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Clustering algorithms for high dimensional data sets
• What is a high-dimensionality space?

Dimensionality 𝑙 of the input space with
20 ≤ 𝑙 ≤ 𝑓𝑒𝑤 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑𝑠

indicate high-dimensional data sets.

• Problems of considering simultaneously all dimensions in high-dimensional 
data sets:
➢ “Curse of dimensionality”. As a fixed number of points spread out in high-

dimensional spaces, they become almost equidistant (that is, the terms 
similarity and dissimilarity tend to become meaningless – alternatively, no 
clear structures are defined).

➢ Several dimensions may be  irrelevant to the identification of the clusters
(that is, the clusters usually are identified in subspaces of the original 
feature space).

• A way out: Work on subspaces of dimension lower than 𝑙.
➢ Main approaches:
❑ Dimensionality reduction clustering approach.
❑ Subspace clustering approach.



Clustering algorithms for high dimensional data sets
An example:



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach
Main  idea
• Identify an appropriate 𝑙′-dimensional space 𝐻𝑙′ (𝑙′ < 𝑙).

• Project the data points of 𝑋 into 𝐻𝑙′.

• Apply a clustering algorithm on the projections of the points of 𝑋 into 𝐻𝑙′.

Identification of 𝐻𝑙′ may be carried out using either by:
➢ Feature generation methods,
➢ Feature selection methods,
➢ Random projections.

The projection of an 𝑙-dimensional space to 
an 𝑙′ -dimensional space (𝑙′ < 𝑙) is uniquely

defined via an 𝑙′ × 𝑙 projection matrix 𝐴.



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach (cont.)
Feature generation methods
➢ They produce new features via suitable transformations applied on the 

original ones.
➢ Typical Methods in this category are: 

Principal component analysis (PCA). Singular value decomposition (SVD).
Nonlinear PCA Robust PCA  Independent comp. analysis (ICA).

➢ In general, PCA and SVD methods 
• preserve the distances between the points in the high-dimensional 

space, when these are mapped to the lower-dimensional space.
• produce compact representations (with reduced number of features) of 

the original high-dimensional feature space.
➢ In some cases feature generation is applied iteratively in cooperation with a 

clustering algorithm (𝑘-means, EM).
➢ They are useful in cases where a significant number of features contributes 

to the identification of all physical clusters.
➢ They are useful when all clusters are formed in the same subspace of the 

feature space.



Principal Component Analysis (PCA)

Principal component analysis (PCA): 

It transforms the original space to a new orthogonal space (of the same 
dimensionality) where the features are uncorrelated. Specifically: along the, 
so called, 1st principal axis the maximum possible variance of the data set is 
retained, along the 2nd one the maximum possible remained variance is 
retained etc.

Projecting on the first few principal axes space we achieve dimensionality 
reduction.



Principal Component Analysis - PCA

Principal Component Analysis (PCA)

•The black lines show the range of values of the data
points along the initial axes.
•The blue lines show the range of values of the data
points along the principal axes.
•The widest range of values is along the first principal
axis.

CAUTION: Retaining the maximum possible 
variance of the data set DOES NOT imply that 
we necessarily retain the cluster separability. 

Projection along the a1 (1st) principal direction
retains cluster separability.

Projection along the a1 principal direction
DOES NOT retain cluster separability.



Subspace clustering
- Solution: Principal component analysis (PCA)
- Let 𝑋𝑙×𝑁 = 𝒙1 𝒙2 ⋯ 𝒙𝑁 and 𝑌𝑙′×𝑁 = 𝒚1 𝒚2 ⋯ 𝒚𝑁

- Compute 𝝁𝑙×1 =
1

𝑁
σ𝑖=1
𝑁 𝒙𝑖

- Consider 𝑋′𝑙×𝑁 = 𝒙1 − 𝝁 𝒙2 − 𝝁 ⋯ 𝒙𝑁 − 𝝁

- Perform singular value decomposition (SVD) on 𝑋′ taking
𝑋′

𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ′𝑙×𝛮 ∙ 𝑉′𝑇𝛮×𝛮
- Keep the first 𝑙′ singular values (as a consequence take also (a) the first 𝑙′

columns of 𝑈′ and (b) the first 𝑙′ columns of 𝑉′(⟺ the first 𝑙′ rows of 𝑉′𝑇) 
and approximate 𝑋′ as

𝑋′𝑎𝑝𝑝𝑟
𝑙×𝑁 = 𝑈𝑙×𝑙′ ∙ Σ𝑙′×𝑙′ ∙ 𝑉

𝑇
𝑙′×𝛮

- 𝐵 = 𝑈𝑙×𝑙′ is the subspace basis and
- 𝑌𝑙′×𝛮 = Σ𝑙′×𝑙′ ∙ 𝑉

𝑇
𝑙′×𝛮 contains (in columns) the representations/ 

projections of the (shifted by 𝝁) original data in the lower 𝑙′–dim. space.

Theorem: 𝑋′𝑎𝑝𝑝𝑟, as computed before, is the best approximation of 𝑋′ wrt 
the Frobenius norm, subject to the constraint that the rank of 𝑋′𝑎𝑝𝑝𝑟 is 𝑙′.

𝑆 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁 + 𝐵 ∙ 𝒚}

𝑋 − 𝑋′ = ෍
𝑖=1

𝑙

෍
𝑗=1

𝑁

(𝑥𝑖𝑗 − 𝑥′𝑖𝑗)
2



Subspace clustering
More on SVD

Let 𝑋′𝑙×𝑁 = 𝒙1 − 𝝁 𝒙2 − 𝝁 ⋯ 𝒙𝑁 − 𝝁 , with 𝝁𝑙×1 =
1

𝑁
σ𝑖=1
𝑁 𝒙𝑖

In the expression 𝑋′
𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ′𝑙×𝛮 ∙ 𝑉′𝑇𝛮×𝛮

Σ′𝑙×𝛮 (diagonal matrix) contains the singular values of 𝑋′
𝑙×𝑁 in decreasing 

order in its main diagonal (𝑙 < 𝑁)
𝑈′𝑙×𝑙 contains in its columns the eigenvectors of 𝑋′𝑋′𝑇𝑙𝑥𝑙
𝑉′𝑁×𝑁 contains in its columns the eigenvectors of 𝑋′𝑇𝑋′𝑁𝑥𝑁

Let
—𝑈′ = 𝒖1 𝒖2 ⋯ 𝒖𝑙 (𝒖𝑖’s are 𝑙-dimensional column vectors)

—𝑉′ = 𝒗1 𝒗2 ⋯ 𝒗𝑁 ⟹ 𝑉′
𝑇
=

𝒗1
𝑇

𝒗2
𝑇

⋮
𝒗𝑁

𝑇

(𝒗𝑖’s are 𝑁-dimensional column

vectors and 𝒗𝑖
𝑇’s are 𝑁-dimensional row vectors)

—Σ′𝑙𝑥𝛮 =

𝜎1 0 ⋯
0 𝜎2 ⋯
⋮ ⋮ ⋱

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯ 𝜎𝑙 ⋮ 0



Subspace clustering
More on SVD
Then

𝑋′
𝑙×𝑁 = 𝑈′𝑙×𝑙 ∙ Σ

′
𝑙×𝛮 ∙ 𝑉′

𝑇
𝛮×𝛮

= 𝒖1 𝒖2 ⋯ 𝒖𝑙

𝜎1 0 ⋯
0 𝜎2 ⋯
⋮ ⋮ ⋱

0 ⋯ 0
0 ⋯ 0
⋮ ⋮ ⋮

0 0 ⋯ 𝜎𝑙 ⋮ 0

𝒗1
𝑇

𝒗2
𝑇

⋮
𝒗𝑁

𝑇

= 𝒖1 𝒖2 ⋯ 𝒖𝑙

𝜎1𝒗1
𝑇

𝜎2𝒗2
𝑇

⋮
𝜎𝑙𝒗𝑙

𝑇

=

𝜎1𝒖1𝒗1
𝑇 + 𝜎2𝒖2𝒗2

𝑇 +⋯+ 𝜎𝑙𝒖𝑙𝒗𝑙
𝑇 =෍

𝑖=1

𝑙

𝜎𝑖𝒖𝑖𝒗𝑖
𝑇

Thus, 𝑋′ is expressed as a sum of rank one matrices 𝒖𝑖𝒗𝑖
𝑇 each one weighted 

by its corresponding 𝜎𝑖. 
By neglecting the terms with “small” 𝝈𝒊’s, we actually perform 
dimensionality reduction, or, in other words, we determine the subspace
where the data “actually live”.



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods
➢ They identify the original features that are the main contributors to the 

formation of the clusters.
➢ The criteria used to evaluate the “goodness” of a specific subset of 

features follow either the (*)
• Wrapper model (The clustering algorithm is first chosen and a set of 

features 𝐹𝑖 is evaluated through the results obtained from the application 
of the algorithm to 𝑋, where for each point only the features in 𝐹𝑖 are 
taken into account).

• Filter model (The evaluation of a subset of features is carried out using 
intrinsic properties of the data, prior to the application of the clustering 
algorithm).

➢ They are useful when all clusters are formed in the same subspace of the 
feature space.
------------
(*) R. Kohani, G. John, Wrappers for feature subset selection, Artificial Intelligence, Vol. 97 
(1-2), 1997



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach (cont.)
Clustering using Random Projections: 
Here 𝐻𝑙′ is identified in a random manner.
Note: The projection of an 𝑙-dimensional space to an 𝑙′ -dimensional space 
(𝑙′ < 𝑙) is uniquely defined via an 𝑙′ × 𝑙 projection matrix 𝐴.

Issues to be addressed:
(a) Proper estimate of 𝑙′. Estimates of 𝑙′ guarantee (in probability) that the 

distances between the points of 𝑋, in the original data space will be 
preserved (with some distortion) after the projection to a randomly 
chosen 𝑙′ -dim. space, whose projection matrix is constructed via certain 
probabilistic rules
Note: Preservation of distances does not necessarily preserves clusters.

(b)  Definition of the projection matrix 𝐴. Possible rules for constructing A are: 
1. Set each entry of 𝐴 equal to a value stemming from an i.i.d. zero mean, 

unit variance Gaussian distribution and then normalize each row to the 
unit length.

2. Set each entry of 𝐴 equal to −1 or +1, with probability 0.5.

3. Set each entry of 𝐴 equal to + 3, − 3 or 0, with probs
1

6
,
1

6
and

2

3
, resp.



Clustering algorithms for high dimensional data sets
Dimensionality Reduction Clustering Approach (cont.)

Having defined 𝐴:
• Project the points of 𝑋 into 𝐻𝑙′

• Perform a clustering algorithm on the projections of the points of 𝑋 into 𝐻𝑙′.

Problem: Different random projections may lead to totally different results.

Solution:
➢ Perform several random projections 𝐻𝑙′.
➢Apply a clustering algorithm on the projections of 𝑋 to each 𝐻𝑙′.
➢ Combine the clustering results and produce the final clustering.

A method in the above spirit is described next (𝑂 𝑁2 ).



Clustering algorithms for high dimensional data sets
Clustering using Random Projections
• Select 𝑙′.
• Generate 𝐴1, … , 𝐴𝑟 different projection matrices using the (b.1) rule given 

above.
• For 𝑠 = 1 to 𝑟
➢ Run GPrAS with normal pdfs for the 𝑠-th random projection of 𝑋.
➢ Compute the probability that 𝒙𝑖 belongs to the 𝑗-th cluster in the 𝑠-th

projection, 𝑃 𝐶𝑗
𝑠 𝒙𝑖 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚𝑠.

➢ Create the 𝑁 × 𝑁 similarity matrix 𝑃𝑠 = [𝑃𝑖𝑗
𝑠 ], where𝑃𝑖𝑗

𝑠 is the probability
that 𝒙𝑖 and 𝒙𝑗 belong to the same cluster,

𝑃𝑖𝑗
𝑠 =෍

𝑞=1

𝑚𝑠

𝑃 𝐶𝑞
𝑠 𝒙𝑖 𝑃 𝐶𝑞

𝑠 𝒙𝑗

• End for
• Compute the 𝑁 × 𝑁 average proximity matrix 𝑃 = [𝑃𝑖𝑗], so that 𝑃𝑖𝑗 is the 

average of 𝑃𝑖𝑗
𝑠 ’s, 𝑠 = 1,… , 𝑟.

• Apply GAS (actually its complete link version) on 𝑃.
• Plot the similarity between the closest pair of clusters at each iteration 

versus the number of iterations.
• Select the clustering that corresponds to the most abrupt change in the 

plot.

𝑚𝑠: number of clusters 
in the 𝑠-th projection.



Clustering algorithms for high dimensional data sets
Subspace Clustering Approach

• This approach deals with the problem where clusters are formed in different 
subspaces of the feature space.

• The subspace clustering algorithms (SCA) reveal clusters as well as the 
subspaces where they reside.

An example:



Subspace clustering
Preliminaries:
- The data set 𝑋 = 𝒙𝑖 ∈ 𝑅𝑙 , 𝑖 = 1,… , 𝑁

- (Affine linear) Subspace 𝑆 of 𝑅𝑙: It is defined via
- a vector 𝝁 in 𝑆 and
- an 𝑙 × 𝑙′ (basis) matrix 𝐵 (𝑙′ < 𝑙) 

as 𝑆 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁 + 𝐵 ∙ 𝒚}, where 𝒚 ∈ 𝑅𝑙
′

- Assuming that all the data points of 𝑋 lie in an 𝑙′-dimensional (affine) 
subspace 𝑆, in order to determine it, we need to find:

- A vector 𝝁 ∈ 𝑆
- The dimensionality 𝑙′ of 𝑆
- The 𝑙 × 𝑙′ matrix 𝐵.

Vidal R., “Subspace Clustering”, IEEE Transactions on Signal Processing, 28(2), 2011.



Subspace clustering
Basic assumption: In subspace clustering, the clusters formed by the data 
points “live” in subspaces of the original 𝑙-dimensional data space.

- Aim of subspace clustering: Determine
- the number of subspaces 𝑚
- The dimensionalities 𝑙1, 𝑙2, … , 𝑙𝑚, of the subspaces 𝑆1, 𝑆2, … , 𝑆𝑚
- The basis matrices 𝐵1, 𝐵2, … , 𝐵𝑚
- The points 𝝁1, 𝝁2, … , 𝝁𝑚, of the subspaces 𝑆1, 𝑆2, … , 𝑆𝑚.
- The clusters 𝐶1, 𝐶2, … , 𝐶𝑚.

Usually, it is the case 
that each subspace 

contains a single cluster

𝑆𝑗 = {𝒙 ∈ 𝑅𝑙: 𝒙 = 𝝁𝑗 + 𝐵𝑗 ∙ 𝒚}



Subspace clustering
Ways to  tackle the problem
- Algebraic methods
- Spectral clustering methods
- Iterative cost function optimization methods (hard, probabilistic framework)

Iterative cost function optimization methods (hard framework)
The 𝑘-subspace algorithm

Assumption: The number of clusters 𝑚 and the subspaces dimensionalities 
𝑙1, 𝑙2, … , 𝑙𝑚, are known.
Let: 

- 𝑈𝑁×𝑚 = 𝑢𝑖𝑗 , where 𝑢𝑖𝑗 = ቊ
1, 𝑥𝑖 ∈ 𝐶𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

- 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑚}
- 𝝁 = {𝝁1, 𝝁2, … , 𝝁𝑚}

- 𝑌 = 𝑌1, … , 𝑌𝑚 , with 𝑌𝑗 = 𝒚𝑖
𝑗
, 𝑖 = 1,… ,𝑁 be the set of projections of the 

data points to the 𝑗-th subspace.



Subspace clustering
Iterative CFO methods (hard framework) - The 𝑘-subspace algorithm

Consider the cost function

𝐽 𝐵, 𝜇, 𝑌, 𝑈 =෍
𝑖=1

𝑁

෍
𝑗=1

𝑚

𝑢𝑖𝑗 𝒙𝑖 − 𝒙𝑖
′𝑗

2
=෍

𝑖=1

𝑁

෍
𝑗=1

𝑚

𝑢𝑖𝑗 𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗 2

This is minimized in a two-stage iterative fashion (recall 𝑘-means)

For fixed 𝝁𝑗
′ 𝑠, 𝐵𝑗

′𝑠, 𝒚𝑖
𝑗
′𝑠:

Define 𝑢𝑖𝑗 = ቐ1, 𝑖𝑓 𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗 2

= 𝑚𝑖𝑛𝑞=1,…,𝑚 𝒙𝑖 − 𝝁𝑞 − 𝐵𝑞𝒚𝑖
𝑞 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For fixed 𝑢𝑖𝑗‘s: Solve the following 𝑚 independent problems

𝑚𝑖𝑛
𝝁𝑗, 𝐵𝑗 ,𝒚𝑖

𝑗 ෍
𝒙𝑖:𝑢𝑖𝑗=1

𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗

2
≡ 𝑚𝑖𝑛

𝝁𝑗, 𝐵𝑗 ,𝒚𝑖
𝑗 ෍

𝑖=1

𝑁

𝑢𝑖𝑗 𝒙𝑖 − 𝝁𝑗 − 𝐵𝑗𝒚𝑖
𝑗

2

For each such problem

(a) Fix 𝝁𝑗
′ 𝑠 and apply PCA, to estimate 𝐵𝑗

′𝑠, 𝒚𝑖
𝑗
′𝑠 .

(b) Fix 𝐵𝑗
′𝑠, 𝒚𝑖

𝑗
′𝑠 and apply the k-means rationale, to estimate 𝝁𝑗

′ 𝑠.

𝒙𝑖
′𝑗 = 𝝁𝑗 + 𝐵𝑗𝒚𝑖

𝑗
: Projection

of 𝒙𝑖 to the 𝑗-th subspace



Subspace clustering
Remark:
There are also subspace clustering methods (e.g., CLIQUE, ENCLUS) that 
“quantize” the region where the data belongs through the use of a grid. Then, 
clusters (at different subspaces) are defined through boxes that contain a 
significant number of data points.



Combinations of clusterings
- The data set 𝑋 = 𝒙𝑖 ∈ 𝑅𝑙 , 𝑖 = 1,… ,𝑁

- Ensemble of clusterings of 𝑋:   ℰ = ℛ1, ℛ2, … , ℛ𝑛

where ℛ𝑖 = {𝐶𝑖
1, 𝐶𝑖

2, … , 𝐶𝑖
𝑚𝑖}

𝐶𝑖
𝑗: the 𝑗-th cluster of the 𝑖-th clustering

𝑚𝑖: the number of clusters in the 𝑖-th clustering.

- Alternative representation of a clustering:
ℛ𝑖 ↔ 𝒚𝑖 = 𝑦𝑖 1 , 𝑦𝑖 2 ,… , 𝑦𝑖 𝑘 ,… , 𝑦𝑖 𝑁

where 𝑦𝑖 𝑘 the cluster label of the 𝑘-th data point.

Example: Let ℛ𝑖 = 𝐶𝑖
1, 𝐶𝑖

2, 𝐶𝑖
3 = {{𝒙1, 𝒙2, 𝒙6, 𝒙10}, {𝒙3, 𝒙4, 𝒙7}, {𝒙5, 𝒙8, 𝒙9}}

Then 𝒚𝑖 =[1, 1, 2, 2, 3, 1, 2, 3, 3, 1].

In general, ℛ𝑖‘s are not 
constraint to have the 

same number of clusters

The two main issues in this framework are:
(A) The generation of the ensemble of clusterings
(B) The combination of the clusterings.



Combinations of clusterings
A. Generation of ensemble of clusterings
It involves two steps:
(a) The choice of the subspace to project the data points of 𝑋.
(b) The application of a clustering algorithm on the resulting projections.

General directions:
- All data, all features: 
• All 𝑙 features and all 𝑁 data points are used.   
• Either different algorithms are applied
• or the same algorithm with different parameter values (e.g., in 𝑘-means, 

different number of cluster, or different initial conditions).
- All data, some features:
• All 𝑁 data points are used. 
• 𝑛 data sets 𝑋𝑖 are formed from 𝑋

▪Either by selecting a number of features (feature distributed clustering)
▪or by projecting onto a randomly chosen lower dimensional space.

• The same or different algorithms can be applied on the 𝑋𝑖‘s.



Combinations of clusterings
A. Generation of ensemble of clusterings
General directions:
- Some data, all features: 
• All 𝑙 features are used.   
• 𝑛 data sets 𝑋𝑖 are formed from 𝑋 using techniques like bootstrapping and 

sampling.
• (Usually) the same algorithm is applied on the 𝑋𝑖‘s.
• The points that have not been selected to participate in 𝑋𝑖 are assigned to

their nearest cluster in ℛ𝑖.

B. Combination of clusterings
Problem: Given ℰ = ℛ1, ℛ2, … , ℛ𝑛 , determine the consensus clustering
ℱ = 𝐹1, 𝐹2, … , 𝐹𝑚 .

A useful tool in this direction is the co-association matrix 𝐶.

It is an 𝑁 × 𝑁 matrix 𝐶 = [𝑐𝑖𝑗] with 𝑐𝑖𝑗 =
𝑛𝑖𝑗

𝑛

where 𝑛𝑖𝑗 is the number of times where the 𝑖-th and the 𝑗-th points of 𝑋 are 

assigned to the same cluster, among the 𝑛 clusterings of ℰ.



Combinations of clusterings
B. Combination of clusterings
Three main directions are used:
• Co-association matrix based methods
• Graph-based methods
• Function optimization methods.

Co-association matrix based methods
• Compute the co-association matrix.
• Use it as a similarity matrix and run a hierarchical algorithm (single-link, 

complete-link etc)
• From the produced dendrogram determine the final clustering as the one 

having the largest lifetime.

Note: A large number of clusterings is required, in order to estimate more 
accurately the elements of 𝐶.



Combinations of clusterings
B. Combination of clusterings
Graph-based methods
• Instance-based graph formulation (IBGF)
• Cluster-based graph formulation (CBGF)
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Combinations of clusterings
B. Combination of clusterings
Graph-based methods
• Instance-based graph formulation (IBGF)
• Cluster-based graph formulation (CBGF)
• Hybric bipartite graph formulation (HBGF)

➢ Construct a fully connected graph 𝐺 = (𝑉, 𝐸) where
➢ Each vertex of 𝑉 corresponds to a data point and
➢ Each edge 𝑒𝑖𝑗 of 𝐸 is weighted by 𝑐𝑖𝑗 (the (𝑖, 𝑗) element of 𝐶).

➢ Partition the graph into 𝑚 disjoint subsets of vertices 𝑉1, 𝑉2, … , 𝑉𝑚 such 
that
• The sum of weights of the edges that connect vertices between any 

pair of two different subsets is minimized and
•All 𝑉𝑗’s have approximately the same size.

Note: The normalized-cut and the Ratio-cut criteria can be used for 
partitioning the graph.



Combinations of clusterings
B. Combination of clusterings
Graph-based methods
• Instance-based graph formulation (IBGF)
Example: Consider a data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4 and assume that the co-

association matrix is 𝐶 = 𝑐𝑖𝑗 =

1 0.9
0.9 1

0.07 0.05
0.03 0.02

0.07 0.03
0.05 0.02

1 0.9
0.9 1

.

Consider the fully connected graph with four vertices 𝒗1 𝒙1 , 𝒗2 𝒙2 ,
𝒗3(𝒙3), 𝒗4(𝒙4), with the weight of each edge 𝑤𝑖𝑗 being equal to 𝑐𝑖𝑗.

For the possible (equally-sized clusters) two-clusters graph partitions it is:

Partition Edges connecting diff. clusters (weights) Total weight of 
connecting edges

𝑣1, 𝑣2 , 𝑣3, 𝑣4 𝑒13(0.07), 𝑒14(0.05), 𝑒23(0.03), 𝑒24(0.02) 0.17(*)

𝑣1, 𝑣3 , 𝑣2, 𝑣4 𝑒12(0.9), 𝑒14(0.05), 𝑒32(0.02), 𝑒34(0.9) 1.87

𝑣1, 𝑣4 , 𝑣2, 𝑣3 𝑒12(0.9), 𝑒13(0.07), 𝑒42(0.02), 𝑒43(0.9) 1.87

𝐶 indicates that the 
physical clusters are 
𝐶1 = 𝒙1, 𝒙2 ,
𝐶2 = 𝒙3, 𝒙4 .

The partition with the smallest total weight of connecting edges corresponds 
to the physical clustering of the data set.



Combinations of clusterings
B. Combination of clusterings
Function optimization methods
• Utility function optimization
• Normalized mutual information
• Mixture model formulation

Here, the final clustering (also called median clustering) ℱ = 𝐹1, 𝐹2, … , 𝐹𝑚 , 
results from the optimization of an appropriate cost function.



Combinations of clusterings
B. Combination of clusterings
Function optimization methods
• Utility function optimization (probabilistic arguments)
• Normalized mutual information function optimization (information theory 

ingredients)
• Mixture model formulation

A function 𝑈 ℱ′, ℛ𝑖 is adopted, measuring the quality of a candidate median 
ℱ′ against some other clustering ℛ𝑖.

The overall utility of ℱ′ on ℇ = ℛ1, ℛ2, … , ℛ𝑛 is defined as

𝑈 ℱ′, ℇ =෍
𝑖=1

𝑛

𝑈 ℱ′, ℛ𝑖

The final (median) clustering ℱ results as

ℱ = 𝑎𝑟𝑔𝑚𝑎𝑥ℱ′𝑈 ℱ′, ℇ



𝒚1 ⋯ 𝒚𝑛

𝒙1 → [ 𝑦1(1) ⋯ 𝑦𝑛(1) ] ≡ 𝒙1′

𝒙2 → [ 𝑦1(2) ⋯ 𝑦𝑛(2) ] ≡ 𝒙2′

⋮ → ⋮ ⋮

𝒙𝑁 → [ 𝑦1(𝑁) ⋯ 𝑦𝑛(𝑁) ] ≡ 𝒙𝑁′

Combinations of clusterings
B. Combination of clusterings
Function optimization methods
Mixture model formulation
• Represent the data points as follows

Note: The representations 𝒙𝑖
′ are discrete-valued.

• Define the probability function 𝑃 𝒙′; 𝜣 as the (weighted) summation of 𝑚
(𝑛-dimensional) probability functions, each one corresponding to a cluster.

• Assuming independence among the components of 𝒙′, each 𝑛-dimensional 
probability function is written as the product of n one-dimensional prob. 
functions, each one modeled by a multinomial distribution. 

• The estimation of the respective parameters is carried out via the utilization 
of the EM algorithm.



•Multinomial distribution 𝑀𝑢𝑙𝑡 𝒙 𝑛, 𝑷
Discrete RV distribution
𝐱 = x1, x2 , … , x𝐾

𝑇 ,𝑷 = [𝑝1, … , 𝑝𝐾]
𝑇:

෍
𝑖=1

𝐾

𝑝𝑖 = 1

▪0 < 𝑝𝑖 < 1, 𝑖 = 1,… , 𝐾, 
▪Sample space: 𝑋 = {0,1, … , 𝐾}
▪Outcome of the experiment: non-binary. No. of repetitions: 𝒏
▪𝑥𝑖: number of times the 𝑖-th outcome occurs in the 𝑛 repetitions
▪It is 

➢ 𝑃 𝒙 =
𝑛

𝑥1, 𝑥2, … , 𝑥𝐾
ς𝑖=1
𝐾 𝑝𝑖

𝑥𝑖

s.t. 𝑥1 + 𝑥2 + …+ 𝑥𝐾 = 𝑛
➢𝐸[𝒙] = 𝑛𝑷
➢𝜎𝑖

2 = 𝑛𝑃𝑖(1 − 𝑃𝑖), 𝑖 = 1,… , 𝐾.
➢𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗) = −𝑛𝑃𝑖 𝑃𝑗, 𝑖𝑗.

Multinomial distribution

34

𝑛
𝑥1, 𝑥2, … , 𝑥𝐾

=
𝑛!

𝑥1! 𝑥2! … 𝑥𝐾!


