Clustering algorithms Konstantinos Koutroumbas

<u>Unit 7</u>

- Possibilistic CFO clustering algorithms
- Discussion on CFO clust. Algorithms
- Introduction to hierarchical clustering algorithms

Possibilistic clustering algorithms:

Let $X = \{x_1, x_2, \dots, x_N\}$ be a set of data points.

For each vector x_i its degree of compatibility with all clusters, u_{ij} , j = 1, ..., m, is considered.

The constraints on u_{ij} 's are

•
$$u_{ij} \in [0,1], i = 1, ..., N, j = 1, ..., m$$

•
$$0 < \sum_{i=1}^{N} u_{ij} < N$$
, $j = 1, ..., m$

Each cluster is **represented** by a representative θ_j (point repr., hyperplane...). Let $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$

Define the cost function

$$J_q(U,\Theta) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

When $J_q(U, \Theta)$ is **minimized**?

When all u_{ij} 's are (very close to) zero.

- How to avoid the trivial zero u_{ij} 's solution?
- Add a suitable term that discourages the zero solution.
- A possible scenario:
- Minimize the cost function

$$J_q(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_i, \theta_j) + \sum_{j=1}^{m} \eta_j \sum_{i=1}^{N} (1 - u_{ij})^{q}$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since θ_i 's, u_{ij} 's are continuous valued, tools from analysis may be employed.

For <u>fixed θ_j 's</u>: Equating the partial derivative of $\underline{J_q(U, \theta)}$ wrt $\underline{u_{ij}}$ to 0 we obtain $\frac{\partial J_q(U, \theta)}{\partial u_{ij}} = 0 \iff u_{ij} = \frac{1}{1 + \left(\frac{d(x_i, \theta_j)}{\eta_j}\right)^{\frac{1}{q-1}}}$ Notes: (a) u_{ij} depends overlapingly on θ_i

Notes: (a) u_{ij} depends exclusively on θ_j . (b) It is $u_{ij} \in [0,1]$

- How to avoid the trivial zero u_{ij} 's solution?
- Add a suitable term that discourages the zero solution.
- A possible scenario:
- Minimize the cost function

$$J_q(U,\Theta) = \sum_{i=1}^N \sum_{j=1}^m u_{ij}^q d(\mathbf{x}_i, \theta_j) + \sum_{j=1}^m \eta_j \sum_{i=1}^N (1 - u_{ij})^q$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since θ_j 's, u_{ij} 's are continuous valued, tools from analysis may be employed.

For <u>fixed u_{ij} </u> Solve the following m independent minimization problems

$$\boldsymbol{\theta}_{j} = argmin_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{n} u_{ij}^{q} d(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j})$$

Generalized Possibilistic Algorithmic Scheme (GPAS1)

- Fix η_j 's, j = 1, ..., m.
- Choose $\theta_j(0)$ as initial estimates for θ_j , j = 1, ..., m.
- *t*=0
- <u>Repeat</u>

```
- For i=1 to N % Determination of u'_{ij}s

o For j=1 to m

u_{ij}(t) = \frac{1}{1 + \left(\frac{d(\boldsymbol{x}_i, \boldsymbol{\theta}_j(t))}{\eta_j}\right)^{\frac{1}{q-1}}}

o End {For-j}

- End {For-i}
```

-t=t+1

```
- For j=1 to m % Parameter updating
o Set
\boldsymbol{\theta}_{j}(t) = argmin_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{N} u_{ij}^{q}(t-1)d(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}), j = 1, ..., m
- End {For-j}
```

• Until a termination criterion is met.

Remarks:

• A candidate termination condition is

 $\|\boldsymbol{\theta}(t)-\boldsymbol{\theta}(t-1)\| < \varepsilon$,

where $\|.\|$ is any vector norm and ε a user-defined constant.

- GFAS may also be initialized from U(0) instead of $\theta_j(0)$, j=1,...,m and start iterations with computing θ_j first.
- Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy clustering algorithm derived previously.
- High values of q:
 - In possibilistic clustering cause almost equal contributions of all vectors to all clusters
 - In fuzzy clustering cause increased sharing of the vectors among all clusters.

<u>Three observations</u>

• Decomposition of $J(\Theta, U)$:

Since for each vector x_i , u_{ij} 's, j = 1, ..., m are independent from each other, $J(\Theta, U)$ can be written as

$$J(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) + \sum_{j=1}^{m} \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q}$$
$$= \sum_{j=1}^{m} \left[\sum_{i=1}^{N} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q} \right] \equiv \sum_{j=1}^{m} J_{j}$$
where

$$J_{j} = \sum_{i=1}^{N} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) + \eta_{j} \sum_{i=1}^{N} (1 - u_{ij})^{q}$$

Each J_j is **associated** with a different cluster and <u>minimization of</u> $J(\Theta, U)$ with respect to u_{ij} 's can be carried out separately for each J_j .

Three observations • About η_i 's:

- -They **determine** the relative significance of the two terms in $J(\Theta, U)$.
- -They are **related** to the "variance" of the points of C_j 's, j=1,...,m, around their centers.

–Two scenarios for the estimation of η_j 's, for the point representatives case, are the following:

o **Run** the related FCM algorithm and after its convergence estimate η_j 's as $\eta_j = \frac{\sum_{i=1}^N u_{ij}^q d(x_i, \theta_j)}{\sum_{i=1}^N u_{ij}^q}$ or $\eta_j = \frac{\sum_{u_{ij}>a} d(x_i, \theta_j)}{\sum_{u_{ij}>a} 1}$

• Set
$$\eta_j = \eta = \frac{\beta}{q\sqrt{m}}$$
, where $\beta = \frac{1}{N} \sum_{i=1}^N ||x_i - \overline{x}||^2$ and $\overline{x} = \frac{1}{N} \sum_{i=1}^N x_i$

Three observations

The mode-seeking property

Unlike Hard and fuzzy clustering algorithms which are partition algorithms (they terminate with the predetermined number of clusters no matter how many physical clusters are naturally formed in *X*), GPAS is a mode-seeking algorithm (it searches for dense regions of vectors in *X*).

Advantage: The number of clusters need not be a priori known.

If the number of clusters in GPAS, m, is greater than the true number of clusters k in X, some representatives will coincide with others. If m < k, **some** (and not all) of the clusters will be identified.

- How to avoid the trivial zero u_{ij} 's solution?
- Add a suitable term that discourages the zero solution.
- Another possible scenario:
- Minimize the cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_{i}, \theta_{j}) + \sum_{j=1}^{m} \eta_{j} \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij})$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since θ_i 's, u_{ij} 's are continuous valued, tools from analysis may be employed.

For <u>fixed θ_j 's</u>: Equating the partial derivative of $\underline{J(U, \Theta)}$ wrt $\underline{u_{ij}}$ to 0 we obtain $\frac{\partial J_q(U, \Theta)}{\partial u_{ij}} = 0 \iff u_{ij} = exp\left(-\frac{d(x_i, \theta_j)}{\eta_j}\right)$ Notes: (a) u_{ij} depends exclusively on θ_j . (b) It is $u_{ij} \in [0,1]$

- How to avoid the trivial zero u_{ij} 's solution?
- Add a suitable term that discourages the zero solution.
- A possible scenario:
- Minimize the cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_{i}, \theta_{j}) + \sum_{j=1}^{m} \eta_{j} \sum_{i=1}^{N} (u_{ij} \ln u_{ij} - u_{ij})$$

where η_j 's are suitably defined constants (one for each cluster), associated with the variance of the clusters.

Since θ_j 's, u_{ij} 's are continuous valued, tools from analysis may be employed.

For <u>fixed u_{ij} </u> Solve the following m independent minimization problems $\boldsymbol{\theta}_j = argmin_{\boldsymbol{\theta}_j} \sum_{i=1}^N u_{ij} d(\boldsymbol{x}_i, \boldsymbol{\theta}_j)$

Generalized Possibilistic Algorithmic Scheme (GPAS2)

- Fix η_j 's, $j = 1, \dots, m$.
- Choose $\theta_j(0)$ as initial estimates for θ_j , j = 1, ..., m.
- *t*=0
- Repeat

```
- For i=1 to N % Determination of u'_{ij}s
o For j=1 to m
u_{ij}(t) = exp\left(-\frac{d(x_i, \theta_j(t))}{\eta_j}\right)
o End {For-j}
- End {For-i}
```

-t=t+1

-For
$$j=1$$
 to m % Parameter updating
o Set
 $\boldsymbol{\theta}_{j}(t) = argmin_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{N} u_{ij}(t-1)d(\boldsymbol{x}_{i}, \boldsymbol{\theta}_{j}), j = 1, ..., m$
- End {For- j }

Until a termination criterion is met.

- $u_{ij} \in [0,1]$ quantifies the "relation" between x_i and C_j .
- "Large" ("small") u_{ij} values indicate close (loose) proximity between x_i and C_j.

 \Rightarrow u_{ij} varies **inversely proportional** wrt $d(x_i, \vartheta_j)$.

• u_i : vector containing the u_{ij} 's of x_i with all clusters.

Aim:

✓ To place the representatives into dense in data regions (physical clusters).

How this is achieved:

✓ Via the minimization of the following type of cost function (wrt Θ , U)

$$J(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(x_{i}, \theta_{j}) \quad (q \ge 1)$$

s.t. some constraints on *U*, *C*(*U*).

For the probabilistic case $d(x_i, \theta_j)$ results from the log-likelihood of suitably defined exponential distributions

Intuition:

- ✓ For fixed ϑ_i 's, $J(\Theta, U)$ is a weighted sum of **fixed** distances $d(\mathbf{x}_i, \vartheta_i)$.
- ⇒ Minimization of $J(\Theta, U)$ wrt u_{ij} instructs for large weights (u_{ij}) for small distances $d(x_i, \vartheta_j)$.
- ✓ For fixed u_{ij} 's, minimization of $J(\Theta, U)$ wrt ϑ_j 's leads ϑ_j 's closer to their most relative data points.

There are **several** unexplored areas (groups of algorithms) in this array.

General cost function opt. (CFO) scheme:

- ✓ Initialize $\Theta = \Theta(0)$
- ✓ Repeat
 - *t*=0
 - $U(t) = argmin_U J(\Theta(t), U)$, s.t. C(U(t))
 - *t=t*+1
 - $\Theta(t) = argmin_{\Theta} J(\Theta, U(t-1))$
- ✓ Until convergence

"Array of CFO algorithms"

Array of CFO algorithms			C(U)		
Ċ		Hard Constr.	Fuzzy Constr.	Possib. Constr.	
	Point	CONSU.		CONSU.	
	Point	e	ne	me	
	Line	schem	schem	ehel	
	Hyperplane	FO S(FO S	D J	
	Hyperellipsoid	C		sib. (
	•••	H	Fuzzy	Possib	

"Array of CFO algorithms"

\$

		Hard	Fuzzy	Possib.			
		Constr.	Constr.	Constr.			
, ,	Point	c-mea	ns sch	eme			
	Line	c-line	s scher	ne			
	Hyperplane	c-hyp	erplan	es sche	me		
	Hyperellipsoid	c-hyp	erellips	oids so	cheme		
	• • •						

C(II)

CFO clustering algorithms: A loose presentation

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

<u>A. Generalized Hard Algorithmic Scheme (GHAS) – k-means algorithm</u>

$$minimize_{U,\Theta}J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||\mathbf{x}_i - \mathbf{\theta}_j||^2$$

subject to (a) $u_{ij} \in \{0,1\}, i = 1, ..., N, j = 1, ..., m$, and (b) $\sum_{j=1}^{m} u_{ij} = 1, i = 1, ..., N$.

The Isodata or k-Means or c-Means algorithm

- Choose arbitrary initial estimates $\theta_j(0)$ for the θ_j 's, j=1,...,m.
- *t* = 0
- Repeat
 - For *i*=1 to *N* % Determination of the partition

o For *j*=1 to *m*

$$u_{ij}(t) = \begin{cases} 1, & \text{if } ||\boldsymbol{x}_i - \boldsymbol{\theta}_j(t)||^2 = \min_{q=1,\dots,m} ||\boldsymbol{x}_i - \boldsymbol{\theta}_q(t)||^2 \\ 0, & \text{otherwise} \end{cases}$$

o End {For-*j*}

- End {For-*i*}
- -t = t + 1
- For *j*=1 to *m* % *Parameter updating*

o Set

$$\boldsymbol{\theta}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}(t-1) \boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{ij}(t-1)}, j = 1, \dots, m$$

– End {For-*j*}

• Until no change in θ_j 's occurs between two successive iterations

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

<u>B. Generalized Fuzzy Algorithmic Scheme (GFAS) – Fuzzy c-means algorithm</u>

$$minimize_{U,\Theta}J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} ||\mathbf{x}_{i} - \boldsymbol{\theta}_{j}||^{2}$$

subject to (a) $u_{ij} \in (0,1)$, i = 1, ..., N, j = 1, ..., m, and (b) $\sum_{j=1}^{m} u_{ij} = 1, i = 1, ..., N$.

- **Choose** $\theta_j(0)$ as initial estimates for θ_j , j=1,...,m.
- *t*=0
- Repeat
 - For *i*=1 to N % Determination of $u'_{ij}s$

o For *j*=1 to *m*

$$u_{ij}(t) = \frac{1}{\sum_{k=1}^{m} \left(\frac{d(\boldsymbol{x}_i, \boldsymbol{\theta}_j(t))}{d(\boldsymbol{x}_i, \boldsymbol{\theta}_k(t))}\right)^{\frac{1}{q-1}}}$$

o End {For-*j*}

— End {For-*i*}

-t=t+1

- For *j*=1 to *m* % Parameter updating

o Set

$$\boldsymbol{\theta}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t-1)\boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t-1)}, j = 1, \dots, m$$

– End {For-*j*}

Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance)

<u>C. Generalized Probabilistic Algorithmic Scheme (GPrAS) – the normal pdfs case</u>

$$minimize_{\Theta,P}J(\Theta,P) = -\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\boldsymbol{x}_{i})\ln(p(\boldsymbol{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j})$$

It is (a) $P(j|\mathbf{x}_i) \in (0,1), i = 1, ..., N, j = 1, ..., m$, and (b) $\sum_{j=1}^{m} P(j|\mathbf{x}_i) = 1, i = 1, ..., N$.

- Choose $\mu_j(0)$, $\Sigma_j(0)$, $P_j(0)$ as initial estimates for μ_j , Σ_j , P_j , resp., j = 1, ..., m
- *t*=0
- Repeat

```
– For i=1 to N % Expectation step
o For i=1 to m
```

$$P(j|\boldsymbol{x}_i; \boldsymbol{\Theta}^{(t)}, P^{(t)}) = \frac{p(x_i|j; \theta_j^{(t)}) P_j^{(t)}}{\sum_{q=1}^m p(x_i|q; \theta_q^{(t)}) P_q^{(t)}} \equiv \gamma_{ji}^{(t)}$$

o End {For-*j*}

– End {For-*i*}

-t=t+1

– For j=1 to m % Parameter updating – Maximization step

$$\boldsymbol{\mu}_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}}, \qquad \Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}) (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j})^{T}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}} j = 1, \dots, m$$

$$P_j^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ji}^{(t-1)}, j = 1, ..., m$$

- End {For-*j*}

Until a termination criterion is met.

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) Consider the **GPrAS cost function**

 $J(\Theta, P) = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j})$ $\boldsymbol{\theta}_{j} = \{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\}$ $p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j}) = \frac{1}{(2\pi)^{\frac{l}{2}} |\boldsymbol{\Sigma}_{j}|^{\frac{1}{2}}} exp\left(-\frac{(\mathbf{x}_{i} - \boldsymbol{\mu}_{j})^{T} \boldsymbol{\Sigma}_{j}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{j})}{2}\right)$ with It is $J(\Theta, P) = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln\left(\frac{1}{(2\pi)^{\frac{1}{2}}|\sum_{j=1}^{1}} exp\left(-\frac{(x_i - \mu_j)^T \sum_{j=1}^{-1} (x_i - \mu_j)}{2}\right) P_j\right) =$ $-\sum_{i=1}^{N}\sum_{j=1}^{m}P(j|\mathbf{x}_{i})\ln\left(\frac{1}{(2\pi)^{\frac{l}{2}}|\Sigma_{i}|^{\frac{1}{2}}}\right)$ Term A $+\frac{1}{2}\sum_{i=1}^{N}\sum_{i=1}^{m}P(j|\boldsymbol{x}_{i})(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j})^{T}\boldsymbol{\Sigma}_{j}^{-1}(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{j})$ Term **B** $-\sum_{i=1}^{N}\sum_{i=1}^{m}P(j|\boldsymbol{x}_{i})\ln P_{j}$ Term C

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) <u>Assumption 1:</u> $\Sigma_j = \Sigma = constant$, j = 1, ..., m. Then $Term \mathbf{A} = -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln\left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right)$ $= -\ln\left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) = -\ln\left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) \sum_{i=1}^{N} 1$ $= -N \ln\left(\frac{1}{(2\pi)^{\frac{1}{2}}|\Sigma|^{\frac{1}{2}}}\right) = constant$ <u>Assumption 2:</u> $P_j = \frac{1}{m}$, j = 1, ..., m. Then

Term C

$$= -\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln \frac{1}{m} = -\ln \frac{1}{m} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) = -N \ln \frac{1}{m} = constant$$

Relating hard, fuzzy and probabilistic clustering

(point representatives, squared Euclidean distance) Based on the previous two results, it follows that

Assumption 3(a): Approximate $P(j|x_i)$ as

$$P(j|\mathbf{x}_i) = \begin{cases} 1, & P(j|\mathbf{x}_i) = max_{s=1,\dots,m}P(s|\mathbf{x}_i) \\ 0, & otherwise \end{cases} (\equiv u_{ij})$$

In this case, $GPrAS \Leftrightarrow k - means$ (for $\Sigma = I$)

Assumption 3(b): Approximate $P(j|\mathbf{x}_i)$ as $P(j|\mathbf{x}_i) = \frac{1}{\sum_{k=1}^{m} \left(\frac{d(\mathbf{x}_i, \boldsymbol{\theta}_j(t))}{d(\mathbf{x}_i, \boldsymbol{\theta}_k(t))}\right)^{\frac{1}{q-1}}} \quad \text{WARNING: Valid ONLY from a mathematical formulation point of view. NOT from a conceptual point of view. NOT from a concep$

The role of q in the fuzzy clustering

Consider the minimization problem for fuzzy clustering $minimize_{U,\Theta}J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}{}^{q} d_{ij}$ subject to (a) $u_{ij} \in (0,1), i = 1, ..., N, j = 1, ..., m$, and (b) $\sum_{j=1}^{m} u_{ij} = 1, i = 1, ..., N$.

Expanding $J(U, \Theta)$, we have

$$J(U,\Theta) = \begin{array}{cccc} u_{11}{}^{q}d_{11} + u_{12}{}^{q}d_{12} + & \dots & u_{1m}{}^{q}d_{1m} \\ u_{21}{}^{q}d_{21} + u_{22}{}^{q}d_{22} + & \dots & u_{2m}{}^{q}d_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{N1}{}^{q}d_{N1} + u_{N2}{}^{q}d_{N2} + & \dots & u_{Nm}{}^{q}d_{Nm} \end{array}$$

<u>Assumption</u>: d_{ij} 's are fixed.

Then, due to the sum-to-one constraint, $J(U, \Theta)$ is **minimized** if each of the summation in the rows of the above expansion is minimized.

Let
$$s_i$$
: $d_{is_i} = min_{j=1,\dots,m}d_{ij}$, $i = 1, \dots, N$
Then,

$$u_{i1}^{q}d_{i1} + \dots + u_{im}^{q}d_{im} \ge \left(\sum_{j=1}^{m} u_{ij}^{q}\right)d_{is_{ij}}$$

27

The role of q in the fuzzy clustering

$$\mathbf{A}_{i} = u_{i1}^{q} d_{i1} + \dots + u_{im}^{q} d_{im} \ge \left(\sum_{j=1}^{m} u_{ij}^{q}\right) d_{is_{i}}$$

For q = 1, it is $\sum_{j=1}^{m} u_{ij} = 1$. Thus

 $A_i = u_{i1}d_{i1} + \dots + u_{im} d_{im} \ge d_{is_i}$

Clearly, the **equality holds** for $u_{is_i} = 1$ and $u_{ij} = 0$, for $j = 1, ..., m, j \neq s_i$

In other words the minimum possible value of A_i is achieved for the hard cluster solution. Thus, **no** fuzzy clustering (where more than one u_{ij} 's are positive) **minimizes** the A_i .

For q > 1, in the hard clustering case, the minimum possible value of A_i is still d_{is_i} .

For q > 1, in the fuzzy clustering case, it is $\sum_{j=1}^{m} u_{ij}^{q} < 1$. Thus

$$\left(\sum_{j=1}^m u_{ij}^q\right) d_{is_i} < d_{is_i}$$

Thus, in this cases, there are choices for u_{ij} 's with more than one of them being positive (fuzzy case) that achieve lower value for A_i than the best hard clustering. The larger the value of q, the more fuzzy clusterings **achieve** for A_i value $< d_{is_i}$.²⁸

The role of q in the possibilistic clustering

Consider the minimization problem for fuzzy clustering

$$minimize_{U,\Theta}J(\boldsymbol{u}_{j},\boldsymbol{\theta}_{j}) = \sum_{i=1}^{N} u_{ij}{}^{q}d_{ij} + \eta_{j}\sum_{i=1}^{N} (1 - u_{ij})^{q}$$
subject to **(a)** $u_{ij} \in (0,1), i = 1, ..., N, j = 1, ..., m.$

For q = 1, $J(u_j, \theta_j)$ is written as

$$J(\boldsymbol{u}_j, \boldsymbol{\theta}_j) = \sum_{i=1}^{N} [u_{ij}(d_{ij} - \eta_j) + \eta_j]$$

Thus, minimizing $J(\boldsymbol{u}_{j}, \boldsymbol{\theta}_{j})$ is equivalent to minimizing

$$\sum_{i=1}^N u_{ij} (d_{ij} - \eta_j)$$

The latter achieves it minimum (negative) value by selecting $u_{ij} = 1$, for $d_{ij} < \eta_j$ and $u_{ij} = 0$, for $d_{ij} > \eta_j$.

However, in the above situation, all points having distance less than η_j from θ_j , they all have the same weight in the determination of θ_j , while all the other points have no influence in the determination of θ_j .

The role of q in the parameters updating in fuzzy and possibilistic clustering

Consider the updating equation for the point representative case and the squared Euclidean distance case (fuzzy and 1st possibilistic clust. algorithms)

$$\boldsymbol{\theta}_{j}(t) = \frac{\sum_{i=1}^{N} u_{ij}^{q}(t-1)\boldsymbol{x}_{i}}{\sum_{i=1}^{N} u_{ij}^{q}(t-1)}, j = 1, \dots, m$$

For q > 1, and since $u_{ij} \in (0,1)$, the previous observation indicates that the x_i 's with high (low) u_{ij} , will have more (much less) significant contribution to the estimation of $\theta_j(t)$, compared with the q = 1 case.

Example: Let
$$\boldsymbol{x}_1 = [0, 0]^T$$
 and $\boldsymbol{x}_2 = [10, 10]^T$, and $u_{1j} = 0.1, u_{2j} = 0.9$. Then
 $\boldsymbol{\theta}_j = \frac{u_{1j} \boldsymbol{x}_1 + u_{2j} \boldsymbol{x}_2}{u_{1j} + u_{2j}} = \begin{bmatrix} 9\\ 9 \end{bmatrix} \quad (\boldsymbol{q} = 1)$

and

$$\boldsymbol{\theta}_{j} = \frac{u_{1j}^{q} \boldsymbol{x}_{1} + u_{2j}^{q} \boldsymbol{x}_{2}}{u_{1j}^{q} + u_{2j}^{q}} = \begin{bmatrix} 9.9\\ 9.9 \end{bmatrix} \quad (\boldsymbol{q} = 2)$$

- They produce a hierarchy of (hard) clusterings instead of a single clustering.
- ✓ They find applications in:
 - Social sciences
 - Biological taxonomy
 - Modern biology
 - > Medicine
 - Archaeology
 - Computer science and engineering

- Let $X = \{x_1, ..., x_N\}, x_i = [x_{i1}, ..., x_{il}]^T$. Recall that:
- > In hard clustering each vector belongs exclusively to a single cluster.
- An *m*-(hard) clustering of X, \Re , is a partition of X into *m* sets (clusters) C_1, \ldots, C_m , so that:

•
$$C_j \neq \emptyset, j = 1, \dots, m$$

•
$$\bigcup_{j=1}^m C_j = X$$

•
$$C_i \cap C_j = \emptyset, i \neq j, i, j = 1, 2, \dots, m$$

By the definition: $\Re = \{C_j, j = 1, ..., m\}$

➤ Definition: A clustering ℜ₁ consisting of k clusters is said to be nested in the clustering ℜ₂ consisting of r (< k) clusters, if each cluster in ℜ₁ is a subset of a cluster in ℜ₂. We write ℜ₁∠ ℜ₂

Example: Let
$$\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}, \ \Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\},\$$

 $\Re_3 = \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}, \ \Re_4 = \{\{x_1, x_2, x_4\}, \{x_3, x_5\}\}.$
It is $\Re_1 \angle \Re_2$, but not $\Re_1 \angle \Re_3, \ \Re_1 \angle \Re_4, \ \Re_1 \angle \Re_1.$

Remarks:

- Hierarchical clustering algorithms produce a hierarchy of nested clusterings.
- They involve *N* steps at the most.
- At each step *t*, the clustering \Re_t is produced by \Re_{t-1} .
- Main strategies:

Agglomerative hierarchical clustering algorithms	Divisive hierarchical clustering algorithms		
$\Re_0 = \{\{x_1\}, \dots, \{x_N\}\}$	$\mathfrak{R}_0 = \{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}\}$		
$\mathfrak{R}_{N-1} = \{\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}\}$	$\Re_{N-1} = \{\{x_1\}, \dots, \{x_N\}\}$		
$\mathfrak{R}_0 \angle \dots \angle \mathfrak{R}_{N-1}$	$\mathfrak{R}_{N-1 \angle \dots \angle} \mathfrak{R}_0$		

Let $g(C_i, C_j)$ a proximity function between two clusters C_i and C_j of X.

Generalized Agglomerative Scheme (GAS)

- Initialization
 - Choose $\Re_0 = \{\{x_1\}, \dots, \{x_N\}\}$
 - t = 0
- ➢ Repeat
 - t = t + 1
 - **Choose** (C_i, C_j) in \Re_{t-1} such that

 $g(C_i, C_j) = \begin{cases} \min_{r,s} g(C_r, C_s), & \text{if } g \text{ is a disim. function} \\ \max_{r,s} g(C_r, C_s), & \text{if } g \text{ is a sim. function} \end{cases}$

- Define $C_q = C_i \cup C_j$ and produce $\Re_t = (\Re_{t-1} \{C_i, C_j\}) \cup \{C_q\}$
- Until all vectors lie in a single cluster.

Remarks:

- If two vectors come together into a single cluster at level *t* of the hierarchy, they will remain in the same cluster for all subsequent clusterings. As a consequence, there is no way to recover a "poor" clustering that may have occurred in an earlier level of hierarchy.
- Number of operations: $O(N^3)$

Definitions of some useful quantities:

Let $X = \{x_1, x_2, ..., x_N\}$, with $x_i = [x_{i1}, x_{i2}, ..., x_{il}]^T$.

> Pattern matrix (D(X)): An $N \times l$ matrix whose *i*-th row is x_i (transposed).

➢ Proximity (similarity or dissimilarity) matrix (P(X)): An NxN matrix whose (i, j) element equals the proximity ℘ (x_i, x_j) (similarity s(x_i, x_j), dissimilarity $d(x_i, x_j)$).

Example 1: Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}$$
, with
 $x_1 = [1, 1]^T$, $x_2 = [2, 1]^T$, $x_3 = [5, 4]^T$, $x_4 = [6, 5]^T$, $x_5 = [6.5, 6]^T$
Pattern matrix
Euclidean distance
 $D(X) = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 5 & 4 \\ 6 & 5 \\ 6.5 & 6 \end{bmatrix}$
 $P(X) = \begin{bmatrix} 0 & 1 & 5 & 6.4 & 7.4 \\ 1 & 0 & 4.2 & 5.7 & 6.7 \\ 5 & 4.2 & 0 & 1.4 & 2.5 \\ 6.4 & 5.7 & 1.4 & 0 & 1.1 \\ 7.4 & 6.7 & 2.5 & 1.1 & 0 \end{bmatrix}$
 $P'(X) = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$

Definitions of some useful quantities:

➤Threshold dendrogram (or dendrorgram): It is an effective way of representing the sequence of clusterings, which are produced by an agglomerative algorithm.

Example 1 (cont.): If $d_{min}^{ss}(C_i, C_j)$ is employed as the distance measure between two sets and the Euclidean one as the distance measure between two vectors, the following series of clusterings are produced:

Definitions of some useful quantities:

Proximity (dissimilarity or dissimilarity) dendrogram: A dendrogram that takes into account the level of proximity (dissimilarity or similarity) where two clusters are merged for the first time.

Example 1 (cont.): In terms of the previous example, the proximity dendrograms that correspond to P'(X) and P(X) are

Remark: One can readily observe the level in which a cluster is formed and the level in which it is absorbed in a larger cluster (indication of the natural clustering).

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.

x₃

 \mathbf{X}_1

 \mathbf{X}_{2}

X

X₅

X₆

 \mathbf{X}_7

•At the final clustering all vectors belong to the same cluster.

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.

X₆

X₇

•At the final clustering all vectors belong to the same cluster.

Example:

Agglomerative philosophy:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.

X5

x₆

1.5

X₇

•At the final clustering all vectors belong to the same cluster.

Example:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.

Example:

- •In the initial clustering all data vectors belong to different clusters.
- •At each step a new clustering is defined by merging the two most similar clusters to one.
- •At the final clustering all vectors belong to the same cluster.