

Clustering algorithms

Konstantinos Koutroumbas

Unit 11

- Clust. algs. for high dim. data sets
(dim. reduction (PCA), subspace clust.)
- Combinations of clusterings

Clustering algorithms for high dimensional data sets

- What is a **high-dimensionality space**?

Dimensionality l of the input space with

$$20 \leq l \leq \text{few thousands}$$

indicate **high-dimensional data sets**.

- **Problems** of considering simultaneously all dimensions in high-dimensional data sets:

➤ “**Curse of dimensionality**”. As a fixed number of points spread out in high-dimensional spaces, they become almost equidistant (that is, the terms **similarity** and **dissimilarity** tend to become **meaningless** – alternatively, no clear structures are defined).

➤ Several dimensions may be irrelevant to the identification of the clusters (that is, the clusters usually are identified in **subspaces** of the original feature space).

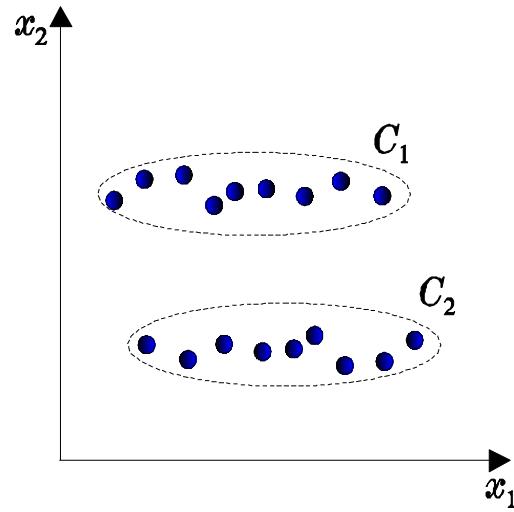
- A way out: **Work on subspaces of dimension lower than l** .

➤ Main approaches:

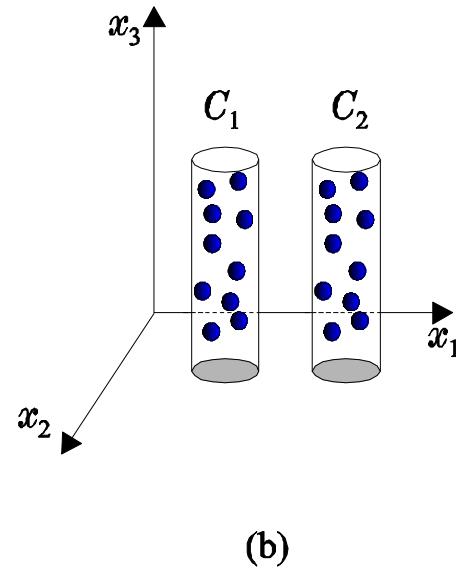
- Dimensionality reduction clustering approach.
- Subspace clustering approach.

Clustering algorithms for high dimensional data sets

An example:



(a)



(b)

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach

Main idea

- **Identify** an appropriate l' -dimensional space $H_{l'} (l' < l)$.
- **Project** the **data points** of X into $H_{l'}$.
- **Apply** a **clustering** algorithm on the **projections** of the points of X into $H_{l'}$.

The **projection** of an l -dimensional space to an l' -dimensional space ($l' < l$) is **uniquely defined** via an $l' \times l$ **projection matrix** A .

Identification of $H_{l'}$ may be carried out using either by:

- Feature generation methods,
- Feature selection methods,
- Random projections.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Feature generation methods

- They produce **new features** via suitable **transformations** applied on the **original ones**.
- Typical Methods in this category are:
 - Principal component analysis (PCA). Singular value decomposition (SVD).
 - Nonlinear PCA Robust PCA Independent comp. analysis (ICA).
- In general, **PCA** and **SVD** methods
 - **preserve the distances** between the points in the high-dimensional space, when these are mapped to the lower-dimensional space.
 - **produce compact representations** (with reduced number of features) of the original high-dimensional feature space.
- In some cases **feature generation** is **applied iteratively** in cooperation with a clustering algorithm (k -means, EM).
- They are **useful** in cases where a **significant** number of features contributes to the identification of all physical clusters.
- They are **useful** when **all clusters** are **formed** in the **same subspace** of the feature space.

Principal Component Analysis (PCA)

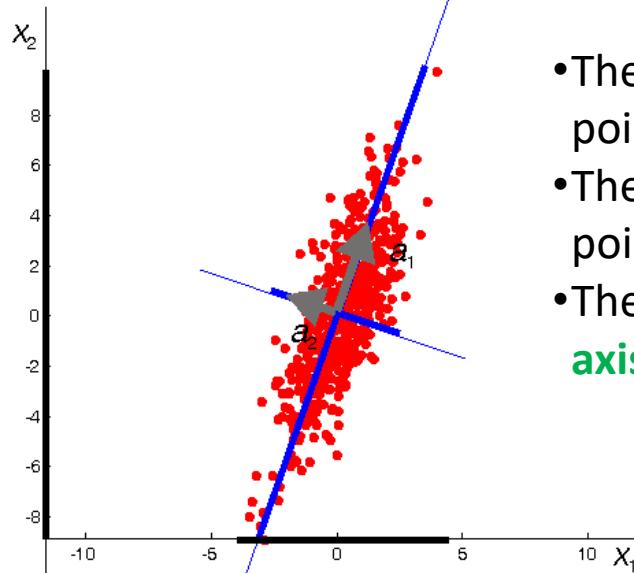
Principal component analysis (PCA):

It **transforms** the **original space** to a **new orthogonal space** (of the **same dimensionality**) where the **features** are **uncorrelated**. Specifically: **along** the, so called, **1st** **principal axis** the **maximum possible variance** of the data set is **retained**, along the **2nd** one the **maximum possible remained variance** is **retained** etc.

Projecting on the **first few principal axes space** we achieve **dimensionality reduction**.

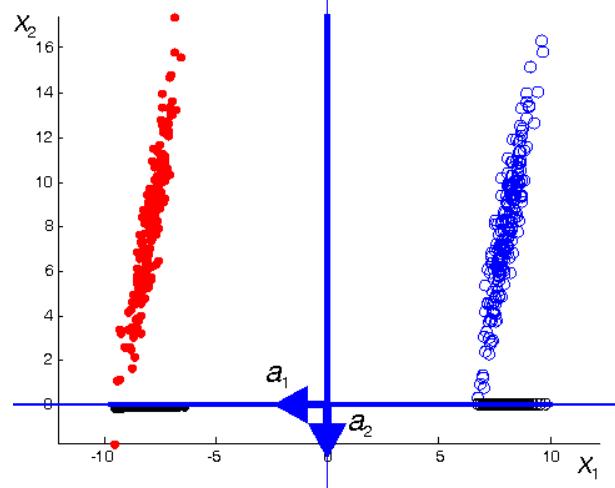
Principal Component Analysis - PCA

Principal Component Analysis (PCA)

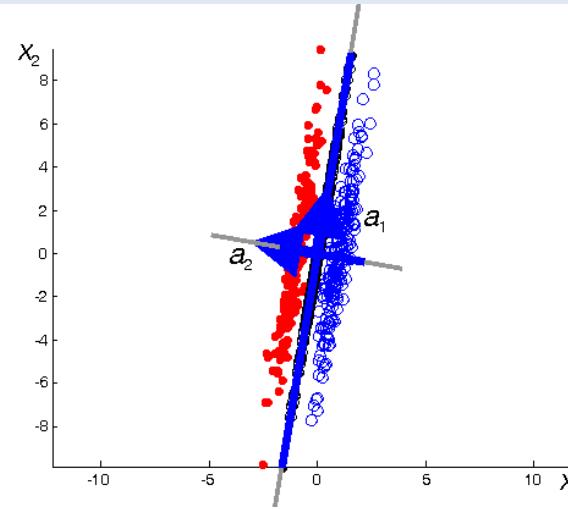


- The **black lines** show the **range of values** of the data points along the **initial axes**.
- The **blue lines** show the **range of values** of the data points along the **principal axes**.
- The **widest range** of values is along the **first principal axis**.

CAUTION: Retaining the maximum possible variance of the data set **DOES NOT** imply that we necessarily **retain** the **cluster separability**.



Projection along the a_1 (1st) principal direction retains cluster separability.



Projection along the a_1 principal direction **DOES NOT** retain cluster separability.

Subspace clustering

- **Solution:** Principal component analysis (**PCA**)
- **Let** $X_{l \times N} = [x_1 \ x_2 \ \cdots \ x_N]$ and $Y_{l' \times N} = [y_1 \ y_2 \ \cdots \ y_N]$
- **Compute** $\mu_{l \times 1} = \frac{1}{N} \sum_{i=1}^N x_i$
- **Consider** $X'_{l \times N} = [x_1 - \mu \ x_2 - \mu \ \cdots \ x_N - \mu]$
- **Perform** singular value decomposition (**SVD**) on X' taking

$$X'_{l \times N} = U'_{l \times l} \cdot \Sigma'_{l \times N} \cdot V'^T_{N \times N}$$

$$S = \{x \in \mathbb{R}^l : x = \mu + B \cdot y\}$$

- **Keep** the **first l'** singular values (as a consequence take also (a) the **first l'** columns of U' and (b) the **first l'** columns of V' (\Leftrightarrow the **first l' rows of V'^T**) and approximate X' as

$$X'^{appr}_{l \times N} = U_{l \times l'} \cdot \Sigma_{l' \times l'} \cdot V^T_{l' \times N}$$

- $B = U_{l \times l'}$ is the **subspace basis** and
- $Y_{l' \times N} = \Sigma_{l' \times l'} \cdot V^T_{l' \times N}$ contains (in columns) the **representations/projections** of the (shifted by μ) original data in the **lower l' -dim. space**.

Theorem: X'^{appr} , as computed before, is the **best approximation** of X' wrt the **Frobenius norm**, subject to the **constraint** that the **rank** of X'^{appr} is l' .

$$\|X - X'\| = \sqrt{\sum_{i=1}^l \sum_{j=1}^N (x_{ij} - x'_{ij})^2}$$

Subspace clustering

More on SVD

Let $\mathbf{X}'_{l \times N} = [x_1 - \mu \quad x_2 - \mu \quad \cdots \quad x_N - \mu]$, with $\mu_{l \times 1} = \frac{1}{N} \sum_{i=1}^N x_i$

In the expression $\mathbf{X}'_{l \times N} = \mathbf{U}'_{l \times l} \cdot \Sigma'_{l \times N} \cdot \mathbf{V}'^T_{N \times N}$

$\Sigma'_{l \times N}$ (diagonal matrix) contains the **singular values** of $\mathbf{X}'_{l \times N}$ in decreasing order in its main diagonal ($l < N$)

$\mathbf{U}'_{l \times l}$ contains in its columns the **eigenvectors** of $\mathbf{X}' \mathbf{X}'^T_{l \times l}$

$\mathbf{V}'_{N \times N}$ contains in its columns the **eigenvectors** of $\mathbf{X}'^T \mathbf{X}'_{N \times N}$

Let

— $\mathbf{U}' = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l]$ (\mathbf{u}_i 's are l -dimensional **column** vectors)

— $\mathbf{V}' = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_N] \Rightarrow \mathbf{V}'^T = \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_N^T \end{bmatrix}$ (\mathbf{v}_i 's are N -dimensional **column** vectors and \mathbf{v}_i^T 's are N -dimensional **row** vectors)

— $\Sigma'_{l \times N} = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_l & \cdots & 0 \end{bmatrix}$

Subspace clustering

More on SVD

Then

$$\begin{aligned} \mathbf{X}'_{l \times N} &= \mathbf{U}'_{l \times l} \cdot \Sigma'_{l \times N} \cdot \mathbf{V}'^T_{N \times N} \\ &= [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l] \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_l & \vdots & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_N^T \end{bmatrix} \\ &= [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l] \begin{bmatrix} \sigma_1 \mathbf{v}_1^T \\ \sigma_2 \mathbf{v}_2^T \\ \vdots \\ \sigma_l \mathbf{v}_l^T \end{bmatrix} = \\ \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \cdots + \sigma_l \mathbf{u}_l \mathbf{v}_l^T &= \sum_{i=1}^l \sigma_i \mathbf{u}_i \mathbf{v}_i^T \end{aligned}$$

Thus, \mathbf{X}' is expressed as a **sum of rank one** matrices $\mathbf{u}_i \mathbf{v}_i^T$ each one **weighted** by its corresponding σ_i .

By **neglecting the terms** with “small” σ_i ’s, we actually perform **dimensionality reduction**, or, in other words, we **determine** the **subspace** where the **data “actually live”**.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods

- They identify the **original features** that are the main contributors to the formation of the clusters.
- The **criteria** used to **evaluate** the “**goodness**” of a specific **subset of features** follow either the (*)
 - **Wrapper model** (The clustering algorithm is first chosen and a set of features F_i is evaluated through the results obtained from the application of the algorithm to X , where for each point **only the features** in F_i are taken into account).
 - **Filter model** (The evaluation of a subset of features is carried out using **intrinsic** properties of the data, prior to the application of the clustering algorithm).
- They are **useful** when **all clusters** are **formed** in the **same subspace** of the feature space.

(*) R. Kohani, G. John, Wrappers for feature subset selection, Artificial Intelligence, Vol. 97 (1-2), 1997

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Clustering using Random Projections:

Here $H_{l'}$ is identified in a **random manner**.

Note: The **projection** of an l -dimensional space to an l' -dimensional space ($l' < l$) is **uniquely defined** via an $l' \times l$ projection matrix A .

Issues to be addressed:

(a) Proper estimate of l' . Estimates of l' **guarantee** (in probability) that the **distances** between the points of X , in the **original** data space will be **preserved** (with some distortion) **after** the **projection** to a **randomly** chosen l' -dim. space, whose **projection matrix** is **constructed** via certain **probabilistic rules**

Note: Preservation of distances does not necessarily preserves clusters.

(b) **Definition** of the projection matrix A . Possible **rules** for constructing A are:

1. Set each **entry** of A equal to a value stemming from an **i.i.d. zero mean, unit variance Gaussian** distribution and then **normalize** each **row** to the **unit length**.

2. Set each **entry** of A equal to **-1** or **+1**, with **probability 0.5**.

3. Set each **entry** of A equal to **$+\sqrt{3}$, $-\sqrt{3}$ or 0**, with **probs $\frac{1}{6}$, $\frac{1}{6}$ and $\frac{2}{3}$** , resp.

Clustering algorithms for high dimensional data sets

Dimensionality Reduction Clustering Approach (cont.)

Having defined A :

- **Project** the **points** of X into H_l'
- **Perform** a **clustering algorithm** on the **projections** of the points of X into H_l' .

Problem: Different random projections **may lead** to **totally different results**.

Solution:

- **Perform** **several** random projections H_l' .
- **Apply** a **clustering algorithm** on the **projections** of X to each H_l' .
- **Combine** the clustering **results** and **produce** the final clustering.

A method in the above spirit is described next ($O(N^2)$).

Clustering algorithms for high dimensional data sets

Clustering using Random Projections

- **Select l' .**
- **Generate A_1, \dots, A_r** different **projection matrices** using the (b.1) rule given above.
- **For $s = 1$ to r**
 - **Run GPrAS** with **normal pdfs** for the s -th random projection of X .
 - **Compute** the probability that x_i **belongs** to the j -th cluster in the s -th **projection**, $P(C_j^s | x_i), i = 1, \dots, N, j = 1, \dots, m_s$.
 - **Create** the $N \times N$ **similarity matrix** $P^s = [P_{ij}^s]$, where P_{ij}^s is the **probability** that x_i and x_j **belong** to the **same cluster**,

$$P_{ij}^s = \sum_{q=1}^{m_s} P(C_q^s | x_i) P(C_q^s | x_j)$$

m_s : number of clusters in the s -th projection.

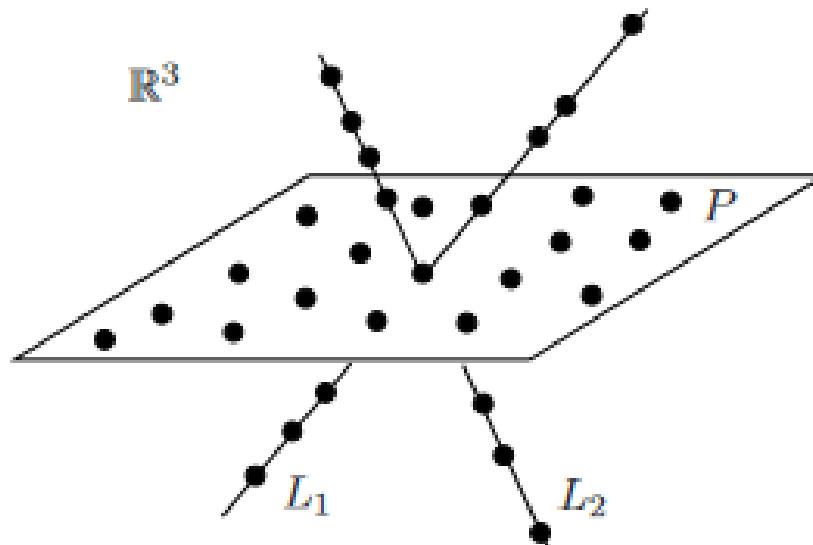
- **End for**
- **Compute** the $N \times N$ **average** **proximity matrix** $P = [P_{ij}]$, so that P_{ij} is the **average** of P_{ij}^s 's, $s = 1, \dots, r$.
- **Apply GAS** (actually its complete link version) on P .
- **Plot** the **similarity** between the **closest pair** of **clusters** at each iteration **versus** the **number** of **iterations**.
- **Select** the **clustering** that **corresponds** to the **most abrupt change** in the plot.

Clustering algorithms for high dimensional data sets

Subspace Clustering Approach

- This approach deals with the problem where **clusters** are **formed** in different **subspaces** of the feature space.
- The subspace clustering algorithms (**SCA**) **reveal clusters** as well as the **subspaces** where they reside.

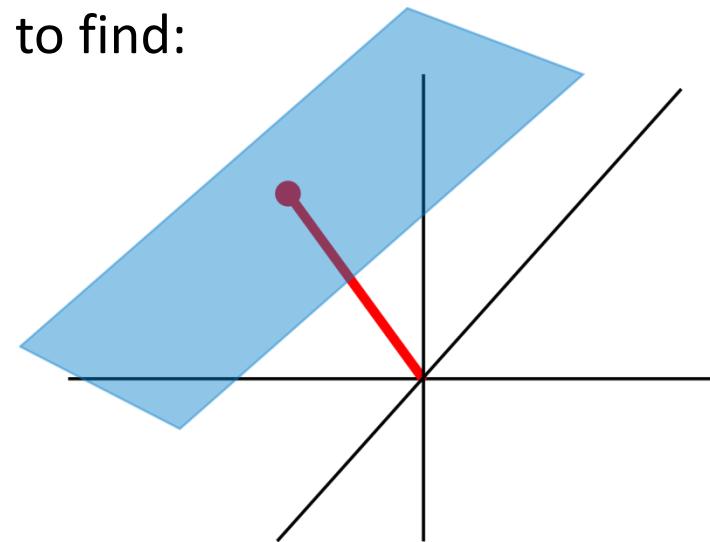
An example:



Subspace clustering

Preliminaries:

- The data set $X = \{x_i \in R^l, i = 1, \dots, N\}$
- (Affine linear) Subspace S of R^l : It is defined via
 - a vector μ in S and
 - an $l \times l'$ (basis) matrix B ($l' < l$)as $S = \{x \in R^l : x = \mu + B \cdot y\}$, where $y \in R^{l'}$
- Assuming that all the data points of X lie in an l' -dimensional (affine) subspace S , in order to determine it, we need to find:
 - A vector $\mu \in S$
 - The dimensionality l' of S
 - The $l \times l'$ matrix B .



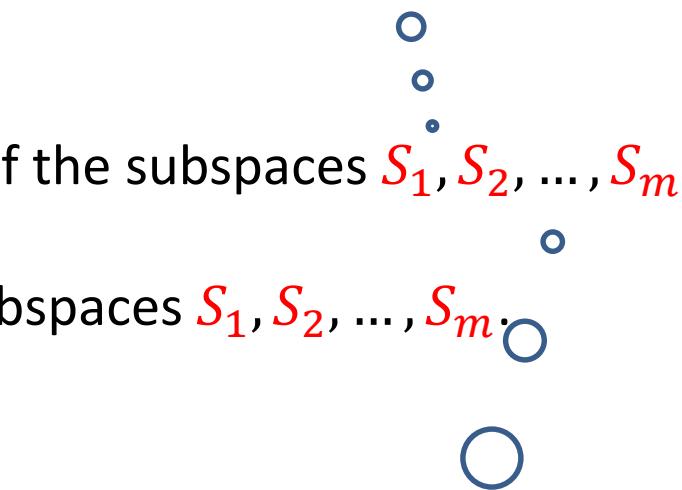
Subspace clustering

Basic assumption: In subspace clustering, the **clusters** formed by the data points “live” in **subspaces** of the **original l -dimensional data space**.

$$S_j = \{x \in R^l : x = \mu_j + B_j \cdot y\}$$

- **Aim of subspace clustering: Determine**

- the number of subspaces m
- The **dimensionalities** l_1, l_2, \dots, l_m , of the subspaces S_1, S_2, \dots, S_m
- The basis matrices B_1, B_2, \dots, B_m
- The points $\mu_1, \mu_2, \dots, \mu_m$, of the subspaces S_1, S_2, \dots, S_m
- The clusters C_1, C_2, \dots, C_m .



Usually, it is the case
that each subspace
contains a single cluster

Subspace clustering

Ways to tackle the problem

- Algebraic methods
- Spectral clustering methods
- Iterative cost function optimization methods (**hard, probabilistic** framework)

Iterative cost function optimization methods (**hard** framework)

The **k -subspace** algorithm

Assumption: The number of clusters m and the subspaces dimensionalities

l_1, l_2, \dots, l_m , are **known**.

Let:

- $U_{N \times m} = [u_{ij}]$, where $u_{ij} = \begin{cases} 1, & x_i \in C_j \\ 0, & \text{otherwise} \end{cases}$
- $B = \{B_1, B_2, \dots, B_m\}$
- $\mu = \{\mu_1, \mu_2, \dots, \mu_m\}$
- $Y = \{Y_1, \dots, Y_m\}$, with $Y_j = \{y_i^j, i = 1, \dots, N\}$ be the set of **projections** of the data points to the j -th subspace.

Subspace clustering

Iterative CFO methods (hard framework) - The k -subspace algorithm

Consider the cost function

$$J(B, \mu, Y, U) = \sum_{i=1}^N \sum_{j=1}^m u_{ij} \left\| \mathbf{x}_i - \mathbf{x}_i'^j \right\|^2 = \sum_{i=1}^N \sum_{j=1}^m u_{ij} \left\| \mathbf{x}_i - \boldsymbol{\mu}_j - B_j \mathbf{y}_i^j \right\|^2$$

$\mathbf{x}_i'^j = \boldsymbol{\mu}_j + B_j \mathbf{y}_i^j$: Projection of \mathbf{x}_i to the j -th subspace

This is **minimized** in a **two-stage iterative** fashion (recall k -means)

For fixed $\boldsymbol{\mu}'_j$'s, B'_j 's, $\mathbf{y}_i^{j'}$'s:

$$\text{Define } u_{ij} = \begin{cases} 1, & \text{if } \left\| \mathbf{x}_i - \boldsymbol{\mu}_j - B_j \mathbf{y}_i^j \right\|^2 = \min_{q=1, \dots, m} \left\| \mathbf{x}_i - \boldsymbol{\mu}_q - B_q \mathbf{y}_i^q \right\|^2 \\ 0, & \text{otherwise} \end{cases}$$

For fixed u_{ij} 's: Solve the following m independent problems

$$\min_{\{\boldsymbol{\mu}_j, (B_j, \mathbf{y}_i^j)\}} \sum_{\mathbf{x}_i: u_{ij}=1} \left\| \mathbf{x}_i - \boldsymbol{\mu}_j - B_j \mathbf{y}_i^j \right\|^2 \equiv \min_{\{\boldsymbol{\mu}_j, (B_j, \mathbf{y}_i^j)\}} \sum_{i=1}^N u_{ij} \left\| \mathbf{x}_i - \boldsymbol{\mu}_j - B_j \mathbf{y}_i^j \right\|^2$$

For **each** such **problem**

(a) **Fix** $\boldsymbol{\mu}'_j$'s and **apply** **PCA**, to **estimate** B'_j 's, $\mathbf{y}_i^{j'}$'s .

(b) **Fix** B'_j 's, $\mathbf{y}_i^{j'}$'s and **apply** the **k -means rationale**, to **estimate** $\boldsymbol{\mu}'_j$'s.

Subspace clustering

Remark:

There are also subspace clustering methods (e.g., **CLIQUE**, **ENCLUS**) that “quantize” the region where the data belongs through the use of a grid. Then, clusters (at different subspaces) are defined through boxes that contain a significant number of data points.

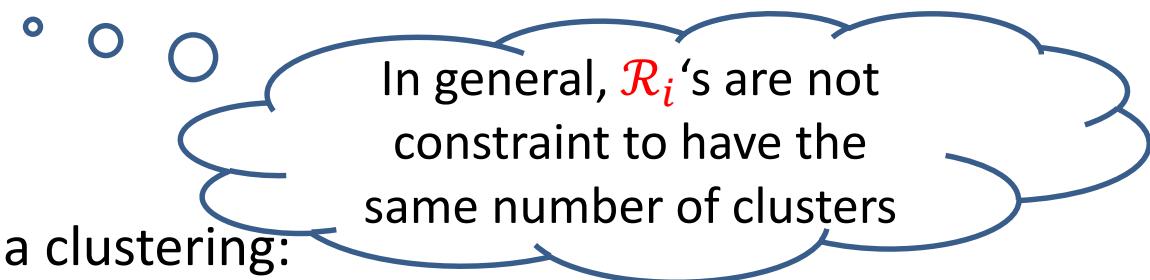
Combinations of clusterings

- The data set $X = \{x_i \in R^l, i = 1, \dots, N\}$
- Ensemble of clusterings of X : $\mathcal{E} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n\}$

where $\mathcal{R}_i = \{C_i^1, C_i^2, \dots, C_i^{m_i}\}$

C_i^j : the j -th cluster of the i -th clustering

m_i : the number of clusters in the i -th clustering.



- Alternative representation of a clustering:

$$\mathcal{R}_i \leftrightarrow \mathbf{y}_i = [y_i(1), y_i(2), \dots, y_i(k), \dots, y_i(N)]$$

where $y_i(k)$ the cluster label of the k -th data point.

Example: Let $\mathcal{R}_i = \{C_i^1, C_i^2, C_i^3\} = \{\{x_1, x_2, x_6, x_{10}\}, \{x_3, x_4, x_7\}, \{x_5, x_8, x_9\}\}$

Then $\mathbf{y}_i = [1, 1, 2, 2, 3, 1, 2, 3, 3, 1]$.

The two main issues in this framework are:

- The generation of the ensemble of clusterings
- The combination of the clusterings.

Combinations of clusterings

A. Generation of ensemble of clusterings

It involves two steps:

- (a) The **choice** of the **subspace** to **project** the data points of X .
- (b) The **application** of a **clustering algorithm** on the resulting **projections**.

General directions:

- All data, all features:
 - **All l features** and **all N data points** are **used**.
 - **Either** different algorithms are **applied**
 - **or** the same algorithm with **different parameter values** (e.g., in k -means, different number of cluster, or different initial conditions).
- All data, some features:
 - **All N data points** are **used**.
 - **n** data sets X_i are **formed** from X
 - **Either** by **selecting** a **number** of **features** (feature distributed clustering)
 - **or** by **projecting** onto a **randomly chosen** lower dimensional space.
 - The **same or different algorithms** can be **applied** on the X_i 's.

Combinations of clusterings

A. Generation of ensemble of clusterings

General directions:

- Some data, all features:

- **All l features** are **used**.
- n data sets X_i are **formed** from X using techniques like **bootstrapping** and **sampling**.
- (Usually) the **same algorithm** is **applied** on the X_i 's.
- The **points** that have **not** been **selected** to participate in X_i are **assigned** to their **nearest cluster** in \mathcal{R}_i .

B. Combination of clusterings

Problem: Given $\mathcal{E} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n\}$, **determine** the **consensus clustering** $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$.

A useful tool in this direction is the **co-association** matrix C .

It is an $N \times N$ matrix $C = [c_{ij}]$ with $c_{ij} = \frac{n_{ij}}{n}$

where n_{ij} is the **number of times** where the i -th and the j -th **points** of X are **assigned** to the **same cluster**, among the n clusterings of \mathcal{E} .

Combinations of clusterings

B. Combination of clusterings

Three main directions are used:

- Co-association matrix based methods
- Graph-based methods
- Function optimization methods.

Co-association matrix based methods

- Compute the co-association matrix.
- Use it as a similarity matrix and run a hierarchical algorithm (single-link, complete-link etc)
- From the produced dendrogram determine the final clustering as the one having the largest lifetime.

Note: A large number of clusterings is required, in order to estimate more accurately the elements of C .

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- *Instance-based graph formulation (IBGF)*
- *Cluster-based graph formulation (CBGF)*
- *Hybric bipartite graph formulation (HBGF)*

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- *Instance-based graph formulation (IBGF)*
- *Cluster-based graph formulation (CBGF)*
- *Hybrid bipartite graph formulation (HBGF)*

- **Construct** a **fully connected** graph $G = (V, E)$ where
- Each **vertex** of V **corresponds** to a **data point** and
- Each edge e_{ij} of E is **weighted** by c_{ij} (the (i, j) element of C).
- **Partition** the **graph** into m **disjoint subsets** of vertices V_1, V_2, \dots, V_m such that
 - The **sum** of **weights** of the edges that **connect vertices** between any pair of two **different subsets** is **minimized** and
 - All V_j 's have approximately the **same size**.

Note: The **normalized-cut** and the **Ratio-cut** criteria can be used for partitioning the graph.

Combinations of clusterings

B. Combination of clusterings

Graph-based methods

- *Instance-based graph formulation (IBGF)*

Example: Consider a data set $X = \{x_1, x_2, x_3, x_4\}$ and assume that the co-

association matrix is $C = [c_{ij}] = \begin{bmatrix} 1 & 0.9 & 0.07 & 0.05 \\ 0.9 & 1 & 0.03 & 0.02 \\ 0.07 & 0.03 & 1 & 0.9 \\ 0.05 & 0.02 & 0.9 & 1 \end{bmatrix}$

C indicates that the physical clusters are $C_1 = \{x_1, x_2\}$, $C_2 = \{x_3, x_4\}$.

Consider the **fully connected graph** with **four** vertices $v_1(x_1), v_2(x_2), v_3(x_3), v_4(x_4)$, with the weight of each edge w_{ij} being equal to c_{ij} .

For the possible (equally-sized clusters) two-clusters graph partitions it is:

Partition	Edges connecting diff. clusters (weights)	Total weight of connecting edges
$\{\{v_1, v_2\}, \{v_3, v_4\}\}$	$e_{13}(0.07), e_{14}(0.05), e_{23}(0.03), e_{24}(0.02)$	0.17(*)
$\{\{v_1, v_3\}, \{v_2, v_4\}\}$	$e_{12}(0.9), e_{14}(0.05), e_{32}(0.02), e_{34}(0.9)$	1.87
$\{\{v_1, v_4\}, \{v_2, v_3\}\}$	$e_{12}(0.9), e_{13}(0.07), e_{42}(0.02), e_{43}(0.9)$	1.87

The partition with the **smallest total weight** of connecting edges corresponds to the **physical clustering** of the data set.

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

- *Utility function optimization*
- *Normalized mutual information*
- *Mixture model formulation*

Here, the **final clustering** (also called **median clustering**) $\mathcal{F} = \{F_1, F_2, \dots, F_m\}$, results from the optimization of an appropriate cost function.

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

- *Utility function optimization (probabilistic arguments)*
- *Normalized mutual information function optimization (information theory ingredients)*
- *Mixture model formulation*

A function $U(\mathcal{F}', \mathcal{R}_i)$ is adopted, **measuring** the **quality** of a candidate median \mathcal{F}' against some other clustering \mathcal{R}_i .

The **overall utility** of \mathcal{F}' on $\mathcal{E} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n\}$ is defined as

$$U(\mathcal{F}', \mathcal{E}) = \sum_{i=1}^n U(\mathcal{F}', \mathcal{R}_i)$$

The **final (median) clustering \mathcal{F}** results as

$$\mathcal{F} = \operatorname{argmax}_{\mathcal{F}'} U(\mathcal{F}', \mathcal{E})$$

Combinations of clusterings

B. Combination of clusterings

Function optimization methods

Mixture model formulation

- **Represent** the **data points** as follows

			y_1	...	y_n				
x_1	\rightarrow	[$y_1(1)$...	$y_n(1)$]	\equiv	x'_1	
x_2	\rightarrow	[$y_1(2)$...	$y_n(2)$]	\equiv	x'_2	
\vdots	\rightarrow			\vdots				\vdots	
x_N	\rightarrow	[$y_1(N)$...	$y_n(N)$]	\equiv	x'_N	

Note: The representations x'_i are **discrete-valued**.

- **Define** the probability function $P(x'; \Theta)$ as the (weighted) summation of m (n -dimensional) **probability functions**, each one corresponding to a cluster.
- **Assuming independence** among the **components** of x' , each n -dimensional **probability function** is **written** as the **product** of n **one-dimensional** prob. functions, each one **modeled** by a **multinomial distribution**.
- The **estimation** of the respective **parameters** is carried out via the utilization of the **EM** algorithm.

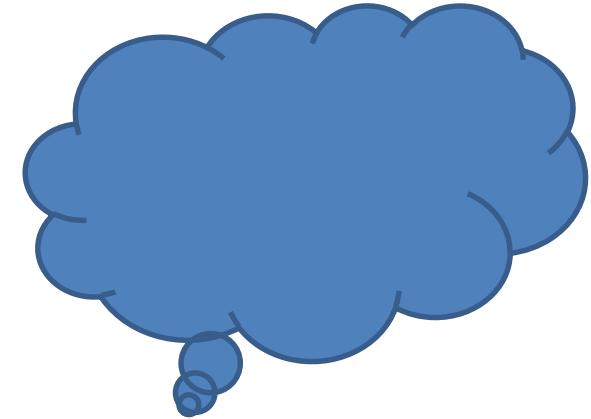
Multinomial distribution

• Multinomial distribution $\text{Mult}(\mathbf{x}|n, \mathbf{P})$

Discrete RV distribution

$$\mathbf{x} = [x_1, x_2, \dots, x_K]^T \quad \mathbf{P} = [p_1, \dots, p_K]^T:$$

$$\sum_{i=1}^K p_i = 1$$



- $0 < p_i < 1, i = 1, \dots, K,$
- Sample space: $\mathbf{X} = \{0, 1, \dots, K\}$
- Outcome of the experiment: **non-binary**. No. of repetitions: **n**
- x_i : number of times the i -th outcome occurs in the n repetitions
- It is

$$\triangleright P(\mathbf{x}) = \binom{n}{x_1, x_2, \dots, x_K} \prod_{i=1}^K p_i^{x_i}$$

$$s.t. x_1 + x_2 + \dots + x_K = n$$

$$\triangleright E[\mathbf{x}] = n\mathbf{P} \quad \bullet \quad \circ \quad \circ$$

$$\triangleright \sigma_i^2 = nP_i(1 - P_i), i = 1, \dots, K.$$

$$\triangleright \text{cov}(x_i, x_j) = -nP_i P_j, i \neq j.$$

$$\binom{n}{x_1, x_2, \dots, x_K} = \frac{n!}{x_1! x_2! \dots x_K!}$$