Clustering algorithms Konstantinos Koutroumbas

Unit 7

- Possibilistic CFO clustering algorithms
- Discussion on CFO clust. Algorithms
- Introduction to hierarchical clustering algorithms

Possibilistic clustering algorithms:

Let $X = \{x_1, x_2, ..., x_N\}$ be a set of data points.

For each vector x_i its degree of compatibility with all clusters, u_{ij} , $j = 1, ..., m$, is considered.

The constraints on u_{ij} 's are

•
$$
u_{ij} \in [0,1], i = 1, ..., N, j = 1, ..., m
$$

•
$$
0 < \sum_{i=1}^{N} u_{ij} < N, j = 1, ..., m
$$

Each cluster is represented by a representative $\boldsymbol{\theta}_j$ (point repr., hyperplane...). Let $\boldsymbol{\theta} = {\theta_1, \theta_2, ..., \theta_m}$

Define the cost function

$$
J_q(U, \theta) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(\mathbf{x}_i, \theta_j)
$$

When $J_q(U, \Theta)$ is **minimized**?

When all u_{ij} 's are (very close to) zero.

- How to avoid the trivial zero u_{ij} 's solution?
- **Add** a suitable term that discourages the zero solution.
- **A possible scenario:**
- **Minimize** the cost function

$$
J_q(U, \theta) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(x_i, \theta_j) + \sum_{j=1}^m \eta_j \sum_{i=1}^N (1 - u_{ij})^q
$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since $\boldsymbol{\theta}_j$'s, u_{ij} 's are continuous valued, tools from analysis may be employed.

For *fixed* θ_j *'s*: Equating the partial derivative of $I_q(U, \Theta)$ wrt u_{ij} to 0 we obtain $\partial J_q(U,\theta)$ ∂u_{ij} $= 0 \Leftrightarrow u_{ij} =$ 1 1 + $d(x_i, \theta_j)$ $\overline{\eta_j}$ 1 $\overline{q-1}$

Notes: (a) u_{ij} depends exclusively on $\boldsymbol{\theta}_j$. (b) It is $u_{ij} \in [0,1]$

- How to avoid the trivial zero u_{ij} 's solution?
- **Add** a suitable term that discourages the zero solution.
- **A possible scenario:**
- **Minimize** the cost function

$$
J_q(U, \theta) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(x_i, \theta_j) + \sum_{j=1}^m \eta_j \sum_{i=1}^N (1 - u_{ij})^q
$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since $\boldsymbol{\theta}_j$'s, u_{ij} 's are continuous valued, tools from analysis may be employed.

For **fixed** u_{ij} 's: Solve the following m independent minimization problems \boldsymbol{N}

$$
\boldsymbol{\theta}_j = argmin_{\boldsymbol{\theta}_j} \sum\nolimits_{i=1}^m u_{ij}{}^q d(\boldsymbol{x}_i, \boldsymbol{\theta}_j)
$$

Generalized Possibilistic Algorithmic Scheme (GPAS1)

- **Fix** η_j 's, $j = 1, ..., m$.
- Choose $\theta_j(0)$ as initial estimates for θ_j , $j = 1, ..., m$.
- *t*=0
- **Repeat**

```
- For i=1 to N \% Determination of u_{ij}^{\prime} so For j=1 to m
                             u_{ij}(t) =1
                                            1 +
                                                    d(x_i, \theta_j(t))\overline{\eta_j}1
                                                                       \overline{q-1}o End {For-j}
End {For-i}
```
 $-t=t+1$

```
 For j=1 to m % Parameter updating
      o Set
         \theta_j(t) = argmin_{\theta_j}, u_{ij}^q(t-1)d(x_i, \theta_j)\overline{N}i=1, j = 1, ..., m End {For-j}
```
• **Until** a termination criterion is met.

Remarks:

• A candidate termination condition is

 $||\theta(t)-\theta(t-1)||<\varepsilon$,

where ||*.*|| is any vector norm and *ε* a user-defined constant.

- •GFAS may also be initialized from *U*(0) instead of *θ^j* (0), *j*=1*,…,m* and start iterations with computing $\boldsymbol{\theta}_j$ first.
- •Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy clustering algorithm derived previously.
- High values of *q*:
	- In possibilistic clustering **cause** almost equal contributions of all vectors to all clusters
	- \triangleright In fuzzy clustering cause increased sharing of the vectors among all clusters.

Three observations

• Decomposition of *J*(*Θ,U*):

Since for each vector x_i , u_{ij} 's, $j = 1, ..., m$ are independent from each other, $J(\Theta, U)$ can be written as

$$
J(\theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(x_{i}, \theta_{j}) + \sum_{j=1}^{m} \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q}
$$

=
$$
\sum_{j=1}^{m} \left[\sum_{i=1}^{N} u_{ij}^{q} d(x_{i}, \theta_{j}) + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q} \right] \equiv \sum_{j=1}^{m} J_{j}
$$

where

$$
J_j = \sum_{i=1}^{N} u_{ij}{}^{q} d(x_i, \theta_j) + \eta_j \sum_{i=1}^{N} (1 - u_{ij})^q
$$

Each J_j is associated with a different cluster and *minimization of* $J(\Theta, U)$ with $\overline{{\it respect to } u_{ij}}$ <u>'s can be carried out separately for each $J_j.$ </u>

Three observations • About $η'_j$'s:

- They **determine** the relative significance of the two terms in *J*(*Θ,U*).
- They are **related** to the "variance" of the points of *C^j* 's, *j*=1*,…,m,* around their centers.

Two scenarios for the estimation of *η^j* 's, for the point representatives case, are the following:

o **Run** the related FCM algorithm and after its convergence estimate *η^j* 's as $\eta_j =$ $\sum_{i=1}^N u_{ij}{}^q d(x_i, \theta_j)$ $\sum_{i=1}^N u_{ij}q$ $i=1$ or $\eta_j =$ $\sum_{u_{ij}>a} d(x_i, \theta_j)$ $\Sigma_{u_{ij}>a}$ 1

• **Set**
$$
\eta_j = \eta = \frac{\beta}{q\sqrt{m'}}
$$
, where $\beta = \frac{1}{N} \sum_{i=1}^{N} ||x_i - \overline{x}||^2$ and $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$

Three observations

• The mode-seeking property

Unlike Hard and fuzzy clustering algorithms which are partition algorithms (they terminate with the predetermined number of clusters no matter how many physical clusters are naturally formed in *X*), GPAS is a mode-seeking algorithm (it searches for dense regions of vectors in *X*).

Advantage: The number of clusters need not be a priori known.

If the number of clusters in GPAS, *m*, is greater than the true number of clusters *k* in *X*, some representatives will coincide with others. If *m*<*k*, *some* (and not all) of the clusters will be identified.

- How to avoid the trivial zero u_{ij} 's solution?
- **Add** a suitable term that discourages the zero solution.
- **Another possible scenario:**
- **Minimize** the cost function

$$
J(U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(x_i, \theta_j) + \sum_{j=1}^{m} \eta_j \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij})
$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since $\boldsymbol{\theta}_j$'s, u_{ij} 's are continuous valued, tools from analysis may be employed.

For *fixed* θ_j *'s*: Equating the partial derivative of $J(U, \Theta)$ wrt u_{ij} to 0 we obtain $\partial J_q(U,\theta)$ ∂u_{ij} $= 0 \Leftrightarrow u_{ij} = exp \big(-\frac{1}{2} \big)$ $d(x_i, \theta_j)$ η_j **Notes:** (a) u_{ij} depends exclusively on $\boldsymbol{\theta}_j$. (b) It is $u_{ij} \in [0,1]$

- How to avoid the trivial zero u_{ij} 's solution?
- **Add** a suitable term that discourages the zero solution.
- **A possible scenario:**
- **Minimize** the cost function

$$
J(U, \theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(x_i, \theta_j) + \sum_{j=1}^{m} \eta_j \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij})
$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since $\boldsymbol{\theta}_j$'s, u_{ij} 's are continuous valued, tools from analysis may be employed.

For **fixed** u_{ij} 's: Solve the following m independent minimization problems $\boldsymbol{\theta}_j = argmin_{\boldsymbol{\theta}_j}$ $\sum_{i: j} u_{ij} d(x_i, \boldsymbol{\theta}_j)$ \boldsymbol{N} $i=1$

Generalized Possibilistic Algorithmic Scheme (GPAS2)

- **Fix** η_j 's, $j = 1, ..., m$.
- Choose $\theta_j(0)$ as initial estimates for θ_j , $j = 1, ..., m$.
- *t*=0
- **Repeat**

 $-$ For *i*=1 to N $\%$ Determination of u_{ij}^{\prime} s o For *j*=1 to *m* $u_{ij}(t) = exp(-\frac{t}{\hbar})$ $d(x_i, \theta_j(t))$ η_j o End {For-*j*} End {For-*i*}

t=t+1

For *j*=1 to *m* % Parameter updating
\n**6** Set

\n
$$
\theta_j(t) = argmin_{\theta_j} \sum_{i=1}^{N} u_{ij}(t-1)d(x_i, \theta_j), j = 1, \dots, m
$$
\n—End {For-*j*}

• **Until** a termination criterion is met.

- $u_{ij} \in [0,1]$ quantifies the "relation" between x_i and C_j .
- "Large" ("small") u_{ij} values indicate close (loose) proximity between x_i and C_j .

 $\Rightarrow u_{ij}$ varies inversely proportional wrt $d(\mathbf{x}_i, \boldsymbol{\vartheta}_j).$

• *uⁱ* : vector containing the *uij*'s of *xⁱ* with all clusters.

Aim:

 \checkmark To place the representatives into dense in data regions (physical clusters).

How this is achieved:

Via the minimization of the following type of cost function (wrt *Θ*, *U*)

$$
J(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(x_{i}, \vartheta_{j}) \quad (q \ge 1)
$$

s.t. some constraints on *U, C***(***U***)**.

For the probabilistic case $d(\pmb{x}_i, \pmb{\theta}_j)$ results from the log-likelihood of suitably defined exponential distributions

Intuition:

- For fixed *θ^j 's, J*(*Θ*,*U*) is a weighted sum of **fixed** distances *d*(*xⁱ* ,*θj*).
- **Minimization** of *J*(*Θ*,*U*) wrt *uij* instructs for large weights (*uij*) for small distances *d*(*xⁱ* ,*θj*).
- 14 For fixed *uij's,* **minimization** of *J*(*Θ*,*U*) wrt *θ^j* 's leads *θ^j* 's closer to their most relative data points.

There are **several** unexplored areas (groups of algorithms) in this array.

General cost function opt. (**CFO**) scheme:

- *Initialize Θ=Θ*(*0*)
- **Repeat**
	- *t*=0
	- $U(t) = argmin_{U} J(\Theta(t), U)$, s.t. **C(U(t))**
	- *t*=*t*+1
	- *Θ*(*t*) = *argmin^Θ J*(*Θ*,*U*(*t-1*))
- **Until convergence**

"Array of CFO algorithms" **C(U)**

"Array of CFO algorithms"

θ^j

CFO clustering algorithms: A loose presentation

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) *A. Generalized Hard Algorithmic Scheme (GHAS) – k-means algorithm*

$$
minimize_{U,\Theta} J(U,\theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||x_i - \theta_j||^2
$$

subject to **(a)** $u_{ij} \in \{0,1\}$, $i = 1, ..., N$, $j = 1, ..., m$, and **(b)** $\sum_{j=1}^{m} u_{ij} = 1$, $i = 1, ..., N$.

The Isodata or *k*-Means or *c*-Means algorithm

- Choose arbitrary initial estimates $\boldsymbol{\theta}_j(0)$ for the $\boldsymbol{\theta}_j$'s, $j=1,...,m$.
- $t = 0$
- **Repeat**
	- For *i*=1 to *N % Determination of the partition*

o For *j*=1 to *m*

$$
u_{ij}(t) = \begin{cases} 1, & if \ ||x_i - \theta_j(t)||^2 = min_{q=1,\dots,m} ||x_i - \theta_q(t)||^2 \\ 0, & otherwise \end{cases}
$$

o End {For-*j*}

- $-$ End {For- i }
- $-t = t + 1$
- For *j*=1 to *m % Parameter updating*

o Set

$$
\boldsymbol{\theta}_j(t) = \frac{\sum_{i=1}^N u_{ij}(t-1)x_i}{\sum_{i=1}^N u_{ij}(t-1)}, j = 1, ..., m
$$

 $-$ End {For- i }

• Until no change in $\boldsymbol{\theta}_j$ ' s occurs between two successive iterations

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) *B. Generalized Fuzzy Algorithmic Scheme (GFAS) – Fuzzy c-means algorithm*

$$
minimize_{U,\Theta} J(U,\theta) = \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{m} u_{ij}^{q} \left| \left| x_{i} - \theta_{j} \right| \right|^{2}
$$

subject to (a) $u_{ij} \in (0,1)$, $i = 1, ..., N$, $j = 1, ..., m$, and (b) $\sum_{j=1}^{m} u_{ij} = 1$, $i = 1, ..., N$.

- Choose $\theta_j(0)$ as initial estimates for θ_j , *j*=1,...,*m*.
- $t=0$
- **Repeat**
	- $-$ For *i*=1 to N $\%$ Determination of u_{ij}^{\prime} s

o For *j*=1 to *m*

$$
u_{ij}(t) = \frac{1}{\sum_{k=1}^{m} \left(\frac{d(x_i, \theta_j(t))}{d(x_i, \theta_k(t))} \right)^{\frac{1}{q-1}}}
$$

o End {For-*j*}

 $-$ End {For- i }

t=t+1

For *j*=1 to *m % Parameter updating*

o Set

$$
\boldsymbol{\theta}_j(t) = \frac{\sum_{i=1}^N u_{ij}^q(t-1)x_i}{\sum_{i=1}^N u_{ij}^q(t-1)}, j = 1, ..., m
$$

 $-$ End {For- i }

Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) *C. Generalized Probabilistic Algorithmic Scheme (GPrAS) – the normal pdfs case*

 $minimize_{\Theta, P} J(\Theta, P) = -\left.\rule{0pt}{10pt}\right\} \qquad \sum_{\Box} \qquad P(j|\bm{x}_i) \ln \bigl(p\bigl(\bm{x}_i\bigl|j; \bm{\theta}_j\bigr) P_j$ \overline{m} \boldsymbol{N}

 $j=1$ $i=1$ It is (a) $P(j|x_i) \in (0,1)$, $i = 1, ..., N$, $j = 1, ..., m$, and (b) $\sum_{j=1}^{m} P(j|x_i) = 1$, $i = 1, ..., N$.

- Choose $\mu_j(0)$, $\Sigma_j(0)$, $P_j(0)$ as initial estimates for μ_j , Σ_j , P_j , resp. , $j = 1, ..., m$
- $t = 0$
- **Repeat**

```
 For i=1 to N % Expectation step
    o For j=1 to m
```

$$
P(j|\mathbf{x}_i; \Theta^{(t)}, P^{(t)}) = \frac{p(x_i|j; \theta_j^{(t)}) P_j^{(t)}}{\sum_{q=1}^m p(x_i|q; \theta_q^{(t)}) P_q^{(t)}} \equiv \gamma_{ji}(t)
$$

o End {For-*j*}

 $-$ End {For- i }

t=t+1

For *j*=1 to *m % Parameter updating – Maximization step*

o Set

$$
\mu_j^{(t)} = \frac{\sum_{i=1}^N \gamma_{ji}^{(t-1)} x_i}{\sum_{i=1}^N \gamma_{ji}^{(t-1)}}, \qquad \Sigma_j^{(t)} = \frac{\sum_{i=1}^N \gamma_{ji}^{(t-1)} (x_i - \mu_j) (x_i - \mu_j)^T}{\sum_{i=1}^N \gamma_{ji}^{(t-1)}}, \qquad j = 1, ..., m
$$

$$
P_j^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ji}^{(t-1)}, j = 1, ..., m
$$

- End {For-*j*}

Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) Consider the **GPrAS cost function**

 $J(\Theta, P) = -\sum_{i,j} \sum_{i,j} P(j|\mathbf{x}_i) \ln(p(\mathbf{x}_i|j; \theta_j) P_j)$ \overline{m} $j=1$ \boldsymbol{N} $i=1$ with $p(\pmb{x}_i|j; \pmb{\theta}_j) =$ 1 2π $\mathfrak l$ $\overline{2}$ \sum_j 1 2 $exp($ $x_i - \mu_j$ \overline{T} $\sum_j^{-1}\bigl({\pmb{\chi}}_i-{\pmb{\mu}}_j\bigr)$ 2 It is $J(\mathbf{\Theta}, P) = -\sum_{i=1}^N \sum_{j=1}^m P(j|\mathbf{x}_i) \ln \left(\frac{1}{\mathbf{1} - \mathbf{1}} \right)$ 2π \boldsymbol{l} $\overline{2}|\Sigma_j$ 1 2 $exp((x_i-\mu_j)^T\Sigma_j^{-1}(x_i-\mu_j)$ $\lim_{j=1} P(j|\mathbf{x}_i) \ln \left(\frac{1}{\left(2\right)^{\frac{1}{2}} |\mathbf{x}_i|^{\frac{1}{2}}} exp\left(-\frac{(x_i - \mu_j) \left(2\right)^{\frac{1}{2}} (x_i - \mu_j)}{2} \right) P_j$ $j=1$ $\sum_{i=1}^N\sum_{j=1}^m P(j|\mathbf{x}_i) \ln \left(\frac{1}{l} \frac{1}{l} exp\left(-\frac{(x_i-\mu_j) \sum_j (x_i-\mu_j)}{2}\right) P_j \right) =$ $-$ > $\sum_{i} P(j|x_i) \ln$ 1 2π \boldsymbol{l} $\overline{2}$ $\left| \Sigma_j \right|$ 1 2 \overline{m} $j=1$ \boldsymbol{N} $i=1$ + 1 2 $\sum_{i} P(j|x_i)(x_i - \mu_j)$ \overline{T} $\sum_j^{-1}\bigl({\pmb{\chi}}_i-{\pmb{\mu}}_j\bigr)$ \overline{m} $j=1$ \boldsymbol{N} $i=1$ $-$ > \qquad $P(j|x_i) \ln P_j$ \overline{m} $j=1$ \boldsymbol{N} $i=1$ $\boldsymbol{\theta}_j = \{\boldsymbol{\mu}_j, \Sigma_j$ Term **A** Term **B** Term **C**

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) **<u>Assumption 1:</u>** $\Sigma_j = \Sigma = constant$, $j = 1, ..., m$. Then Term $A = -$ > $\sum_{i=1}^n P(j|x_i) \ln \frac{p^i}{n!}$ 1 2π \boldsymbol{l} $\overline{2}$ $|\Sigma$ 1 2 \overline{m} $j=1$ \boldsymbol{N} $i=1$ $=-\ln$ 1 2π \boldsymbol{l} $\overline{2}$ $|\Sigma$ 1 2 \sum_{i} $P(j|x_i)$ \overline{m} $j=1$ \boldsymbol{N} $i=1$ $=-\ln$ 1 2π $\mathfrak l$ $\overline{2}$ $|\Sigma$ 1 2 $\left\}$ 1 \overline{N} $i=1$ $=-N \ln$ 1 2π \boldsymbol{l} $\overline{2}$ $|\Sigma$ 1 2 $= constant$ **<u>Assumption 2:** $P_j = \frac{1}{m}$ **</u>** $\frac{1}{m}$ *, j* = 1, ... , *m*. Then

 $TermC$

$$
= -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|x_i) \ln \frac{1}{m} = -\ln \frac{1}{m} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|x_i) = -N \ln \frac{1}{m} = constant
$$

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) Based on the previous two results, it follows that

$$
minimize \left(-\sum_{i=1}^{N} \sum_{j=1}^{m} P(j | x_i) \ln(p(x_i | j; \theta_j) P_j) \right)_{\sum_j = \sum}
$$

$$
minimize \left(\sum_{i=1}^{N} \sum_{j=1}^{m} P(j | x_i) (x_i - \mu_j)^T \sum_{i=1}^{N} (x_i - \mu_j) \right)
$$

Assumption 3(a): Approximate $P(j|\boldsymbol{x}_i)$ as

$$
P(j|\mathbf{x}_i) = \begin{cases} 1, & P(j|\mathbf{x}_i) = max_{s=1,\dots,m} P(s|\mathbf{x}_i) \\ 0, & otherwise \end{cases} \equiv u_{ij}
$$

In this case, $GPrAS \Leftrightarrow k - means$ (for $\Sigma = I$)

26 **Assumption 3(b): Approximate** $P(j|x_i)$ as $P(j|x_i) = -$ 1 $\sum_{k=1}^m \left(\frac{d(x_i, \theta_j(t))}{d(x_i, \theta_j(t))} \right)$ $\overline{d(x_i, \theta_k(t))}$ 1 $\overline{q-1}$ \overline{m} $k=1$ ≡ In this case, $GPrAS \Leftrightarrow fuzzy \ c - meanS$ (for $\Sigma = I$) **WARNING:** Valid ONLY from a mathematical formulation point of view. NOT from a conceptual point of view.

The role of q in the fuzzy clustering

Consider the minimization problem for fuzzy clustering $minimize_{U,\Theta} J(U,\theta) = \sum_{U} \left\{ \begin{array}{c} u_{ij}^{q} \end{array} \right.$ \overline{m} $j=1$ \boldsymbol{N} $i=1$ d_{ij} subject to (a) $u_{ij} \in (0,1)$, $i = 1, ..., N$, $j = 1, ..., m$, and (b) $\sum_{j=1}^{m} u_{ij} = 1$, $i = 1, ..., N$. $d_{ij} = d\big(\pmb{x}_i,\pmb{\theta}_j$

Expanding $J(U, \Theta)$, we have

$$
J(U, \theta) = \frac{u_{11}^q d_{11} + u_{12}^q d_{12} + \dots u_{1m}^q d_{1m}}{u_{21}^q d_{21} + u_{22}^q d_{22} + \dots u_{2m}^q d_{2m}}
$$

$$
u_{N1}^q d_{N1} + u_{N2}^q d_{N2} + \dots u_{Nm}^q d_{Nm}
$$

Assumption: d_{ij} 's are fixed.

Then, due to the sum-to-one constraint, $J(U, \Theta)$ is **minimized** if each of the summation in the rows of the above expansion is minimized.

Let
$$
s_i
$$
: $d_{is_i} = min_{j=1,...,m} d_{ij}$, $i = 1, ..., N$
Then,

$$
u_{i1}{}^q d_{i1} + \dots + u_{im}{}^q d_{im} \ge \left(\sum_{j=1}^m u_{ij}{}^q\right) d_{is_i}
$$

27

The role of q in the fuzzy clustering

$$
A_i = u_{i1}{}^q d_{i1} + ... + u_{im}{}^q d_{im} \ge \left(\sum\nolimits_{j=1}^m u_{ij}{}^q\right) d_{is_i}
$$

For $q = 1$, it is $\sum_{j=1}^{m} u_{ij} = 1$. Thus

 $A_i = u_{i1}d_{i1} + ... + u_{im}d_{im} \ge d_{is_i}$

Clearly, the **equality holds** for $u_{is_i} = 1$ and $u_{ij} = 0$, for $j = 1, ..., m, j \neq s_i$

In other words the minimum possible value of A_i is achieved for the hard cluster solution. Thus, **no** fuzzy clustering (where more than one u_{ij} 's are positive) **minimizes** the A_i .

For $q > 1$, in the hard clustering case, the minimum possible value of A_i is still d_{is_i} .

For $q > 1$, in the fuzzy clustering case, it is $\sum_{j=1}^{m} u_{ij}^q < 1$. Thus

$$
\left(\sum_{j=1}^{m} u_{ij}^{q}\right) d_{is_{i}} < d_{is_{i}}
$$

The larger the value of q , the more fuzzy clusterings a**chieve** for A_i value $< d_{is_i}.$ 28 Thus, in this cases, there are choices for u_{ij} 's with more than one of them being positive (fuzzy case) that achieve lower value for A_i than the best hard clustering.

The role of q in the possibilistic clustering

Consider the minimization problem for fuzzy clustering

$$
minimize_{U,\Theta} J(\boldsymbol{u}_j, \boldsymbol{\theta}_j) = \sum_{i=1}^{N} u_{ij}{}^{q} d_{ij} + \eta_j \sum_{i=1}^{N} (1 - u_{ij})^q
$$

subject to **(a)** $u_{ij} \in (0,1), i = 1,..., N, j = 1,..., m.$

For $q=1$, $J(\boldsymbol{u}_j,\boldsymbol{\theta}_j)$ is written as

$$
J(\boldsymbol{u}_j,\boldsymbol{\theta}_j)=\sum\nolimits_{i=1}^N\bigl[u_{ij}\bigl(d_{ij}-\eta_j\bigr)+\eta_j\bigr]
$$

 \overline{N}

Thus, minimizing $J(\boldsymbol{u}_j,\boldsymbol{\theta}_j)$ is equivalent to minimizing

$$
\sum\nolimits_{i=1}^N u_{ij} (d_{ij} - \eta_j)
$$

The latter achieves it minimum (negative) value by selecting $u_{ij} = 1$, for $d_{ij} < \eta_j$ and $u_{ij} = 0$, for $d_{ij} > \eta_j$.

However, in the above situation, all points having distance less than η_j from $\boldsymbol{\theta}_j$, they all have the same weight in the determination of $\boldsymbol{\theta}_j$, while all the other points have no influence in the determination of $\boldsymbol{\theta}_j$.

The role of q in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the squared Euclidean distance case (fuzzy and 1st possibilistic clust. algorithms)

$$
\theta_j(t) = \frac{\sum_{i=1}^N u_{ij}^q (t-1) x_i}{\sum_{i=1}^N u_{ij}^q (t-1)}, j = 1, ..., m
$$

For $q > 1$, and since $u_{ij} \in (0,1)$, the previous observation indicates that the x_i 's with high (low) u_{ij} , will have more (much less) significant contribution to the estimation of $\theta_i(t)$, compared with the $q = 1$ case.

Example: Let
$$
x_1 = [0, 0]^T
$$
 and $x_2 = [10, 10]^T$, and $u_{1j} = 0.1$, $u_{2j} = 0.9$. Then
\n
$$
\theta_j = \frac{u_{1j}x_1 + u_{2j}x_2}{u_{1j} + u_{2j}} = \begin{bmatrix} 9 \\ 9 \end{bmatrix} \quad (q = 1)
$$

and

$$
\theta_j = \frac{u_{1j}^q x_1 + u_{2j}^q x_2}{u_{1j}^q + u_{2j}^q} = \begin{bmatrix} 9.9 \\ 9.9 \end{bmatrix} \quad (q = 2)
$$

- They produce a hierarchy of (**hard**) clusterings instead of a single clustering.
- \checkmark They find applications in:
	- \triangleright Social sciences
	- \triangleright Biological taxonomy
	- Modern biology
	- \triangleright Medicine
	- \triangleright Archaeology
	- \triangleright Computer science and engineering

- Let $X = \{x_1, ..., x_N\}, \quad x_i = [x_{i1}, ..., x_{il}]^T.$ Recall that:
- \triangleright In hard clustering each vector belongs exclusively to a single cluster.
- \triangleright An m -(hard) clustering of X, \mathfrak{R} , is a partition of X into *m* sets (clusters) ${\cal C}_1, ...$, ${\cal C}_m$, so that:

$$
\bullet \quad C_j \neq \emptyset, j = 1, \ldots, m
$$

$$
\blacksquare \cup_{j=1}^m C_j = X
$$

$$
\bullet \quad C_i \cap C_j = \emptyset, i \neq j, i, j = 1, 2, \dots, m
$$

By the definition: $\mathfrak{R} = \{ \mathcal{C}_j, j = 1, ... m \}$

 \triangleright Definition: A clustering \mathfrak{R}_1 consisting of *k* clusters is said to be nested in the clustering \Re_2 consisting of $r \ (< k)$ clusters, if each cluster in \Re_1 is a subset of a cluster in $\mathfrak{R}_2.$ We write $\Re_1 \angle \Re_2$

Example: Let
$$
\mathcal{R}_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}, \mathcal{R}_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\},
$$

\n $\mathcal{R}_3 = \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}, \mathcal{R}_4 = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}\}.$
\nIt is $\mathcal{R}_1 \angle \mathcal{R}_2$, but not $\mathcal{R}_1 \angle \mathcal{R}_3$, $\mathcal{R}_1 \angle \mathcal{R}_4$, $\mathcal{R}_1 \angle \mathcal{R}_1$.

Remarks:

- •Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
- They involve *N* steps at the most.
- At each step *t*, the clustering \Re_t is produced by \Re_{t-1} .
- Main strategies:

Let $g(C_i, C_j)$ a proximity function between two clusters C_i and C_j of X.

Generalized Agglomerative Scheme (GAS)

- \triangleright Initialization
	- **Choose** $\mathcal{R}_0 = \{\{x_1\}, \dots, \{x_N\}\}\$
	- $t=0$
- \triangleright Repeat
	- $t = t + 1$
	- **Choose** (C_i, C_j) in \Re_{t-1} such that

 $g(C_i, C_j) = \{$ $min_{r,s} g(\mathcal{C}_r, \mathcal{C}_s)$, \quad if g is a disim.function $max_{r,s} g(C_r, \mathcal{C}_s)$, if g is a sim.function

- Define $C_q = C_i \cup C_j$ and produce $\mathfrak{R}_t = (\mathfrak{R}_{t-1} \{C_i, C_j\}) \cup \{C_q\}$
- \triangleright Until all vectors lie in a single cluster.

Remarks:

- If two vectors come together into a single cluster at level *t* of the hierarchy, they will remain in the same cluster for all subsequent clusterings. As a consequence, there is no way to recover a "poor" clustering that may have occurred in an earlier level of hierarchy.
- Number of operations: $O(N^3)$

Definitions of some useful quantities: Let $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N}$, with $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{il}]^T$.

- Pattern matrix $(D(X))$: An Nxl matrix whose *i*-th row is x_i (transposed).
- Proximity (similarity or dissimilarity) matrix $(P(X))$: An NxN matrix whose (i, j) element equals the proximity $\mathscr{D}(\pmb{x}_i, \pmb{x}_j)$ (similarity $s(\pmb{x}_i, \pmb{x}_j)$, dissimilarity $d(\pmb{x}_i,\pmb{x}_j)).$

Example 1: Let
$$
X = \{x_1, x_2, x_3, x_4, x_5\}
$$
, with
\n $x_1 = [1, 1]^T$, $x_2 = [2, 1]^T$, $x_3 = [5, 4]^T$, $x_4 = [6, 5]^T$, $x_5 = [6.5, 6]^T$
\nPattern matrix
\n**Pattern matrix**
\n $D(X) = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 5 & 4 \\ 6 & 5 \\ 6.5 & 6 \end{bmatrix}$
\n $P(X) = \begin{bmatrix} 0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0 \end{bmatrix}$
\n $P'(X) = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$

Definitions of some useful quantities:

Threshold dendrogram (or dendrorgram): It is an effective way of representing the sequence of clusterings, which are produced by an agglomerative algorithm.

Example 1 (cont.): If $d_{min}^{ss}(C_i, C_j)$ is employed as the distance measure between two sets and the Euclidean one as the distance measure between two vectors, the following series of clusterings are produced: $x₃$ x_4 ${{\sf na\; the\; Eulerical\; on}\atop {\{{\{x_{1}\},\{x_{2}\},\{x_{3}\},\{x_{4}\},\{x_{5}\}}\}}}}$

 $x₅$

Definitions of some useful quantities:

Proximity (dissimilarity or dissimilarity) dendrogram: A dendrogram that takes into account the level of proximity (dissimilarity or similarity) where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity dendrograms that correspond to *P΄*(*X*) and *P*(*X*) are

Remark: One can readily observe the level in which a cluster is formed and the level in which it is absorbed in a larger cluster (indication of the (a) (b)

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.

 \mathbf{x}_1

 \mathbf{X}_2

 \mathbf{x}_3

 \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6

 \mathbf{x}_7

•At the final clustering all vectors **belong** to the same cluster.

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.

 \mathbf{x}_7

•At the final clustering all vectors **belong** to the same cluster.

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.

 \mathbf{x}_{5}

 \mathbf{x}_{6}

1.5

 \mathbf{x}_7

•At the final clustering all vectors **belong** to the same cluster.

Example:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.
- •At the final clustering all vectors **belong** to the same cluster.

Example:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.
- •At the final clustering all vectors **belong** to the same cluster.

Example:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.
- •At the final clustering all vectors **belong** to the same cluster.

Example:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.
- •At the final clustering all vectors **belong** to the same cluster.

Example:

- •In the initial clustering all data vectors **belong** to different clusters.
- •At each step a new clustering is defined by **merging** the two most similar clusters to one.
- •At the final clustering all vectors **belong** to the same cluster.