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Valley seeking clustering algorithms

Let p(x) be the density function describing the distribution of the vectors in X.
» Clusters may be viewed as peaks of p(x) separated by valleys.
Thus one may

* Identify these valleys and
* Try to move the borders of the clusters in these valleys.

A simple method in this spirit.
Preliminaries
» Let the distance d(x,y) be defined as

d(x,y) = (y —x)"A(y — x)
where A is a positive definite matrix

» Let the local region of x, V(x), be defined as

Vix) ={y e X —{x}:d(x,y) < a}
where a is a user-defined parameter

A\

k} be the number of vectors of the j cluster that belong to V(x;) — {x;}.
» c; € {1, ..., m} denote the cluster to which x; will be assigned.



Valley seeking clustering algorithms

Valley-Seeking algorithm
» Fix a.
» Fix the number of clusters m.
» Define an initial clustering X.
> Repeat
e Fori=1toN
—Find j: k} = max q=1'___,mkcil
—Set Ci =j
e End For

* Fori=1toN
—Assign x; to cluster C_..

* End For
» Until no reclustering of vectors occurs.



Valley seeking clustering algorithms

The algorithm

» Centers a window defined by d(x,y) < a at x and counts the points from
different clusters in it.

» Assigns x to the cluster with the larger number of points in the window
(the cluster that corresponds to the highest local pdf).

In other words:
» The boundary is moved away from the “winning” cluster.

Remarks:

 The algorithm is sensitive to a. It is suggested to perform several runs, for
different values of a.

* The algorithm is of a mode-seeking nature (if more than enough clusters
are initially appointed, some of them will become empty).




Valley seeking clustering algorithms
Example: Let X = {x4, ..., X10} and a = 1.1415 (> v2). X contains two
physical clusters: C; = {x4, ..., x5}, C; = {X¢, ..., X10}.
(a) Initially two clusters are considered separated by b,. After the
convergence of the algorithm, C; and C, are identified (equivalently, b, is
moved between X, and X;).

(b) Initially two clusters are considered separated by by, b, and b;. After the
convergence of the algorithm, C; and C, are identified (equivalently b; and
b, are moved to the area where bs lies).

(c) Initially three clusters are considered separated by b4, b, bs, b,. After the
convergence of the algorithm, only two clusters are identified, C; and C,
(gquivalently by, b,, b3 and b, are moved between, x, and Xxg).
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Branch and Bound Clustering algorithms

» They compute the globally optimal solution to combinatorial problems.
» They avoid exhaustive search via the employment of a monotonic criterion

].
Monotonic criterion J: if k vectors of X have been assigned to clusters, the
assignment of an extra vector to a cluster does not decrease the value of |.

Consider the following 3-vectors, 2-class case:
Lo
121: 1%t 3" vectors belong to class 1
2" vector belongs to class 2.
(leaf of the tree)
12x: 15t vector belongs to class 1 Hw 12
2"d vector belongs to class 2
3" vector is unassigned
(Partial clustering- node of the tree).

111 112 121 122



Branch and Bound Clustering algorithms

How exhaustive search is avoided

» Let B be the best value for criterion /| computed so far.

» If at a node of the tree, the corresponding value of ] is greater than B, no
further search is performed for all subsequent descendants springing from

this node.
» Llet C. =|cq,...,c ], 1 <r <N, denotes a partial clustering where

c; €{1,2,...,m}, c; = j if the vector x; belongs to cluster C;j and

Xr41, .-, Xy are yet unassigned.
» For compact clusters and fixed number of clusters, m, a suitable cost

function is

](Cr) = zr ||xi - mci(cr)llz

i=1
where m,_ is the mean vector of the cluster C,

1
m;(C,) = z X, j=1,..,m
SR n; (Cr) {q=1,...1,cq=j} 1
with n;(C,.) being the number of vectors x € {x,, ..., x,-} that belong to

cluster C]




Branch and Bound Clustering algorithms

Initialization
e Start from the initial node and go down to a leaf. Let B be the cost of the
corresponding clustering C (initially set B = 400, C = Q).

Main stage
e Start from the initial node of the tree and go down until
—Either (i) A leaf is encountered. la 12
olf the cost B” of the corr. clustering C” is smaller tha then
*B=FB
* C =C’ is the best clustering found so far
OEnd |f 111 112 121 122

—Or (ii) a node g with value of | greater than B is encountered. Then
oNo subsequent clustering branching from q is considered.
oBacktrack to the parent of g, gP%", in order to span a different path.
olf all paths branching from gP“" have been considered then

* Move to the grandparent of g.
oEnd if
—End if
Terminate when all possible paths have been considered explicitly or
implicitly.



Branch and Bound Clustering algorithms

Remarks

Variations of the above algorithm, where much tighter bounds of B are
used (that is, many more clusterings are rejected without explicit
consideration) have also been proposed.

A disadvantage of the algorithm is the excessive (and unpredictable)
amount of required computational time.



Simulated Annealing

» It guarantees (under certain conditions) in probability, the determination
of the globally optimal solution of the problem at hand via the
minimization of a cost function J.

» It may escape from local minima since it allows moves that temporarily
may increase the value of J.

Definitions

» An important parameter of the algorithm is the “temperature” T, which
starts at a high value and reduces gradually.

» A sweep is the time the algorithm spends at a given temperature so that
the system can enter the “thermal equilibrium” in this temperature.

Notation

» T, is the initial value of the temperature T.
» C;nit is the initial clustering.

» C isthe current clustering.

» tis the current sweep.




Simulated Annealing

The algorithm:
e SetT = Tmax and C = Cinit-
e t=0
e Repeat
—t=t+1
— Repeat
o Compute /(C)
o Produce a new clustering, C’, by assigning a randomly chosen vector
from X to a different cluster.
o Compute /(C")
olfA] =J(C") —]J(C) < 0then

*(A)C =C
o Else
* (B) C = C’, with probability P(A)) = e 2J/T,
o End if
— Until an equilibrium state is reached at this temperature.
- T = f(Tnax t)

e Until a predetermined value T,,,;,, for T is reached



Simulated Annealing

Remarks:
e For T—oo, itis p(A]) = 1. Thus almost all movements of vectors between
clusters are allowed.
* For lower values of T fewer moves of type (B) (from lower to higher cost
clusterings) are allowed.
e As T—0 the probability of moves of type (B) tends to zero.
e Thus as T" decreases, it becomes more probable to reach clusterings that
correspond to lower values of J.
e Keeping T positive, we ensure a nonzero probability for escaping from a
local minimum.
e \We assume that the equilibrium state has been reached
”1f for k successive random reassignments of vectors, € remains
unchanged.”
e A schedule for lowering T that guarantees convergence to the global
minimum with probability 1, is
— Tmax
In(1+¢t)
* The method is computationally demanding.




Deterministic Annealing (DA) (*)

» |t is inspired by the phase transition phenomenon observed when the
temperature of a material changes. It involves the parameter f = 1/T,
where T is defined as in simulated annealing.

» The Goal of DA: Locate a set of representatives w;,j=1..m (m is fixed)
in appropriate positions so that a distortion function / is minimized.

J is defined as .
1 N m Assumption: d(x, w)
] = In (z e P d(xi'wj)) is a convex function of
j=1

:8 =1 w for fixed x.

» Then, the optimal value of a specific w,. satisfies the following condition:

ow,.

d N od(x;, w
/ _Z P (X, wr) _
=1 awr
where
e~ Bd(xiwr)
ir — }Zle—ﬁd(x,:,w]')
» P,. may be interpreted as the probability that x; belongsto C,, r = 1, ..., m.




Deterministic Annealing (*)

Assumption: d(x, w) is a convex function of w for fixed x.
Stages of the algorithm

1 .
* For § — 0, all P;;’s are almost equal to — forall x;’s,i =1,...,N. Thus

Since d(x, w) is a convex function, d(x4,w,.) + -+ + d(xy, W,) is a convex
function. All representatives coincide with its unique global minimum (all the
data belong to a single cluster).

* As 5 increases, it reaches a critical value where P;,.’s “depart sufficiently”
from the uniform model. Then the representatives split up in order to
provide an optimal presentation of the data set at the new phase.

* The increase of 5 continues until P;; approach the hard clustering model
(for all x;, Py = 1 for a specific r, and P;; = 0, for j # r).



Deterministic Annealing (*)
Application: For the squared Euclidean distance d(x,w) = (x — w)T (x — w)

itis
0 N od(x;,w N N _ P x;
] — Z P”. ( l T') — 2 P”,.(xl . W,r.) — 0 o WT. — l;vl Ir-+i
ow,. i=1 ow, i=1 i=1 Pir
[_Tfﬁupled wrt w,. ]
Remarks:

* |tis not guaranteed that it reaches the globally optimum clustering.

* If mis chosen greater than the “actual” number of clusters, the algorithm
has the ability to represent the data properly.



Clustering using genetic algorithms (GA)

A few hints concerning genetic algorithnms

» They have been inspired by the natural selection mechanism (Darwin).

» They consider a population of solutions of the problem at hand and they
perform certain operators on this, so that the new population of the same
size is improved compared to the previous one (wrt a criterion function F).

» The solutions are coded and the operators are applied on the coded
versions of the solutions.

The most well-known operators are:
Reproduction:
* It ensures that, in probability, the better (worse) a solution in the current
population is, the more (less) replicates it has in the next population.
 Asimple implementation:
" For each solution s;, out of the population of the p solutions, compute
the associated criterion function value F(s;).
(it is assumed that the higher the value of F, the better the solution)

= Assign to each s; a probability p; = F(s;)/ X7_; F(s;).
= Perform sampling with replacement to produce the next solution
population.



Clustering using genetic algorithms (GA)

Crossover:

* |t applies to the temporary population produced after the application of
the reproduction operator.

* It selects pairs of solutions randomly, splits them at a random position and
exchanges their second parts.

Mutation:

* |t applies to the temporary population produced after the application of
the crossover operator.

* It selects randomly an element of a solution and alters it with some
probability.

* It may be viewed as a way out of getting stuck in local minima.

Aspects/Parameters that affect the performance of the algorithm
The coding of the solutions.
The number of solutions in a population, p.
The probability with which two solutions are selected for crossover.
The probability with which an element of a solution is mutated.




Clustering using genetic algorithms (GA)
GA Algorithmic scheme

t=20

Choose an initial population @, of solutions.

Repeat
* Apply reproduction on ; and let (; be the resulting temporary

population.

* Apply crossover on @ andlet o be the resulting temporary population.
 Apply mutation on @} andlet ;. be the resulting population.
et=t+1

Until a termination condition is met.

Return
e either the best solution of the last population,
* or the best solution found during the evolution of the algorithm.



Clustering using genetic algorithms (GA)

Genetic Algorithms in Clustering

The characteristics of a simple GA hard clustering algorithm suitable for
compact clusters, whose number m is fixed, is discussed next.

A (not unique) way to code a solution is via the cluster representatives.
[Wl, Wy, ..., Wm]

The criterion function can
be defined e.g., as F(s;) =
e_](si)

The cost function in use is

N
J = z 1uijd(xi»Wj)
=

ij — 0 y0L =1, ...,

otherwise

The allowable cut points for the crossover operator are between different
representatives.

The mutation operator selects randomly a coordinate and decides
randomly to add a small random number to it.



Clustering using genetic algorithms (GA)

Remark:

» An alternative to the above scheme results if prior to the application of
the reproduction operator, the hard clustering algorithm (GHAS), described
in a previous lecture, runs p times, each time using a different solution of
the current population as the initial state. The p resulting solutions

constitute the population on which the reproduction operator will be
applied.




Density-based algorithms for large data sets

These algorithms:
» Consider clusters as regions in the |-dimensional space that are “dense” in
points of X.

» Have, in principle, the ability to recover arbitrarily shaped clusters
(however, difficulties may arise in the case where the clusters differ in terms of their
density).

» Handle efficiently outliers.

> Have time complexity less than O(N?).
Typical density-based algorithms are:
 The DBSCAN algorithm.

e The DBCLASD algorithm.
e The DENCLUE algorithm.



Density-based algorithms for large data sets
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Algorithm

The “density” around a point x is estimated as the number of points in X that
fall inside a specific region of the [-dimensional space surrounding x.

Notation
* V.(x) is the hypersphere of radius & (user-defined parameter) centered at x.

* N.(x) the number of points of X lyingin V. (x).

* g is the minimum number of points of X that must be contained in V(x), in
order for x to be considered an “interior” point of a cluster.

Definitions

1. A point y is directly density reachable from a point x € X if
(i) y € Ve(x)
(i) Ne(x) = q (fig. (a)).

2. A point y is density reachable from a point x € X if there is a sequence of
points x4, X5, ..., X, € X, with x; = x, X, = ¥, such that x;_; is directly
density reachable from x; (fig. (b)).




Density-based algorithms for large data sets

DBSCAN Algorithm (cont.)
3. A point x is density connected to a point y € X if there exists z € X such
that both x and y are density reachable from z (fig. (c)).

Example:
x Y
Assuming that g = 5, © @

(@) yisdirectly density
reachable from x, but not vice
Versa, (a) (b)

(b) yis density reachable from x,
but not vice versa, and

(c) xandy are density
connected (in addition, y is
density reachable from x, but
not vice versa).




Density-based algorithms for large data sets

DBSCAN Algorithm (cont.)

4. A cluster C in DBSCAN is defined as a nonempty subset of X satisfying
the following conditions:
* Ifxbelongsto C andy € X is density reachable from x, theny € C.
* Foreach pair (x,y) € C, x and y are density connected.

5. Let Cy, ..., Cy, be the clusters in X. The set of points that are not connected
in any of the (4, ..., C,;, is known as noise.

6. A point x is called a core (noncore) point if it has at least (less than) g
points in its neighborhood.
A noncore point may be either
* aborder point of a cluster (that is, density reachable from a core point)
or
e anoisy point (that is, not density reachable from other points in X).



Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)

Proposition 1: If x is a core point and D is the set of points in X that are
density reachable from X, then D is a cluster.

Proposition 2: If C is a cluster and x is a core point in C, then C equals to the
set of the points y € X that are density reachable from x.

Therefore: A cluster is uniquely determined by any of its core points.

Notation

X,n is the set of points in X that have not been considered yet.
* m denotes the number of clusters.




Density-based algorithms for large data sets

DBSCAN Algorithm (cont.)
DBSCAN Algorithm

> Set X, =X
> Setm =0
» While X,,,, # @ do
* Arbitrarily selecta x € X,;,,
 |fxisanoncore point then
—Mark x as noise point
— Xun = Xun — {x}
e Endif

 Jfxisacore point then

-m=m+1

— Determine all density-reachable points y € X from x.

— Assign x and the previous points to the cluster C,,,. The border points
among them that may have been marked as “noise” are also
assigned to C,,,.

— Xun = Xun — G

* End {if}
> End {while}



Clustering — Density-based algorithms
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Clusters are recovered as follows:
*Start a new cluster C by choosing a data point x.
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Prerec"i&isite: Definition of
the neighborhood size

*Assign all the data points that lie in the neighborhood of x to the same cluster.
*Repeat recursively the previous step until all neighboring points of ALLx € C are

assigned to C.




Clustering — Density-based algorithms

T
A + +T+
8 -

-10 -

+ Eﬁ"—l—
+ 1 -+

e
-||_+

-10 -5 0 5 10
Clusters are recovered as follows:
*Start a new cluster C by choosing a data point x.

15

Prereé&isite: Definition of
the neighborhood size

*Assign all the data points that lie in the neighborhood of x to the same cluster.
*Repeat recursively the previous step until all neighboring points of ALLx € C are

assigned to C.




Clustering — Density-based algorithms
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Clustering — Density-based algorithms
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assigned to C.




Clustering — Density-based algorithms
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Clustering — Density-based algorithms
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Clustering — Density-based algorithms

-10 5 0
Clusters are recovered as follows:
*Start a new cluster C by choosing a data point x.

Prereé&isite: Definition of
the neighborhood size

*Assign all the data points that lie in the neighborhood of x to the same cluster.
*Repeat recursively the previous step until all neighboring points of ALLx € C are

assigned to C.




Density-based algorithms for large data sets

DBSCAN Algorithm (cont.)

Important notes:

* If a border point y of a cluster C is selected, it will be marked initially as a
noise point. However, when (a) a core point x in C is selected later on, and
(b) y is identified as a density-reachable point from x then y will assigned to
C.

* If an actual noise point y is selected, it will be marked as such and since it is
not density reachable by any of the core points in X, its “noise” label will
remain unaltered.

Remarks:

* The parameters € and g influence significantly the performance of DBSCAN.
These should be selected such that the algorithm is able to detect the least
“dense” cluster (experimentation with several values for € and g should be
carried out).

* Implementation of DBSCAN using R*-tree data structure can achieve time
complexity of O(N log ,N) for low-dimensional data sets.

* DBSCAN is not well suited for cases where clusters exhibit significant
differences in density as well as for applications of high-dimensional data.



Density-based algorithms for large data sets (*)

DENsity-based CLUstEring (DENCLUE) Algorithm
Definitions

The influence function f%(x) for a point y € X is a positive function that
decays to zero as x “moves away” from y (d(x,y) — o). Typical examples
are:

FY(x) = (1) if d(x,y) <o () = o

, otherwise

where o is a user-defined function.

The density function based on X is defined as (Recall the Parzen windows):

N
X — Xi
f (x),T E S (x)

i




Density-based algorithms for large data sets (*)

DENsity-based CLUstEring (DENCLUE) Algorithm
Definitions

The influence function f¥(x) for a point y € X is a positive function that

decays to zero as x “moves away” from y (d(x,y) — o). Typical examples
are:

7 (x) = {1, if d(x,y) <o d@xy)?

y X) = e_ 202
0, otherwise fr(x)
where o is a user-defined function.

The density function based on X is defined as (Remember the Parzen
windows):

N
A=) i@
1=
The Goal:
(a) Identify all “significant” local maxima, xj’-‘,j =1,...,m, of f%X(x)
(b) Create a cluster C; for each x]’-k and assign to C; all points x of X that lie
within the “region of attraction” of x}‘.



Density-based algorithms for large data sets (*)

The DENCLUE Algorithm (cont.)
Two clarifications

* The region of attraction of Jnc]’-k is defined as the set of points x € R! such that

if a “hill-climbing” (such as the steepest ascent) method is applied on

f%(x), initialized by x, it will terminate arbitrarily close to X; .

* A local maximum is considered as significant if fX(x}‘) > ¢ (€ isa user-
defined parameter).

Approximation of /% (x)
N
=), Fr@w=)

where Y (x) is the set of points in X that lie “close” to x.

The above framework is used by the DENCLUE algorithm.



Density-based algorithms for large data sets (*)

The DENCLUE Algorithm (cont.)
DENCLUE algorithm

* Preclustering stage (identification of regions dense in points of X)
> Apply an [-dimensional grid of edge-length 20 in the R! space.
Determine the set D, of the hypercubes that contain at least one point
of X.

>
» Determine the set D, (c D,,) that contains the “highly populated” cubes
>

of D, (that is, cubes that contain at least {.(> 1) points of X).

For each ¢ € Dy, define a connection with all neighboring cubes ¢; in D,
for which d(m_, mcj) < 40, where m_, m; are the means of ¢ and ¢;,
respectively.

* Main stage
» Determine the set D, that contains:
—the highly populated cubes and

—the cubes that have at least one connection with a highly populated
cube. ° mo °

a® Lio e® izo-




Density-based algorithms for large data sets (*)

DENCLUE algorithm (cont.)
* Main stage (cont.)

" For each point x in a cube ceD,.
» Determine ' (x) as the set of points of X that belong to cubes ¢; in D,
such that the mean values of ¢;’s lie at distance less than 4 - o from x
(typically A = 4).
> Apply a hill climbing method on f*(x) = Dix;EY (x) f*i(x) starting from x
and let x* be the local maximum to which the method converges.
> If x™ is a significant local maximum (f X(x*) > &) then
—If a cluster C associated with x* has already been created then
o x is assigned to C
—Else
o Create a cluster C associated with x*
o Assigh x to C

> End if - ] =] |k
= End for i Sl O




Density-based algorithms for large data sets (*)
The DENCLUE Algorithm (cont.)

Remarks:

* Shortcuts allow the assignment of points to clusters, without having to
apply the hill-climbing procedure.

* DENCLUE is able to detect arbitrarily shaped clusters.

* The algorithm deals with noise very satisfactory.
* The worst-case time complexity of DENCLUE is O (N log ,N).

* Experimental results indicate that the average time complexity is O (log,N).

* |t works efficiently with high-dimensional data.



Spectral clustering

Spectral clustering is based on graph theory concepts.

Rationale: It actually maps the data from their original space, where they may
form arbitrarily-shaped clusters, to a new space, where (their images) form
compact clusters.

Main stages:

» Definition of a similarity graph G based on the given data set X.

» Utilization of the Laplacian matrix L associated with G.

» Mapping of the data set to a space spanned by some eigenvectors of L.

» Performing clustering on the images of the data in the transformed space.

In principle, spectral clustering is able to recover arbitrarily shaped clusters
(see discussion later).



Spectral clustering

Similarity graph We consider only
- DatasetX = {x{, x5, ..., X5} undirected graphs.
- Similarity graph G = (V,E)°°"“

Definition of a similarity graph

About V

* The set V consists of N vertices/nodes, vy, V5, ..., Uy 49
* Each vertex v; € I/ correspondstoax; € X,i =1,...,N.

By convention,

About E w;; = 0, implies
Various scenarios lead to various graphs: absence of e;;.
(a) The e-neighborhood graph: O

> An edge e;; is added between vertices v; and v}, if d(x;, x;) <e. O

» Usually it is considered as an unweighted graph (itis w;; = 1, for all e;;'s).



Spectral clustering

Similarity graph

Definition of a similarity graph

About E

(b) The k-nearest neighbor graph:

» An edge ¢;; is added between vertices v; and v}, if v; is among the k-
nearest neighbors of v; OR vice versa.

» Each e;; is weighted by the similarity between x; and x;.

(c) The mutual k-nearest neighbor graph:

» An edge ¢;; is added between vertices v; and v}, if v; is among the k-
nearest neighbors of v; AND vice versa.

» Each e;; is weighted by the similarity between x; and x;.

(d) The fully connected graph:
» All possible edges e;; are added in the graph.
» Each e;; is weighted by the similarity between x; and x;, e.g,,

x|
s(x;, x;) = exp(— | xlzjzj | )




Spectral clustering

Similarity graph
Example:

The data set consists of
(i) two “half moon”
clusters and

(ii) a compact cluster of %
different density from -1}
the previous ones.

1t

-2

3t

Diata points

The resulting graphs are
shown in the figure.
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Spectral clustering

Graph Laplacians
* There are various definitions for graph Laplacian matrix.
* All such matrices share some properties that allow their exploitation in the

frame of clustering.

Some definitions:

Weighted adjacency matrix: %

Degree of a vertex v;:

Degree matrix:

o o &

DNXN — diag(dl, d2) '--;dN)

(Unnormalized) graph Laplacian matrix:
LNXN — D - W

w;; is the weight of the
edge connecting v; and v;,

ANXN



Spectral clustering

Graph Laplacians
Some results for the unnormalized graph Laplacian L:

1. Vx = [xl, ...,XN]TE RN itis

1N N
xTLx = — Wij(xi — X])Z
2 zi=1 zj=1

2. L is symmetric and positive semidefinite.
3. The smallest eigenvalue of L is 0.
4. L has N non-negative real-valued eigenvalues 0 = 1; < 4, < -+ < Ay.

5. Let G be an undirected graph with nonnegative weights. Then the
multiplicity k of the zero eigenvalue equals to the number of the connected
components A4, ..., Ag, of the graph. In addition, the eigenspace of the zero
eigenvalues is spanned by the (N-dimensional) indicator vectors of those
components, 1A1,

1y,. [ ——
The indicator vector 14, has all of its components
equal 0 except those corresponding to the points
that belong to the k-th connected component.,
which are equal to 1.

S~ s




5. Let G be an undirected graph with nonnegative weights (w;; = 0). Then the multiplicity k of
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Graph Laplacians: Some results for the unnormalized graph Laplacian L:

the zero eigenvalue equals to the number of the connected components A4, ..., 4, of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional)

indicator vectors of those components, 14, -, 1Ak'

dl — A —Wji2
—Wji2 d2 — A

—Win —Won

1 —Wji2
1 d,—2

1 —WohrnN

d2+W12—A
= —A :

—Wony T Wqp

—WinN
—Wony T Wiy
dN + WlN — /1

—WinN —A —W12 o TWhanN
“Won [ _ -4 dp—A4 r —Way
dN_A _/1 _WZN °e dN_A
—Win 1 —Wi2

_M.IZN _ —A O d2+V|./12 —/1

dN — A 0 —WsoN + W12

—Wyn + Wiy
: @/11 =O, (Az, /1N >O)
dN + WiN — A

Thus, multiplicity of the zero eigenvalue is 1.

The associated eigenvector is the 1,since0=0-1=L-1 °°
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Graph Laplacians: Some results for the unnormalized graph Laplacian L:

5. Let G be an undirected graph with nonnegative weights (w;; = 0). Then the multiplicity k of
the zero eigenvalue equals to the number of the connected components 44, ..., 4, of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional)
indicator vectors of those components, 1A1, . 1Ak'

- The k = 1 case (connected graph):
- The associated eigenvector is the 1,since0=0-1=L -1

1] [ 41 —wiz - W1
1 —Wwiz  dp Tt TWand |1

1)
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Graph Laplacians: Some results for the unnormalized graph Laplacian L:
5. Let G be an undirected graph with nonnegative weights (w;; = 0). Then the multiplicity k of

the zero eigenvalue equals to the number of the connected components 44, ..., 4, of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (N-dimensional)
indicator vectors of those components, 1A1, . 1Ak'

- The k > 1 case (k connected components):
* Considering each connected component individually, the i-th component
has its own associated Laplacian L;
* Then the Laplacian for the whole graph can be written as

The spectrum of L is
given by the union of
the spectra of L;s.

* Since, the multiplicity of the zero eigenvalue is 1 for each L; =
the multiplicity of the zero eigenvalue is k for L.

* Denoting |A,| = ny, 1, hasits first n; (resp. remaining) components
equal to 1(resp.0), 1,, = [1,1,...,1,0,0, ...,0]". Then,

00,51 =01y w1 =L1 -1y, x1 2 Onxa =014, vua =L -1y
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Unnormalized spectral clustering algorithm
Input: (a) Similarity matrix S € RV*N | (b) the number of clusters m

* Construct a similarity graph with weighed adjacency matrix .

* Compute the unnormalized Laplacian L.

* Compute the first m (column) eigenvectors of L, uq, ..., ;.

e Stack uq, ..., u,,, onan N X m matrix U.

* Represent each data vector x; by the i-th row y; of U.

* Cluster the points y; € R™,i =1, ..., N, using e.g., the k-means algorithm,
into clusters C,', C,/, ..., C,,,".

Output: Clusters C;, Cy, ..., Cy, with C; = {x;: y; € C;'}
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Unnormalized spectral clustering algorithm

- A
Example: Low,, @737
Data set X = {x1,X,,X3, X4, X5} ’/vl P A4z
. ( 1€ - -
Similarity graph: i P N
7/ Uy \
G = (V,E) = ({vy, v2, V3, V4, Vs }, {€13, €24, €25, €45}) / i
. - . . /1 W, Wy \
Nodes degree: d; = wq3,dy = Wys + Wys, d3 = Wq3 L v, :'
dy = Wpg + Wys, ds = Wys + Wys s O,
. /
Laplacian of the whole graph: S~ -7
L=D-W
i W13 0 —Wi3 0 0 ]
0 W24 + Wis 0 —W3y4 —W3s
= —Wi3 0 W13 0 0
0 —Wazy 0 Wway +wys —Wys
0 —W3s 0 —Wg5  Wp5 + Wys
2W13 — A 0 0
|L—AI|::AZ 0 2W24+W45—)l Wy5 — Wys =0
0 Wos — Wys 2Wos + Wy — A

A = 0 double root
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Unnormalized spectral clustering algorithm

Example:

Data set X = {x1,X,,X3, X4, X5}
Corresponding eigenvectorse (L -e = 0 - e):

u, = [1,0,1,0,0]" and u, = [0, 1,0,1,1]" since

0
Wo4 + Wss

—Wi3
0

S
w

0
—Wp4

Was T+ Wys
—Wys
—Wo4

Wo4 T Wys
—Wys

—Wys

Wo5 + Wys

— = ORr O
Il

— R OR O
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Unnormalized spectral clustering algorithm

A
) - v
Example: w3 @737
/ s A
p ,/ Y/
( V1 D -

- -

The eigenvectors corresponding to the zero eigenSpdce are e - ;2“ ~ o
w, = [1,0,1,0,0]7 and u, = [0,1,0,1,1] FA N
| 25 |
1 01= Y1i— X1 |‘\v4 Was @ug
0 1= ¥» % e
ThematrixU =1 0|= JY3— X3 o
0 1|= Ya—> X4
0 11= Ys— X5

(011). {Xz, X4, xS}
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Other Laplacian matrices
» Symmetric Laplacian matrix: Ly, = D™/% . L - D71/2
 Random walk Laplacian matrix: L,,, = D~ 1L

All Laplacians share similar properties concerning the zero eigenvalue.
In (von Luxburg, 2007), it is suggested to use L., .
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Choice of the number of clusters

Example:

The ten smallest eigenvalues of L., for a 1-dim. four-clusters problem.
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In the case where m is not apriori known, it can be estimated by sorting the
Laplacian eigenvalues and determining the number of the first m eigenvalues
that (a) are sufficiently close to 0 and (b) the m + 1 differs significantly from

them.



