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Clustering algorithms for high dimensional data sets

* What is a high-dimensionality space?
Dimensionality [ of the input space with
20 <[ < few thousands

indicate high-dimensional data sets.

* Problems of considering simultaneously all dimensions in high-dimensional
data sets:

» “Curse of dimensionality”. As a fixed number of points spread out in high-
dimensional spaces, they become almost equidistant (that is, the terms
similarity and dissimilarity tend to become meaningless — alternatively, no
clear structures are defined).

» Several dimensions may be irrelevant to the identification of the clusters
(that is, the clusters usually are identified in subspaces of the original
feature space).

* A way out: Work on subspaces of dimension lower than L.
» Main approaches:
(J Dimensionality reduction clustering approach.
J Subspace clustering approach.



Clustering algorithms for high dimensional data sets
An example:
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Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach
Main idea

* |dentify an appropriate I'-dimensional space H,/ (I' < ).

— The projection of an [-dimensional space to

* Project the data points of X into H/ | an [’ -dimensional space (I < ) is uniquely
L defined via an " X [ projection matrix A.

|

* Apply a clustering algorithm on the projections of the points of X into H/.

Identification of H;» may be carried out using either by:
» Feature generation methods,

» Feature selection methods,

» Random projections.



Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)
Feature generation methods
» They produce new features via suitable transformations applied on the
original ones.
» Typical Methods in this category are:
Principal component analysis (PCA). Singular value decomposition (SVD).
Nonlinear PCA Robust PCA Independent comp. analysis (ICA).
» In general, PCA and SVD methods
* preserve the distances between the points in the high-dimensional
space, when these are mapped to the lower-dimensional space.
* produce compact representations (with reduced number of features) of
the original high-dimensional feature space.
» In some cases feature generation is applied iteratively in cooperation with a
clustering algorithm (k-means, EM).
» They are useful in cases where a significant number of features contributes
to the identification of all physical clusters.
» They are useful when all clusters are formed in the same subspace of the
feature space.



Principal Component Analysis (PCA)

Principal component analysis (PCA):

It transforms the original space to a new orthogonal space (of the same
dimensionality) where the features are uncorrelated. Specifically: along the,
so called, 1t principal axis the maximum possible variance of the data set is
retained, along the 2"Y one the maximum possible remained variance is
retained etc.

Projecting on the first few principal axes space we achieve dimensionality
reduction.




Principal Component Analysis - PCA

Principal Component Analysis (PCA)
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*The black lines show the range of values of the data
points along the initial axes.

*The blue lines show the range of values of the data
points along the principal axes.

*The widest range of values is along the first principal

axis. . . . .
CAUTION: Retaining the maximum possible

variance of the data set DOES NOT imply that
we necessarily retain the cluster separability.
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Subspace clustering
- Solution: Principal component analysis (PCA

-let Xy = [¥1 X2 0 Xy]and Vi =1[Y1 Y2 . Yn] B
1 —— P

- Compute ;1 N {lel <S=D{;;l:x=u+8-y}

- Consider X'jyy = [¥1—H Xp—H - Xy— U] -

- Perform singular value decomposition (SVD) on X' taking
X'ixn = Ul Z'ixen - V' v
- Keep the first [’ singular values (as a consequence take also (a) the first [
columns of U’ and (b) the first I’ columns of V' (< the first I’ rows of IV'")

and approximate X' as
rappr — T
XPP n = U *Zys Vo s
- B = U,y is the subspace basis and
- Yyranw = Zpxg - VT iy contains (in columns) the representations/

projections of the (shifted by u) original data in the lower ['=dim. space.

Theorem: X'?PP" as computed before, is the best approximation of X' wrt
the Frobenius norm, subject to the constraint that the rank of X'4PP" js [,

S ST e —




Subspace clustering

More on SVD

let X'y = [X1 =1 Xz = = Xy — M, with e = -2, x;

In the expression X' ;uny = U'is; - Z'ixn = V' nxn

Y1« (diagonal matrix) contains the singular values of X',y in decreasing
order in its main diagonal ([ < N)

U',«; contains in its columns the eigenvectors of X' X7,
V' yxn contains in its columns the eigenvectors of X'7 X' y..n

Let
—U'=[us uz - Y (u;’s are [-dimensional column vectors)
o, T
/ 1T va ’ : .
— V' =lv1 v - VUy]|=V" =|"2 |(v;’sare N-dimensional column
_VNT_
vectors and v;’’s are N-dimensional row vectors)
5, 0 - 0 - 0]
o Z’ _ O 0'2 cee O 0
XN = | SN T
o o - o : 0




Subspace clustering

More on SVD
Then
T
X’lxN — U,lxl ) 2:,lxN -V N XN
= [u1 u2 ul]
=[u; u U]

O-lulvlT + quzva

Thus, X' is expressed as a sum of rank one matrices u;v;” each one weighted

by its corresponding o;.

g, 0 - 0 - 01[vi"]
T

0 o - 0 0]|v,

0 0 - o; O_ -vNT-

_lelT_

Uzva —

_O'IVIT_

l

+ .-+ UlulvlT = 2 Jl-ul-vl-T
i=1

By neglecting the terms with “small” &;’s, we actually perform

dimensionality reduction, or, in other words, we determine the subspace

where the data “actually live”.



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods

» They identify the original features that are the main contributors to the
formation of the clusters.

» The criteria used to evaluate the “goodness” of a specific subset of
features follow either the (*)

* Wrapper model (The clustering algorithm s first chosen and a set of
features F; is evaluated through the results obtained from the application
of the algorithm to X, where for each point only the features in F; are
taken into account).

* Filter model (The evaluation of a subset of features is carried out using
intrinsic properties of the data, prior to the application of the clustering
algorithm).

» They are useful when all clusters are formed in the same subspace of the
feature space.

(*) R. Kohani, G. John, Wrappers for feature subset selection, Artificial Intelligence, Vol. 97
(1-2), 1997



Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Clustering using Random Projections:

Here H;s is identified in a random manner.

Note: The projection of an [-dimensional space to an [’ -dimensional space
(I" < 1)is uniquely defined via an I’ X [ projection matrix A.

Issues to be addressed:

(a) Proper estimate of I'. Estimates of [’ guarantee (in probability) that the
distances between the points of X, in the original data space will be
preserved (with some distortion) after the projection to a randomly
chosen [' -dim. space, whose projection matrix is constructed via certain
probabilistic rules
Note: Preservation of distances does not necessarily preserves clusters.

(b) Definition of the projection matrix A. Possible rules for constructing A are:
1. Set each entry of A equal to a value stemming from an i.i.d. zero mean,
unit variance Gaussian distribution and then normalize each row to the
unit length.
2. Set each entry of A equal to —1 or +1, with probability 0.5.

3. Set each entry of A equal to +4/3, —/3 or 0, with probs %, % and %, resp.



Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Having defined A:
* Project the points of X into H;/
* Perform a clustering algorithm on the projections of the points of X into H /.

Problem: Different random projections may lead to totally different results.

Solution:

» Perform several random projections H,.

> Apply a clustering algorithm on the projections of X to each H,.
» Combine the clustering results and produce the final clustering.

A method in the above spirit is described next (O (N?)).



Clustering algorithms for high dimensional data sets
Clustering using Random Projections

* Select ['.
* Generate A4, ..., A, different projection matrices using the (b.1) rule given
above.
*Fors=1tor
» Run GPrAS with normal pdfs for the s-th random projection of X.
» Compute the probability that x; belongs to the j-th cluster in the s-th
projection, P(Cj5|xi),i =1,..,N,j=1,..,m;.
> Create the N X N similarity matrix P® = [P;;], whereP;; is the probability

that x; and x; belong to the same cluster,
m: number of clusters

mg
Pisj = z P(Cqs|xi)P(CqS|x]-) in the s-th projection.

|

q=1

* End for

* Compute the N X N average proximity matrix P = [FP;;], so that P;; is the
average of Pisj’s, s=1,..,r.

* Apply GAS (actually its complete link version) on P.

* Plot the similarity between the closest pair of clusters at each iteration
versus the number of iterations.

* Select the clustering that corresponds to the most abrupt change in the
plot.



Clustering algorithms for high dimensional data sets
Subspace Clustering Approach

* This approach deals with the problem where clusters are formed in different
subspaces of the feature space.

* The subspace clustering algorithms (SCA) reveal clusters as well as the
subspaces where they reside.

An example:

R.’!
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Subspace clustering

Preliminaries:
-The dataset X ={x; e RY,i =1,...,N}

- (Affine linear) Subspace S of R!: It is defined via
- avector uin S and
- anl x I’ (basis) matrix B (I’ < 1)
asS={x€R\x=pu+5-y),wherey € R'

- Assuming that all the data points of X lie in an I’-dimensional (affine)
subspace S, in order to determine it, we need to find:
-Avectoru e s
- The dimensionality [ of S
- The [ X I' matrix B.

Vidal R., “Subspace Clustering”, IEEE Transactions on Signal Processing, 28(2), 2011.



Subspace clustering

Basic assumption: In subspace clustering, the clusters formed by the data
points “live” in subspaces of the original [-dimensional data space.

— —— > T ———

S; ={xERl:x=uj+Bi-y} —
- Aim of subspace clustering: Determine O
o

- the number of subspaces m .
- The dimensionalities [4, L5, ..., [,,,, of the subspaces 54, S5, ..., S,
- The basis matrices B¢, B, ..., B)j, o
- The points i, i», ..., iy, of the subspaces 54, 5,, ... ,Sm.o
- The clusters Cy, Cy, ..., Cy,.

O

Usually, it is the case
that each subspace

contains a single cluster




Subspace clustering

Ways to tackle the problem

- Algebraic methods

- Spectral clustering methods

- Iterative cost function optimization methods (hard, probabilistic framework)

Iterative cost function optimization methods (hard framework)
The k-subspace algorithm

Assumption: The number of clusters m and the subspaces dimensionalities
1,15, ..., L, are known.
Let:
. _ 1, Xi (S C]
“Unxem = [uij]' where u;; = {O, otherwise’
-B ={B4, B>, ..., By}
-0 = {”1' Hr, ;ﬂm} .
-Y ={V1, ...V} withY; = {y{,i =1, ...,N} be the set of projections of the

data points to the j-th subspace.



ubspace clustering

| =uj+ Bjyl Projection
Consider the cost function of x; to the j-th subspace |

________

N m .,  ..72 ~~N ~—m @, T } ) 2
](B,,LL,Y,U)ZS‘ 7 uij‘x z Z Ui — U — bjy;
d[=1] bmed j=1 i=1 j=1
This is minimized in a two-stage iterative fashlon (recall k-means)
. / / Jr .,
For fixed H;s, Bjs, y; s:
ill? = i
Define u;; = L Bjy; ‘ = Ming=y, m||x: - Bqyi ”
0, otherwise
For fixed u;;‘s: Solve the following m independent problems
12 N 112
: . —u: — BV I =mi . Z g —u; —B:v!
mln{ﬂj'(Bj ,}’{)} in:ui]:l | xl Il] ]yl mln{”f’(Bj ,}’{)} i=1ul] xl M] ]yl

For each such problem
. / : / Jj
(a) Fix p;s and apply PCA, to estimate B;s, y; 's.

(b) Fix B!s,y!'s and apply the k-means rationale, to estimate p';s.



Subspace clustering

Remark:

There are also subspace clustering methods (e.g., CLIQUE, ENCLUS) that
“quantize” the region where the data belongs through the use of a grid. Then,
clusters (at different subspaces) are defined through boxes that contain a

significant number of data points.



Combinations of clusterings

-Thedataset X = {x; e R, i =1,...,N}

- Ensemble of clusterings of X: € = {R{,R,, ..., R,,}
where R; = {C;*, C;%, ..., ;"™
Cij: the j-th cluster of the i-th clustering
m;: the number of clusters in the i-th clustering.

o @) O

In general, R;‘s are not
constraint to have the
same number of clusters

- Alternative representation of a clustering:

Ri <YV = [yl(l))yl(z)i ---;.'Vi(k); Jyl(N)]
where y; (k) the cluster label of the k-th data point.

Example: Let R; = {C;%, C;%, Ci°} = {{x1, X2, X6, X10}, {X3, X4, X7}, {X5, Xg, Xo}}
Theny; =[1,1,2,2,3,1,2,3,3,1].
The two main issues in this framework are:

(A) The generation of the ensemble of clusterings
(B) The combination of the clusterings.



Combinations of clusterings

A. Generation of ensemble of clusterings

It involves two steps:

(a) The choice of the subspace to project the data points of X.

(b) The application of a clustering algorithm on the resulting projections.

General directions:
- All data, all features:
» All [ features and all N data points are used.
* Either different algorithms are applied
 or the same algorithm with different parameter values (e.g., in k-means,
different number of cluster, or different initial conditions).
- All data, some features:
e All N data points are used.
* n data sets X; are formed from X
= Fither by selecting a number of features (feature distributed clustering)
= or by projecting onto a randomly chosen lower dimensional space.
* The same or different algorithms can be applied on the X;’s.




Combinations of clusterings

A. Generation of ensemble of clusterings
General directions:
- Some data, all features:
» All [ features are used.
* n data sets X; are formed from X using techniques like bootstrapping and
sampling.
* (Usually) the same algorithm is applied on the X;s.
* The points that have not been selected to participate in X; are assigned to
their nearest cluster in R;.

B. Combination of clusterings
Problem: Given € = {R{, R, ..., R,,}, determine the consensus clustering
T — {F]_, Fz, . Fm}

A useful tool in this direction is the co-association matrix C.

ltisan N X N matrix C = [¢;;] with ¢;; = %

where n;; is the number of times where the i-th and the j-th points of X are
assigned to the same cluster, among the n clusterings of £.



Combinations of clusterings

B. Combination of clusterings

Three main directions are used:

* Co-association matrix based methods
* Graph-based methods

* Function optimization methods.

Co-association matrix_based methods

* Compute the co-association matrix.

e Use it as a similarity matrix and run a hierarchical algorithm (single-link,
complete-link etc)

* From the produced dendrogram determine the final clustering as the one
having the largest lifetime.

Note: A large number of clusterings is required, in order to estimate more
accurately the elements of C.



Combinations of clusterings

B. Combination of clusterings

Graph-based methods

* Instance-based graph formulation (IBGF)
* Cluster-based graph formulation (CBGF)

» Hybric bipartite graph formulation (HBGF)




Combinations of clusterings

B. Combination of clusterings
Graph-based methods
* Instance-based graph formulation (IBGF)

Construct a fully connected graph ¢ = (V, E') where

Each vertex of V corresponds to a data point and

Each edge ¢;; of E is weighted by ¢;; (the (i, j) element of C).

Partition the graph into m disjoint subsets of vertices V1, V>, ..., V},, such

that

* The sum of weights of the edges that connect vertices between any
pair of two different subsets is minimized and

* All V;’s have approximately the same size.

YV V VYV

Note: The normalized-cut and the Ratio-cut criteria can be used for
partitioning the graph.



Combinations of clusterings

B. Combination of clusterings

Graph-based methods

* Instance-based graph formulation (IBGF)

Example: Consider a data set X = {x4, x,, X3, x,} and assume that the co-

1 09 0.07 0.05] Cindicatesthatthel

0.9 1 0.03 0.021!| physical clusters are
0.07 0.03 1 0.9 C1 = {x1,x3},

0.05 0.02 09 1 [[C=1rsxal

association matrix is C = [cl-j] =

Consider the fully connected graph with four vertices v, (x4), v, (x5),
v3(x3),V4(x4), with the weight of each edge w;; being equal to ¢;;.
For the possible (equally-sized clusters) two-clusters graph partitions it is:

Edges connecting diff. clusters (weights) Total weight of
connecting edges

{{v,v2}, {vs, 143} €13(0.07), €14(0.05), e53(0.03), e,4(0.02) 0.17(*)
{{vl, v3}, {v,, v4}} e1,(0.9), €;4(0.05), e3,(0.02), e3,4(0.9) 1.87
{{vl, v}, {v,, v3}} e12(0.9), e13(0.07), e4,(0.02), e43(0.9) 1.87

The partition with the smallest total weight of connecting edges corresponds
to the physical clustering of the data set.



Combinations of clusterings

B. Combination of clusterings
Function optimization methods

e Utility function optimization

* Normalized mutual information
* Mixture model formulation

Here, the final clustering (also called median clustering) F = {Fy, Fy, ..., B, },
results from the optimization of an appropriate cost function.



Combinations of clusterings

B. Combination of clusterings

Function optimization methods

 Utility function optimization (probabilistic arguments)

* Normalized mutual information function optimization (information theory
ingredients)

A function U(F', R;) is adopted, measuring the quality of a candidate median
F' against some other clustering R;.

The overall utility of 7' on € = {R{, R,, ..., R, } is defined as
n
U(F' €) = Z U(F', R,)
i=1
The final (median) clustering F results as

F = argmaxz U(F', E)



Combinations of clusterings

B. Combination of clusterings
Function optimization methods
Mixture model formulation

* Represent the data pomts as follows -_

[ »(@ - y@) ] = xq'
X2 — [ »(2) - wm(2) ] = Xy
XN = [ yi(N) - vy (N) ] — xy'

Note: The representations x; are discrete-valued.

* Define the probability function P(x’; @) as the (weighted) summation of m
(n-dimensional) probability functions, each one corresponding to a cluster.

* Assuming independence among the components of x’, each n-dimensional
probability function is written as the product of n one-dimensional prob.
functions, each one modeled by a multinomial distribution.

* The estimation of the respective parameters is carried out via the utilization
of the EM algorithm.




Multinomial distribution

*Multinomial distribution Mult(x|n, P)
Discrete RV distribution

X = [X, Xy, e, Xp]T P =[Py, e, Pi)T

) < p; < 1,l = 1,...,K,
sSample space: X = {0,1, ..., K}
="Qutcome of the experiment: non-binary. No. of repetitions: n
=x;: number of times the i-th outcome occurs in the n repetitions
=|tis

n

> P = (4 o )T pi%

St.X + X) + ...+ X =1
»E[x] = nP ° 0 QO
>0’ = nP,(1-P),i=1,..,K.
»cov(x, xj) = —nP; P, i#).




