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Possibilistic CFO clustering algorithms

Possibilistic clustering algorithms:
Let X = {x, X,, ..., Xy} be a set of data points.

For each vector x; its degree of compatibility with all clusters, u;;,j = 1, ...,m,

is considered.
The constraints on u;;’s are

u; €[01], i=1,..,N,j=1,..,m
° O<Z§V=1ul-j <N,j=1,...,m

Each cluster is represented by a representative 6; (point repr., hyperplane...).
Let O = {01, 02, “ee ) Hm}

Define the cost function

N m
JqWU,0) = zi=1z]~=1u”q d(x;,0;)

When J, (U, ©) is minimized?

When all u;;’s are (very close to) zero.



Possibilistic CFO clustering algorithms

How to avoid the trivial zero u;;’s solution?

Add a suitable term that discourages the zero solution.
A possible scenario:
Minimize the cost function

N m m N
Jq(U,0) = Z z u;? d(x;, ;) +z. ’712_ (1 —u)?
=1 Jj=1 j=1 =1

where 7;‘s are suitably defined constants (one for each cluster), associated
with the variance of the clusters.
Since 6)’s, u;;'s are continuous valued, tools from analysis may be employed.

For fixed 6;s: Equating the partial derivative of /,(U,0) wrt u;; to 0 we obtain

dJ,(U,0) 1
NN =0 ul-j = 1
o . (d(xl-, ej)>ﬁ
_I_
nj

Notes: (a) u;; depends exclusively on 6;.
(b) It is ul-j (S [0,1]



Possibilistic CFO clustering algorithms

How to avoid the trivial zero u;;’s solution?

Add a suitable term that discourages the zero solution.
A possible scenario:
Minimize the cost function

N m m N
Jq(U,0) = Z z u;? d(x;, ;) +z. ’712_ (1 —u)?
=1 Jj=1 j=1 =1

where 7;‘s are suitably defined constants (one for each cluster), associated
with the variance of the clusters.
Since 6)’s, u;;'s are continuous valued, tools from analysis may be employed.

For fixed u;;‘s: Solve the following m independent minimization problems

N
6; = argming, zi_luijqd(xi; 9j)




Possibilistic CFO clustering algorithms

Generalized Possibilistic Algorithmic Scheme (GPAS1)
* Fixn,’s,j=1,..,m.
* Choose 0,(0) as initial estimates for 8;, j = 1, ..., m.

e t=0
* Repeat
—Fori=1to N % Determination ofu{js
oForj=1tom
1
u;(t) = T
- (d(xi, e,-@))q-l
nMj
o End {For-j}
— End {For-i}
—t=t+1
— For J=1 to m % Parameter updating
o Set
N
0;(t) = argming, Zi_luijq(t — 1)d(xi,9j) Jj=1,...,m
— End {For-j} i

e Until a termination criterion is met.



Possibilistic CFO clustering algorithms

Remarks:
e A candidate termination condition is

|0(1)-0(t-1)]|<e,
where [|.|| is any vector norm and ¢ a user-defined constant.

* GFAS may also be initialized from U(0) instead of 6;(0), =1, ...,m and start
iterations with computing 6 first.

e Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy
clustering algorithm derived previously.

* High values of Q:
» In possibilistic clustering cause almost equal contributions of all
vectors to all clusters
» In fuzzy clustering cause increased sharing of the vectors among all
clusters.



Possibilistic CFO clustering algorithms
Three observations

e Decomposition of J(O,U):

Since for each vector x;, u;;’s, j = 1, ..., m are independent from each other,
J(O,U) can be written as

1 (0, U)—Z:l 12} iy d( ,)+z]_ ”JZ A=y
=zm [Z:i:lu” d(x;, 0 )+n,2i (1 — ;) ]z Y/

=1
where !
N N
]] — z 1uijqd(xi,9j) + n]z 1(1 — uij)q
l= 1=

Each J; is associated with a different cluster and minimization of ] (@, U) with
respect to u;;’s can be carried out separately for each J;.




Possibilistic CFO clustering algorithms
Three observations

* About 7;’s:

—They determine the relative significance of the two terms in J(®,U).

—They are related to the “variance” of the points of Cj’s, J=1,...,m, around their
centers.

—Two scenarios for the estimation of #;’s, for the point representatives case,
are the following:

o Run the related FCM algorithm and after its convergence estimate nj’s as

n; = Z{V=1 uijqd(xixej) or n; = Zuij>ad(xi»9j)

= ! o

! Zi:l uijq J Zuij>a1

o Setn;=n=_r, where 8 =~ Y4 llx; — X||* and X = — >3z, x;



Possibilistic CFO clustering algorithms
Three observations

* The mode-seeking property

Unlike Hard and fuzzy clustering algorithms which are partition algorithms
(they terminate with the predetermined number of clusters no matter how
many physical clusters are naturally formed in X), GPAS is a mode-seeking
algorithm (it searches for dense regions of vectors in X).

Advantage: The number of clusters need not be a priori known.

If the number of clusters in GPAS, m, is greater than the true number of
clusters k in X, some representatives will coincide with others. If m<k, some
(and not all) of the clusters will be identified.




Possibilistic CFO clustering algorithms

How to avoid the trivial zero u;;’s solution?

Add a suitable term that discourages the zero solution.
Another possible scenario:

Minimize the cost function

N m m N
J(U,0) =Z_ z Ujj d(xiyej)+z. sz_ (uij Inu;; —u;;)
=1 Jj=1 j=1 =1

where 7;‘s are suitably defined constants (one for each cluster), associated
with the variance of the clusters.
Since 6)’s, u;;'s are continuous valued, tools from analysis may be employed.

For fixed 6;s: Equating the partial derivative of/ (U, 0) wrt u;; to 0 we obtain
d/4(U,0) d(x;,0;)
=0 u;j =exp| —
Guij TI]
Notes: (a) u;; depends exclusively on 6;.
(b) It is uij (S [0,1]

10



Possibilistic CFO clustering algorithms

How to avoid the trivial zero u;;’s solution?

Add a suitable term that discourages the zero solution.
A possible scenario:
Minimize the cost function

N m m N
J(U,0) =Z_ z Ujj d(xiyej)+z. sz_ (uij Inu;; —u;;)
=1 Jj=1 j=1 =1

where 7;‘s are suitably defined constants (one for each cluster), associated
with the variance of the clusters.
Since 6)’s, u;;'s are continuous valued, tools from analysis may be employed.

For fixed u;;‘s: Solve the following m independent minimization problems

N
0; = argming zi_luijd(xi: 6;)
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Possibilistic CFO clustering algorithms

Generalized Possibilistic Algorithmic Scheme (GPAS2)
* Fixn,’s,j=1,..,m.
* Choose 0,(0) as initial estimates for 8;, j = 1, ..., m.

e t=0
* Repeat
—Fori=1to N % Determination ofu{js
oForj=1tom
d(x;,0;(t))
u;j(t) = exp (—
nj
o End {For-j}
— End {For-i}
—t=t+1
—For J]=1 to m % Parameter updating
o Set
N
Bj(t) = argmingj Zi_luij(t — 1)d(xi, 91) ,j =1,..,m
— End {For-|}

e Until a termination criterion is met. 12



CFO clustering algorithms: A unified view

In the

Basic parameters — notation (conot_.) o

O probabilistic case
U, U, -+ U, U, w; = P(j|x;
v U= .21 .22 : ?m = .2
Unp Unz o Unm | Ui

* u;e [0,1] quantifies the “relation” between x; and C.

*  “Large” (“small”) u; values indicate close (loose) proximity
between x; and C..

— uj varies inversely proportional wrt d(x, ).

* u;:vector containing the u;’s of x; with all clusters.

13



CFO clustering algorithms: A unified view

Aim:
v' To place the representatives into dense in data regions (physical

clusters).
How this is achieved:
v Via the minimization of the following type of cost function (wrt @, U)

J(@,U):ZN:Zm:ui‘}d(xi,Sj) (q1)

i=1 j=1
s.t. some constraints on U, C(U).

For the probabilistic
case d(x;, 6;) results
from the log-likelihood
of suitably defined
exponential
distributions

Intuition:
v" For fixed J/s, J(O,U) is a weighted sum of fixed distances d(x;, ).

= Minimization of J(O,U) wrt u; instructs for large weights (u;) for
small distances d(x;,3)).

v' For fixed u;’s, minimization of J(O,U) wrt §/s leads 9s closer to
their most relative data points. y



CFO clustering algorithms: A unified view

Basic types of algorithms: =00 o ive o U=[u,]

Partition _ ; o '
matrix Membership Tix bility matrix

Hard: Fuzzy: Possibilistic (>1 choices):

. . | | Plane | |Lline Point Line segment | | Polygon .
K N old Compact set in k-

-dim. nonlinear -dim. lin. manifo dim. lin. manifold
manifold X

0=(9, j=1,...,m)

15



CFO clustering algorithms: A unified view

C(U) /@
Hard JFZL(J)W Possib.” || . .
Constr. nstr. | Constr.

Point / //

Gl O

Hyperplane / l

“Array of CFO algorithms”

Hyperellipsoid /

There are several unexplored areas (groups of algorithms) in this array.



CFO clustering algorithms: A unified view

General cost function opt. (CFO) scheme:
v’ Initialize ©=0(0)
v' Repeat

e t=0

* U(t)=argmin, J(O(t),U), s.t. C(U(t))
e t=t+1

* O(t)=argmin, J(O,U(t-1))
v" Until convergence

17



CFO clustering algorithms: A unified view

Array of CFO algorithms C(u)

Hard Fuzzy Possib.
Constr. | Constr. | Constr.

Point

Line

Hyperplane

Hyperellipsoid

18



CFO clustering algorithms: A unified view

“Array of CFO algorithms”

C(U)
Hard Fuzzy Possib.
Constr. | Constr. | Constr.
Point |
Line
= Hyperplane |

Hyperellipsoid

19



CFO clustering algorithms: A unified view

CFO clustering algorithms: A loose presentation

Constraintson U A

Possibilistic + sparse
Possibilistic

Fuzzy
Hard

)

Type of J,
Type of d(x, )

Compact Set

Nonlinear MW

E.g.:If 3, is a point,
d(x;,3;) may be
*Sq. Euclidean

*/, norm
*Mahalanobis

Point
Linear Ma@\

Subspace clustering
20




CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
A. Generalized Hard Algorithmic Scheme (GHAS) — k-means algorithm

N m
minimizey oJ (U, 0) = Z z Ujj ||xl- — 9]-||2
i=14md j=1

subject to (a) u;; € {0,1}, i =1,..,N,j =1,...,m, and (b) Z;-’;luij =1i=1,..,N.

The Isodata or k-Means or c-Means algorithm
* Choose arbitrary initial estimates 6; (0) for the Oj’ s, J=1,...,m.
e t=0
* Repeat
—Fori=1to N % Determination of the partition
oForj=1tom

o L i X = 0D = ming=y,_mllxi — 04O
w0 =1 .
, otherwise
o End {For-j}
— End {For-i}
—-t=t+1
— For j=1 to m % Parameter updating
o Set N
0;(t) = S = D% 5y m
_ iz1 Wij(t—1)
— End {For-}}

* Until no change in 8;" s occurs between two successive iterations

21



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
B. Generalized Fuzzy Algorithmic Scheme (GFAS) — Fuzzy c-means algorithm

N m
minimizey o] (U, 0) = Z Z u;; ||xl- — 9]-||2
i=1&md j=1

subject to (a) u;; € (0,1), i =1,...,N,j =1,..,m,and (b) Z}-’Lluij =1i=1,..,N.

* Choose 0;(0) as initial estimates for 6}, j=1,...,m.
* t=0
* Repeat

—Fori=1to N % Determination of u{js

oForj=1tom
1
u;(t) = 7
o [ d(x;,0;(t)) |21
k=1 (d(xl-, ek<t>>>

o End {For-j}

— End {For-i}

—t=t+1

— For j=1 to m % Parameter updating

o Set N
0.(1) = 2=t u; Tt —1x;
() = S J=1m,m
_ i=1 Uij(t — 1)
— End {For-}}

e Until a termination criterion is met.

22



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
C. Generalized Probabilistic Algorithmic Scheme (GPrAS) — the normal pdfs case

N m
minimizeg pJ(0, P) = —Zi 12,- 1P(]'le-) In(p(x;|j; 6;)P;)
Itis (a)P(jlx;) € (0,1), i=1,...,N,j =1,..,m,and (b) Z;-’;lP(ilxi) =1i=1,..,N.
* Choose 1£;(0), Z;(0), P;(0) as initial estimates for u;,Z;, Pj,resp.,j = 1,..,m
e t=0
* Repeat
—Fori=1to N % Expectation step

oForj=1tom
P(jlx-'Q(t) P(t)) _ P(xilj;ej(t))Pj(t)
1 )

™ p(xi]q;6¢ ) Pg®

= Vji(t)

o End {For-j}
— End {For-i}
—t=t+1
— For j=1 to m % Parameter updating — Maximization step
o Set
o _ 2 Vi TP
J

£V=1 Vji(t_l) ’

1) N o (=D (. _ _nu\T
i=1Vji (xi—pj) (xi—pj)°
Zj(t) == j=1,..,m

§V=1 Vji(t_l)

u

® 1V 1)
=1

- End {For-j} )3
e Until a termination criterion is met.



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering
(point representatives, squared Euclidean distance)
Consider the GPrAS cost function

N m
j©R == D PUx)Ip(xl:6)R)

o= 9i=1{m.%} -

with e O
T
p(xi|]; 0]) — l lexp . L ] é l ]
(2m)z|z;]2
B VOV
ItisJ(@,P) = —YN, 1P(jlxl) ln( 7 exp (— (xi=ny) Zé (x: ”f)) P]> —
(2”)2|21|2

Term A Zl 121 1P(]lxl) ln( 1 l)

(2m)z|%;|2
m
Term B +E§: 1?_ P(]lxl)(xl ”j)TZj_l(xi _”'f)
i= j=1

N m
Term C _z Z P(jlx;) lnPj
=1 bmed j=1

24



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
Assumption 1: Zj = X = constant, j =1, ...,m. Then

1
= —Nln — | = constant
(2m)2|Z]2

Assumption 2: P] = %, j=1,..,m. Then

Term C

1
p l—=—l— P' ) =—NIln— = tant
Zl 12} , (lx;) In n 7 7 (lx;) n— = constan

25



CFO clustering algorithms: Final remarks (1)

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)
Based on the previous two results, it follows that

N m
minimize (—Zi:1 zj:1P(i|xi) ln(p(xi |j; BJ)P])) — ]
;=

)
minimize (21::1 211 P(i|xi)(xi — ﬂj)TZ_l(xi - ﬂj))

Assumption 3(a): Approximate P (j|x;) as
1, P(ilxi) = MaXg=1,, mP(Slxi)
P = = 9.
Ulx) = { otherwise (= uy)

In this case, GPTAS & k means (fors =1)

WARNING: Valid ONLY from a
mathematical formulation point of
view. NOT from a conceptual point of

view.

Assumption 3(b): Approximate P(j|x;) as
P(lx;) =

1

m [ d(x;,0;(t)) q%l
k=1 (d(xi» Bk(t))>

Inthis case, GPTAS & fuzzy ¢ — means(fors =)

26



CFO clustering algorithms: Final remarks (2)
The role of g in the fuzzy clustering

Consider the minimization problem for fuzzy clustering ;[ d;; = d(x;,0)) J
ij — i Yj

N m
minimizey o] (U, 6) = Z Z w9 dy;
=14 j=1
subject to (a) u;; € (0,1), i =1,...,N,j =1,..,m,and (b) Z?Lluij =1i=1,..,N.

Expanding J(U, @), we have

up9dys + ugp9di + 0 Uy ddiy

Uu,9d-; + u--9d-,- + .. U-,.,,9d
J(U,8) = %21 :21 22 :22 Zm: 2m

uy1ldys + up2fdyz, + 0 uymdym

Assumption: d;;’s are fixed.

Then, due to the sum-to-one constraint, /(U, @) is minimized if each of the
summation in the rows of the above expansion is minimized.

Let Si. disi = minj=1’___,mdl-j,i = 1, ,N

Then,
m
uilqdi1+...+uiquim2 z 1uijq disi .
]:



CFO clustering algorithms: Final remarks (2)
The role of g in the fuzzy clustering

m
Ai = uilqdi1+...+uiquim > <z uijq> diSi

j=1

Forg = 1,itis X721 u;; = 1. Thus
Ai = uildi1+... +Uim dim = disi
Clearly, the equality holds for u;;, = 1and u;; = 0,forj =1,..,m,j #s;

In other words the minimum possible value of 4; is achieved for the hard cluster
solution. Thus, no fuzzy clustering (where more than one u;;’s are positive) minimizes
the Ai'

For g > 1, in the hard clustering case, the minimum possible value of A; is still d;s. .

For g > 1, in the fuzzy clustering case, it is Z}f’iluijq < 1. Thus

m
( E , uijq) dis; < dis;
j=1

Thus, in this cases, there are choices for u;;’s with more than one of them being

positive (fuzzy case) that achieve lower value for 4; than the best hard clustering.
The larger the value of g, the more fuzzy clusterings achieve for A; value < d;,. ¢



CFO clustering algorithms: Final remarks (3)

The role of g in the possibilistic clustering
Consider the minimization problem for fuzzy clustering

N N
.. q
mmlmlzeU,@](uj,Bj) = E . 1uijqdij + nj E ' 1(1 - uu)
1= 1=
subject to (a) u;; € (0,1),i=1,..,N,j=1,..,m.

Forg = 1,](uj, 9]-) is written as
N
J(w;,8;) = zizl[uif(d"f —1;) +nj
Thus, minimizing](uj, 9]-) is equivalent to minimizing

N
z. wij(dij = ;)
1=1

The latter achieves it minimum (negative) value by selecting u;; = 1, for d;; <n;
and u;; = 0, for d;; > n;.

However, in the above situation, all points having distance less than 17; from 6;, they
all have the same weight in the determination of 6;, while all the other points have no
influence in the determination of 6;.

29



CFO clustering algorithms: Final remarks (4)
The role of g in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the

squared Euclidean distance case (fuzzy and 15t possibilistic clust. algorithms)
8,(t) = ioq uy 1t — D i=1.m

YiLjuyde-1) 7

For g > 1, and since u;; € (0,1), the previous observation indicates that the

x;'s with high (low) u;;, will have more (much less) significant contribution to

the estimation of 8;(t), compared with the g = 1 case.

Example: Let x; = [0,0]" and x, = [10,10]", and u;; = 0.1, u,; = 0.9. Then

_ uljxl + uzsz

9= Upj + Uy :[3] (@=1)

and

_ uquxl + uzjqxz

9.9
9. — = = 2
J uqu + uZ]’q [99] (q )

30



Hierarchical Clustering Algorithms

v" They produce a hierarchy of (hard) clusterings instead of a single
clustering.

v They find applications in:
» Social sciences
» Biological taxonomy
» Modern biology
» Medicine
» Archaeology
» Computer science and engineering



Hierarchical Clustering Algorithms

Let X — {xl, ...,xN}, xl — [xll, ...,xil]T.
Recall that:
» In hard clustering each vector belongs exclusively to a single cluster.
» An m-(hard) clustering of X, ‘R, is a partition of X into m sets (clusters)
Cy - Gy, SO that:
= G#0,j=1,...m
u Uj=1m C] = X
= NG =0,i#j,i,j=12,,...,m

By the definition: R = {C,,j = 1, ...m}



Hierarchical Clustering Algorithms

» Definition: A clustering R, consisting of K clusters is said to be nested in
the clustering R, consisting of r (< k) clusters, if each cluster in R, is a
subset of a cluster in R,

We write ‘R, £ R,
Example: Let Ry = {{xy, x5}, {x,}, {x, x5}}, Ry = {{x, x5, x4}, {x5, %53},
Ry = {{xg, 24} {23} {2, X1} Ry = {{x1, x5 24} {23, x5 1}
Itis R, LN, but not R L N3, R LR, R LR,



Hierarchical Clustering Algorithms

Remarks:
e Hierarchical clustering algorithms produce a hierarchy of nested clusterings.

e They involve N steps at the most.
e At each step t, the clustering ‘R, is produced by ‘R;_;.

» Main strategies:

hierarchical hierarchical
clustering algorithms clustering algorithms

Ro = {x1}, - {xn}} Ry = {{xy, -, xp}}

Ry-1 = {{xy, .., 2y} Ry-1 =}
Rl . ZRy_4 Ry-1, Mo



Agglomerative Clustering Algorithms

Let g(C;, C;) a proximity function between two clusters (; and (; of X.

Generalized Agglomerative Scheme (GAS)
» Initialization
* Choose R, = {{x,}, ..., {xy}}

e t=0
» Repeat
c t=t+1

* Choose (C;, C;) in R;_; such that

(C.C) = min, sg(Cy, Cs), if g is adisim. function
N0 = \max, 59(Cr, Cs),  if g is a sim. function

* Define C, = (;U(; and produce R, = (iRt_l —{C;, Cj}) U {Cy4}

» Until all vectors lie in a single cluster.



Agglomerative Clustering Algorithms

Remarks:

e |f two vectors come together into a single cluster at level t of the hierarchy,
they will remain in the same cluster for all subsequent clusterings. As a
consequence, there is no way to recover a “poor” clustering that may have
occurred in an earlier level of hierarchy.

e Number of operations: O(N?)



Agglomerative Clustering Algorithms

Definitions of some useful quantities:
Let X = {x,,X,, ..., X}, with x; = [x;1, Xi2, ..., Xi1]" .

» Pattern matrix (D (X)): An NxI matrix whose i-th row is x; (transposed).

» Proximity (similarity or dissimilarity) matrix (P(X)): An NxN matrix whose
(i,j) element equals the proximity @ (x;, x;) (similarity s(x;, x;),
dissimilarity d(x;, x;)).

Example 1: Let X = {x, x,, X3, X,, X}, with
x,=[1,1]" x, =[2,1]", x; = [5,4]", x, = [6,5], x; = [6.5,6]"
Pattern matrix Euclidean distance Tanimoto distance

R (0 1 5 64 74 T 1 075 026 021 0.18]
2 1 10 42 57 6.7 075 1 044 035 0.20
DX)=| 5 4] P(X)=5 42 0 14 25| p(x)=/026 044 1 096 0.90
6 5 64 57 14 0 1.1 021 035 096 1 0.98
6.5 6] 74 67 25 1.1 0 0.18 020 090 098 1 |




Agglomerative Clustering Algorithms

Definitions of some useful quantities:

>Threshold dendrogram (or dendrorgram): It is an effective way of
representing the sequence of clusterings, which are produced by an
agglomerative algorithm.

Example 1 (cont.): If d;,*° (Cy, C; ) is employed as the distance measure
between two sets and the Euclidean one as the distance measure between
two vectors, the following series of clusterings are produced

{0 D0 D 3 by X1 X,j X4 X5
BERE {{xxh I X 3 {x 3} ‘Lj
2 1 {{x % X {Xa X3}
D(X)=| 5 4
6 5 {{X X b X3 X4 X5 1}
| 6.5 6] X1 XX 3. X 4. X5} }
(0 1 5 64 74]

0 42 57 67
P(X)=| 5 42 0 14 25
64 57 14 0 1.1
74 67 25 1.1 0




Agglomerative Clustering Algorithms

Definitions of some useful quantities:

»Proximity (dissimilarity or dissimilarity) dendrogram: A dendrogram
that takes into account the level of proximity (dissimilarity or similarity)
where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity
dendrograms that correspond to P (X) and P(X) are

X, X, X X3 X4 Xg
0 1 5 64 74] L! . or 79

1 0 42 57 6.7 09 + Lj 1+ LL—T
P(X)=| 5 42 0 14 25| °%7

0.7 +
64 57 14 0 1.1 06 +
|74 67 25 1.1 0

05
04
03 +

Similarity scale
Dissimilarity scale
(@]
|

0.2 | 8+
0.1+ 9+
0+ 10 -

. (2) , , (b)
Remark: One can readily observe the level in which a cluster Is formed
and the level in which it is absorbed in a larger cluster (indication of the
natural clustering).



Agglomerative Clustering Algorithms

Example:
x1 Xz X_1 X X6
33}t
32}
X1 X2

3 ® ® X7

3+
29F X3 N
28F & 5
27t @

Xg
26f &
X4

25}
24

Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




Agglomerative Clustering Algorithms

Example:

33F

32

31

3F

29+

28¢

271

26}

251

24

Agglomerative philosophy:

X1 X2

X3

X7

0

*In the initial clustering all data vectors belong to different clusters.
*At each step a new clustering is defined by merging the two most similar clusters to

one.

*At the final clustering all vectors belong to the same cluster.
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*In the initial clustering all data vectors belong to different clusters.
*At each step a new clustering is defined by merging the two most similar clusters to

one.

*At the final clustering all vectors belong to the same cluster.
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Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.
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Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.
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Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.
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Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.
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Agglomerative philosophy:

*In the initial clustering all data vectors belong to different clusters.

*At each step a new clustering is defined by merging the two most similar clusters to
one.

*At the final clustering all vectors belong to the same cluster.




