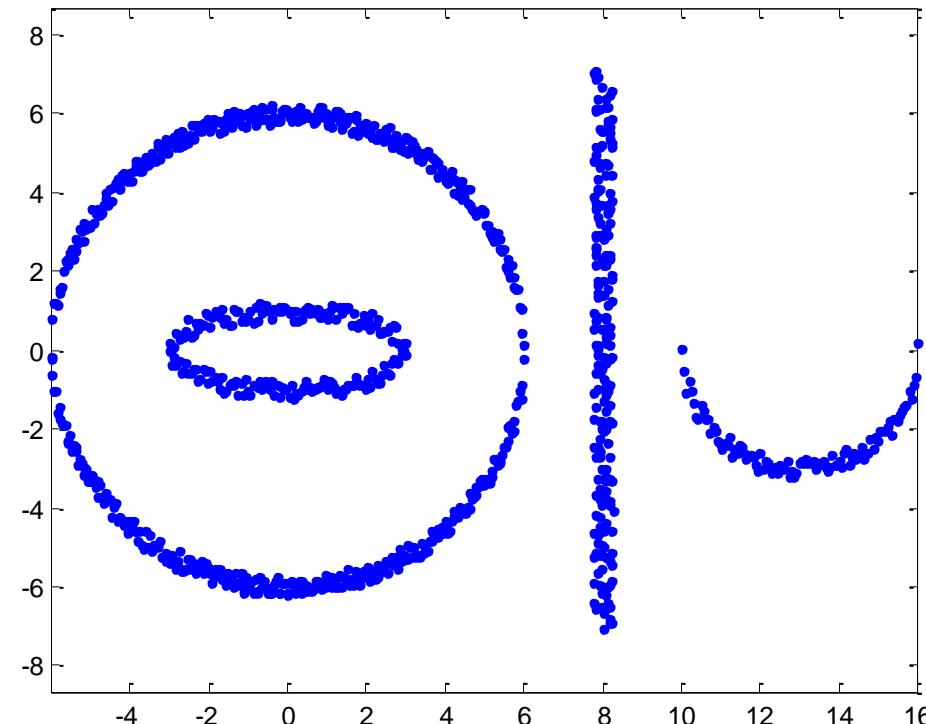
- Clustering algorithms should be applied on X , only if the randomness and the regularity hypotheses are rejected. Otherwise, methods different than clustering must be used to describe the structure of X .
- Most studies in clustering tendency focus on the detection of compact clusters.

➤ The **basic steps** of the clustering tendency philosophy are:

- Definition of a test statistic q suitable for the detection of clustering tendency.
- Estimation of the pdf of q under the null (H_0) hypothesis, $p(q|H_0)$.
- Estimation of $p(q|H_1)$ and $p(q|H_2)$ (they are necessary for measuring the power of q (the probability of making a correct decision when H_0 is rejected) against the regularity and the clustering tendency hypotheses).
- Evaluation of q for the data set at hand, X , and examination whether it lies in the critical interval of $p(q|H_0)$, which corresponds to a predetermined significance level ρ .

Clustering Algorithms: case study 1

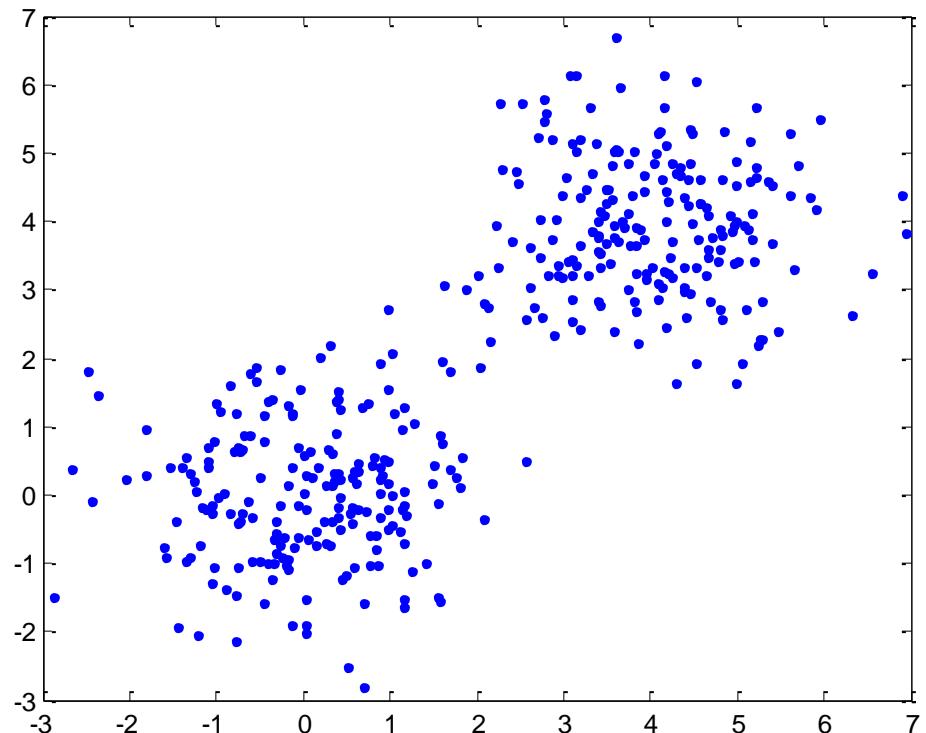
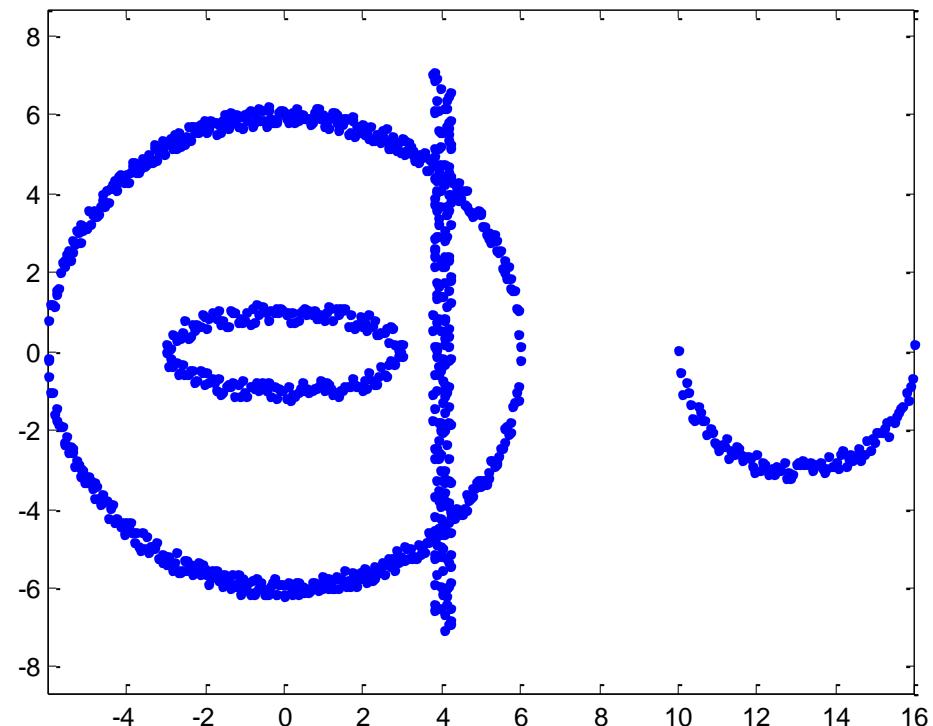
The problem: Propose a method/methodology in order to have an indication of whether the data set under study possesses a clustering structure or not.



Clustering Algorithms: case study 1

rpca-ssa_CR_smooth_image.mat

The problem: Propose a method/methodology in order to have an indication of whether the data set under study possesses a clustering structure or not.



Clustering Algorithms: case studies

The problem: Propose a method/methodology in order to have an indication of whether the data set under study possesses a clustering structure or not.

A possible solution (applied to all but the compact and overlapping clusters case):

- Consider the associated **graph** where the edges are weighted by the distance of the corresponding data points.
- **Determine** the **Minimum Spanning Tree** (MST) of the graph.
- Check whether its **largest edge** is “**several standard deviations**” away from the **mean** of the **weights** of the edges of the MST.
- Alternatively, one can use the **statistical hypothesis testing** path. That is, to generate a set of N uniformly randomly distributed data in the space where the data live and to check the distance of the largest MST edge weight from the mean of the MST edge weights.

Limitations:

- **Overlapping clusters. A possible solution:** If we know the “shape” of the clusters that are expected to be formed by the data, we can run e.g., k-means (for compact clusters) or algorithms like Fuzzy C Ellipsoidal Shells (**FCES**) for the case of ellipsoidally-shaped clusters, or Gustafson-Kessel for linearly-shaped clusters, we can run the algorithm for a range of the number of clusters **m** and to search for a significant “knee” in the graph of the cost function vs **m** .

Clustering Algorithms

THE END