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Possibilistic clustering algorithms: 
Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁  be a set of data points. 
 
For each vector 𝒙𝑖 its degree of compatibility with all clusters, 𝑢𝑖𝑗 , 𝑗 = 1,… ,𝑚, 

is considered. 
The constraints on 𝑢𝑖𝑗’s are 

• 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚 

• 0 <  𝑢𝑖𝑗 < 𝑁, 𝑗 = 1,… ,𝑚𝑁
𝑖=1  

 
Each cluster is represented by a representative 𝜽𝑗 (point repr., hyperplane…). 

Let 𝛩 = {𝜽1, 𝜽2, … , 𝜽𝑚} 
 
Define the cost function  

𝐽𝑞 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗  

When 𝐽𝑞 𝑈,𝛩  is minimized? 

 
When all 𝑢𝑖𝑗’s are (very close to) zero. 



Possibilistic CFO clustering algorithms  

3 

How to avoid the trivial zero 𝑢𝑖𝑗’s solution? 

Add a suitable term that discourages the zero solution. 
A possible scenario: 
Minimize the cost function  

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 + 𝜂𝑗  (1− 𝑢𝑖𝑗)

𝑞
𝑁

𝑖=1

𝑚

𝑗=1
 

where 𝜂𝑗‘s are suitably defined constants (one for each cluster), associated 

with the variance of the clusters. 
Since 𝜽𝑗’s, 𝑢𝑖𝑗’s are continuous valued, tools from analysis may be employed. 

 
For fixed 𝜽𝒋‘s: Equating the partial derivative of 𝐽𝑞 𝑈,𝛩  wrt 𝑢𝑖𝑗 to 0 we obtain 

𝜕𝐽𝑞 𝑈,𝛩

𝜕𝑢𝑖𝑗
= 0 ⟺ 𝑢𝑖𝑗 =

1

1 +
𝑑(𝒙𝑖 , 𝜽𝑗)

𝜂𝑗

1
𝑞−1

 

Notes:  (a) 𝑢𝑖𝑗 depends exclusively on 𝜽𝑗. 

  (b) It is 𝑢𝑖𝑗 ∈ [0,1] 
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How to avoid the trivial zero 𝑢𝑖𝑗’s solution? 

Add a suitable term that discourages the zero solution. 
A possible scenario: 
Minimize the cost function  

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 + 𝜂𝑗  (1− 𝑢𝑖𝑗)

𝑞
𝑁

𝑖=1

𝑚

𝑗=1
 

where 𝜂𝑗‘s are suitably defined constants (one for each cluster), associated 

with the variance of the clusters. 
Since 𝜽𝑗’s, 𝑢𝑖𝑗’s are continuous valued, tools from analysis may be employed. 

 
For fixed 𝑢𝑖𝑗‘s: Solve the following m independent minimization problems 

𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
 



Generalized Possibilistic Algorithmic Scheme (GPAS1) 
• Fix 𝜂𝑗’s, 𝑗 = 1, … ,𝑚. 

• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• t=0 
• Repeat 

 For i=1 to N  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For j=1 to m 

𝑢𝑖𝑗(𝑡) =
1

1 +
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))

𝜂𝑗

1
𝑞−1

 

o End {For-j} 
 End {For-i} 
t=t+1 

 
 For j=1 to m % Parameter updating 

o Set 

𝜽𝑗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

 End {For-j} 
• Until a termination criterion is met. 
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Remarks: 
• A candidate termination condition is 
    ||θ(t)-θ(t-1)||<ε,  
 where ||.|| is any vector norm and ε a user-defined constant. 
 
• GFAS may also be initialized from U(0) instead of θj(0), j=1,…,m and start 

iterations with computing θj first. 
 

• Based on GPAS, a possibilistic algorithm can be derived, for each fuzzy 
clustering algorithm derived previously. 
 

• High values of q: 
 In possibilistic clustering cause almost equal contributions of all 

vectors to all clusters 
 In fuzzy clustering cause increased sharing of the vectors among all 

clusters. 
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Three observations 
• Decomposition of J(Θ,U):  
 
Since for each vector 𝒙𝑖, 𝑢𝑖𝑗’s, 𝑗 = 1,… ,𝑚 are independent from each other, 
𝐽 𝛩, 𝑈  can be written as  
 

𝐽 𝛩, 𝑈 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 + 𝜂𝑗  (1 − 𝑢𝑖𝑗)

𝑞
𝑁

𝑖=1

𝑚

𝑗=1
 

 

=   𝑢𝑖𝑗
𝑞𝑑(𝒙𝑖 , 𝜽𝑗)

𝑁

𝑖=1
+ 𝜂𝑗  (1 − 𝑢𝑖𝑗)

𝑞
𝑁

𝑖=1

𝑚

𝑗=1
≡  𝐽𝑗

𝑚

𝑗=1
 

 where 
 

𝐽𝑗 =  𝑢𝑖𝑗
𝑞𝑑(𝒙𝑖 , 𝜽𝑗)

𝑁

𝑖=1
+ 𝜂𝑗  (1 − 𝑢𝑖𝑗)

𝑞
𝑁

𝑖=1
 

 
 
Each 𝐽𝑗 is associated with a different cluster and minimization of 𝐽 𝛩, 𝑈  with 
respect to 𝑢𝑖𝑗’s can be carried out separately for each 𝐽𝑗. 
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Three observations 
• About ηj’s:  

 
They determine the relative significance of the two terms in J(Θ,U). 

 
They are related to the “variance” of the points of Cj’s, j=1,…,m, around their 

centers.  
 

Two scenarios for the estimation of ηj’s, for the point representatives case, 
are the following: 

 
o Run the related FCM algorithm and after its convergence estimate ηj’s as 

     𝜂𝑗 =
 𝑢𝑖𝑗

𝑞𝑁
𝑖=1 𝑑(𝒙𝑖,𝜽𝑗)

 𝑢𝑖𝑗
𝑞𝑁

𝑖=1
       or            𝜂𝑗 =

 𝑑(𝒙𝑖,𝜽𝑗)𝑢𝑖𝑗>𝑎

 1𝑢𝑖𝑗>𝑎
 

 

o Set 𝜂𝑗 = 𝜂 =
𝛽

𝑞 𝑚
, where 𝛽 =

1

𝑁
 𝒙𝑖 − 𝒙 2𝑁
𝑖=1  and 𝒙 =

1

𝑁
 𝒙𝑖
𝑁
𝑖=1  
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Three observations 
• The mode-seeking property 
Unlike Hard and fuzzy clustering algorithms which are partition algorithms 
(they terminate with the predetermined number of clusters no matter how 
many physical clusters are naturally formed in X), GPAS is a mode-seeking 
algorithm (it searches for dense regions of vectors in X). 
 
Advantage: The number of clusters need not be a priori known. 
If the number of clusters in GPAS, m, is greater than the true number of 
clusters k in X, some representatives will coincide with others. If m<k, some 
(and not all) of the clusters will be identified. 
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How to avoid the trivial zero 𝑢𝑖𝑗’s solution? 

Add a suitable term that discourages the zero solution. 
Another possible scenario: 
Minimize the cost function  

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 + 𝜂𝑗  (𝑢𝑖𝑗 ln 𝑢𝑖𝑗 − 𝑢𝑖𝑗) 

𝑁

𝑖=1

𝑚

𝑗=1
 

where 𝜂𝑗‘s are suitably defined constants (one for each cluster), associated 

with the variance of the clusters. 
Since 𝜽𝑗’s, 𝑢𝑖𝑗’s are continuous valued, tools from analysis may be employed. 

 
For fixed 𝜽𝒋‘s: Equating the partial derivative of𝐽 𝑈, 𝛩  wrt 𝑢𝑖𝑗 to 0 we obtain 

𝜕𝐽𝑞 𝑈,𝛩

𝜕𝑢𝑖𝑗
= 0 ⟺ 𝑢𝑖𝑗 = 𝑒𝑥𝑝 −

𝑑(𝒙𝑖 , 𝜽𝑗)

𝜂𝑗
 

Notes:  (a) 𝑢𝑖𝑗 depends exclusively on 𝜽𝑗. 

  (b) It is 𝑢𝑖𝑗 ∈ [0,1] 
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How to avoid the trivial zero 𝑢𝑖𝑗’s solution? 

Add a suitable term that discourages the zero solution. 
A possible scenario: 
Minimize the cost function  

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 + 𝜂𝑗  (𝑢𝑖𝑗 ln 𝑢𝑖𝑗 − 𝑢𝑖𝑗) 

𝑁

𝑖=1

𝑚

𝑗=1
 

where 𝜂𝑗‘s are suitably defined constants (one for each cluster), associated 

with the variance of the clusters. 
Since 𝜽𝑗’s, 𝑢𝑖𝑗’s are continuous valued, tools from analysis may be employed. 

 
For fixed 𝑢𝑖𝑗‘s: Solve the following m independent minimization problems 

𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗𝑑 𝒙𝑖 , 𝜽𝑗
𝑁

𝑖=1
 



Generalized Possibilistic Algorithmic Scheme (GPAS2) 
• Fix 𝜂𝑗’s, 𝑗 = 1, … ,𝑚. 

• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• t=0 
• Repeat 

 For i=1 to N  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For j=1 to m 

𝑢𝑖𝑗(𝑡) = 𝑒𝑥𝑝 −
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))

𝜂𝑗
 

o End {For-j} 
 End {For-i} 

 
t=t+1 
  
For j=1 to m % Parameter updating 

o Set 

𝜽𝑗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗(𝑡 − 1)𝑑 𝒙𝑖 , 𝜽𝑗
𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

 End {For-j} 
• Until a termination criterion is met. 
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Basic parameters – notation (cont.) 

 

   

 

 

• uij  [0,1] quantifies the “relation” between xi and Cj. 

• “Large” (“small”) uij values indicate close (loose) proximity   
 between xi and Cj.  
 
 
• ui : vector containing the uij’s  of xi with all clusters. 

  uij varies inversely proportional wrt d(xi,θj). 
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In the 
probabilistic case 
𝑢𝑖𝑗 = 𝑃(𝑗|𝒙𝑖) 
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Aim: 
 To place the representatives into dense in data regions (physical 

clusters). 
How this is achieved: 
 Via the minimization of the following type of cost function (wrt Θ, U) 


 


N

i

m

j

ji

q

ij xduUJ
1 1

),(),( 

 s.t. some constraints on U, C(U). 

Intuition: 
 For fixed θj’s,  J(Θ,U) is a weighted sum of fixed distances d(xi,θj). 

  Minimization of J(Θ,U) wrt uij instructs for large weights (uij) for 
small distances d(xi,θj). 

(q≥1) 

 For fixed uij’s, minimization of J(Θ,U) wrt θj’s leads θj’s closer to 
their most relative data points. 

For the probabilistic 
case 𝑑(𝒙𝑖 , 𝜽𝑗) results 

from the log-likelihood 
of suitably defined  

exponential 
distributions 
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Partition  
matrix 

Basic types of algorithms: Constraints on U=[uij] 

Hard: 
•uij∈ {0, 1} 
 
•  




m

j

iju
1

1

Fuzzy: 
•uij∈ (0, 1) 
 
•  




m

j

iju
1

1

Possibilistic (>1 choices): 
•uij∈ (0, 1] 

Θ={θj, j=1,…,m} 

Point 

k-dim. lin. manifold 
Compact set in k-
dim. lin. manifold 

Line Plane Line segment Polygon .  .  . .  .  . 

k-dim. nonlinear 
manifold 

k-means 
PCM 

FCM FCL FCV 

APCH 

Membership matrix Compatibility matrix 



CFO clustering algorithms: A unified view  

16 

“Array of CFO algorithms” 
C(U) 

θ
j 

algorithm 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

There are several unexplored areas (groups of algorithms) in this array. 
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General cost function opt. (CFO) scheme: 
 Initialize Θ=Θ(0) 
 Repeat 

• t=0 
 

• U(t) = argminU  J(Θ(t),U) , s.t. C(U(t)) 
 

• t=t+1 
• Θ(t) = argminΘ  J(Θ,U(t-1)) 

 Until convergence 
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Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

“Array of CFO algorithms” 
C(U) 

θ
j 

H
ar

d
 C

FO
 s

ch
em

e 

Fu
zz

y 
C

FO
 s

ch
em

e
 

Po
ss

ib
. C

FO
 s

ch
em

e 
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“Array of CFO algorithms” 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

C(U) 

θ
j 

c-means scheme 

c-lines scheme 

c-hyperellipsoids scheme 

c-hyperplanes scheme 
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CFO clustering algorithms: A loose presentation 

Constraints on U 

Type of θj 

Type of d(xi,θj) 

Hard 

Fuzzy 

Possibilistic 

Possibilistic + sparse 

.  
.  

. 

Po
in

t  

Li
n

e
ar

 M
an

if
o

ld
 

C
o

m
p

ac
t 

Se
t  

N
o

n
lin

e
ar

 M
an

if
o

ld
 

E.g.:If θj is a point, 
d(xi,θj) may be 
•Sq. Euclidean 
•lp norm 
•Mahalanobis Subspace clustering 
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
A. Generalized Hard Algorithmic Scheme (GHAS) – k-means algorithm 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… ,𝑁. 

 
The Isodata or k-Means or c-Means algorithm 
• Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, j=1,…,m. 
• t = 0 
• Repeat 

 For i=1 to N  % Determination of the partition 
o For j=1 to m 

𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 ||𝒙𝒊 − 𝜽𝑗(𝑡)||

2 = 𝑚𝑖𝑛𝑞=1,…,𝑚||𝒙𝒊 − 𝜽𝑞(𝑡)||
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-j} 
 End {For-i} 
 𝑡 = 𝑡 + 1 
 For j=1 to m % Parameter updating 

o Set 

𝜽𝑗 𝑡 =
 𝑢𝑖𝑗(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗(𝑡 − 1) 𝑁
𝑖=1

, 𝑗 = 1, … ,𝑚 

 End {For-j} 
• Until no change in 𝜽𝑗’ s occurs between two successive iterations 
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
B. Generalized Fuzzy Algorithmic Scheme (GFAS) – Fuzzy c-means algorithm 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, j=1,…,m. 

• t=0 
• Repeat 

 For i=1 to N  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For j=1 to m 

𝑢𝑖𝑗(𝑡) =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))
𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

 

o End {For-j} 
 End {For-i} 
t=t+1 
 For j=1 to m % Parameter updating 

o Set 

𝜽𝑗(𝑡) =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

, 𝑗 = 1,… ,𝑚 

 End {For-j} 
• Until a termination criterion is met. 
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
C. Generalized Probabilistic Algorithmic Scheme (GPrAS) – the normal pdfs case 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒Θ,𝑃𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

It is (a)𝑃 𝑗 𝒙𝑖 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑃 𝑗 𝒙𝑖
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

• Choose 𝝁𝑗(0), Σ𝑗(0), 𝑃𝑗(0) as initial estimates for 𝝁𝑗,Σ𝑗 , 𝑃𝑗 , resp. , 𝑗 = 1,… ,𝑚 

• t=0 
• Repeat 

 For i=1 to N  % Expectation step 
o For j=1 to m 

                                    𝑃(𝑗|𝒙𝑖; 𝛩
𝑡 , 𝑃(𝑡)) =

𝑝(𝑥𝑖|𝑗;𝜃𝑗
𝑡 )𝑃𝑗

(𝑡)

 𝑝(𝑥𝑖|𝑞;𝜃𝑞
𝑡 )𝑃𝑞

(𝑡)𝑚
𝑞=1

≡ 𝛾𝑗𝑖
(𝑡) 

o End {For-j} 
 End {For-i} 
t=t+1 
 For j=1 to m % Parameter updating – Maximization step 

o Set 

𝝁𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)𝒙𝒊

𝑁
𝑖=1

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

, 𝛴𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)(𝒙𝒊−𝝁𝒋)

𝑁
𝑖=1 (𝒙𝒊−𝝁𝒋)

𝑻

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

 𝑗 = 1,… ,𝑚 

 

𝑃𝑗
(𝑡) =

1

𝑁
 𝛾𝑗𝑖

(𝑡−1)
𝑁

𝑖=1
, 𝑗 = 1, … ,𝑚 

- End {For-j} 
• Until a termination criterion is met. 
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Consider the GPrAS cost function  

𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

with  

𝑝 𝒙𝑖 𝑗; 𝜽𝑗 =
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑒𝑥𝑝 −
𝒙𝑖 − 𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖 − 𝝁𝑗

2
 

It is 𝐽 𝛩, 𝑃 = −  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑒𝑥𝑝 −
𝒙𝑖−𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖−𝝁𝑗

2
𝑃𝑗

𝑚
𝑗=1

𝑁
𝑖=1 = 

−  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ𝑗

1
2

𝑚

𝑗=1

𝑁

𝑖=1

+
1

2
  𝑃 𝑗 𝒙𝑖 𝒙𝑖 − 𝝁𝑗

𝑇
Σ𝑗

−1 𝒙𝑖 − 𝝁𝑗

𝑚

𝑗=1

𝑁

𝑖=1

−  𝑃 𝑗 𝒙𝑖 ln 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

𝜽𝑗 = 𝝁𝑗 , Σ𝑗  

Term A 

Term B 

Term C 
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Assumption 1: Σ𝑗 = Σ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑗 = 1,… ,𝑚. Then 

𝑇𝑒𝑟𝑚 𝑨 = −  𝑃 𝑗 𝒙𝑖 ln
1

2𝜋
𝑙
2 Σ

1
2

𝑚

𝑗=1

𝑁

𝑖=1

= − ln
1

2𝜋
𝑙
2 Σ

1
2

  𝑃 𝑗 𝒙𝑖
𝑚

𝑗=1

𝑁

𝑖=1
= − ln

1

2𝜋
𝑙
2 Σ

1
2

 1
𝑁

𝑖=1

= −𝛮 ln
1

2𝜋
𝑙
2 Σ

1
2

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Assumption 2: 𝑃𝑗 =
1

𝑚
, 𝑗 = 1,… ,𝑚. Then 

𝑇𝑒𝑟𝑚 𝑪

= −  𝑃 𝑗 𝒙𝑖 ln
1

𝑚
= − ln

1

𝑚
  𝑃 𝑗 𝒙𝑖

𝑚

𝑗=1
= −𝑁 ln

1

𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑁

𝑖=1

𝑚

𝑗=1

𝑁

𝑖=1
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Relating hard, fuzzy and probabilistic clustering  
(point representatives, squared Euclidean distance) 
Based on the previous two results, it follows that 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −  𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

⇕ 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑃 𝑗 𝒙𝑖 𝒙𝑖 − 𝝁𝑗
𝑇
Σ−1 𝒙𝑖 − 𝝁𝑗

𝑚

𝑗=1

𝑁

𝑖=1
 

 
Assumption 3(a): Approximate 𝑃 𝑗 𝒙𝑖  as 

𝑃 𝑗 𝒙𝑖  =  
1, 𝑃 𝑗 𝒙𝑖 = 𝑚𝑎𝑥𝑠=1,…,𝑚𝑃 𝑠 𝒙𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

≡ 𝑢𝑖𝑗  

In this case, 𝐺𝑃𝑟𝐴𝑆 ⇔ 𝑘 −𝑚𝑒𝑎𝑛𝑠(for 𝛴 = 𝛪) 

 
Assumption 3(b): Approximate 𝑃 𝑗 𝒙𝑖  as 

𝑃 𝑗 𝒙𝑖  =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))
𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

≡ 𝑢𝑖𝑗  

In this case, 𝐺𝑃𝑟𝐴𝑆 ⇔ 𝑓𝑢𝑧𝑧𝑦 𝑐 − 𝑚𝑒𝑎𝑛𝑠(for 𝛴 = 𝛪) 

Σ𝑗 = Σ 

WARNING: Valid ONLY from a 
mathematical formulation point of 

view. NOT from a conceptual point of 
view. 
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The role of 𝑞 in the fuzzy clustering  
Consider the minimization problem for fuzzy clustering 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑𝑖𝑗  

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚, and (b)  𝑢𝑖𝑗
𝑚
𝑗=1 = 1, 𝑖 = 1,… , 𝑁. 

 
Expanding 𝐽 𝑈, 𝛩 , we have 

𝐽 𝑈, 𝛩 =

𝑢11
𝑞𝑑11 + 𝑢12

𝑞𝑑12 +

𝑢21
𝑞𝑑21 + 𝑢22

𝑞𝑑22 +

… 𝑢1𝑚
𝑞𝑑1𝑚

… 𝑢2𝑚
𝑞𝑑2𝑚

⋮ ⋮
𝑢𝑁1

𝑞𝑑𝑁1 + 𝑢𝑁2
𝑞𝑑𝑁2 +

⋱ ⋮
⋯ 𝑢𝑁𝑚

𝑞𝑑𝑁𝑚

 

 
Assumption: 𝑑𝑖𝑗’s are fixed. 

Then, due to the sum-to-one constraint, 𝐽 𝑈, 𝛩  is minimized if each of the 
summation in the rows of the above expansion is minimized. 
 
Let 𝑠𝑖:  𝑑𝑖𝑠𝑖 = 𝑚𝑖𝑛𝑗=1,…,𝑚𝑑𝑖𝑗 , 𝑖 = 1,… ,𝑁 

Then,  

𝑢𝑖1
𝑞𝑑𝑖1+…+𝑢𝑖𝑚

𝑞𝑑𝑖𝑚 ≥  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖  

𝑑𝑖𝑗 = 𝑑 𝒙𝑖 , 𝜽𝑗  
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The role of 𝑞 in the fuzzy clustering  

𝐴𝑖 = 𝑢𝑖1
𝑞𝑑𝑖1+…+𝑢𝑖𝑚

𝑞𝑑𝑖𝑚 ≥  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖  

For 𝑞 = 1, it is  𝑢𝑖𝑗
𝑚
𝑗=1 = 1. Thus 

𝐴𝑖 = 𝑢𝑖1𝑑𝑖1+… +𝑢𝑖𝑚 𝑑𝑖𝑚 ≥ 𝑑𝑖𝑠𝑖  

Clearly, the equality holds for 𝑢𝑖𝑠𝑖 = 1 and 𝑢𝑖𝑗 = 0, for 𝑗 = 1,… ,𝑚, 𝑗 ≠ 𝑠𝑖 

 
In other words the minimum possible value of 𝐴𝑖 is achieved for the hard cluster 
solution. Thus, no fuzzy clustering (where more than one 𝑢𝑖𝑗’s are positive) minimizes 

the 𝐴𝑖. 
 
For 𝑞 > 1, in the hard clustering case, the minimum possible value of 𝐴𝑖 is still 𝑑𝑖𝑠𝑖. 

 
For 𝑞 > 1, in the fuzzy clustering case, it is  𝑢𝑖𝑗

𝑞𝑚
𝑗=1 < 1. Thus 

 𝑢𝑖𝑗
𝑞

𝑚

𝑗=1
𝑑𝑖𝑠𝑖 < 𝑑𝑖𝑠𝑖  

Thus, in this cases, there are choices for 𝑢𝑖𝑗’s with more than one of them being 

positive (fuzzy case) that achieve lower value for 𝐴𝑖 than the best hard clustering. 
The larger the value of 𝑞, the more fuzzy clusterings achieve for 𝐴𝑖 value < 𝑑𝑖𝑠𝑖. 
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The role of 𝑞 in the possibilistic clustering  
Consider the minimization problem for fuzzy clustering 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑈,Θ𝐽 𝒖𝑗 , 𝜽𝑗 =  𝑢𝑖𝑗
𝑞𝑑𝑖𝑗

𝑁

𝑖=1
+ 𝜂𝑗  1− 𝑢𝑖𝑗

𝑞𝑁

𝑖=1
 

subject to (a) 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚. 

 
For 𝑞 = 1, 𝐽 𝒖𝑗 , 𝜽𝑗  is written as 

𝐽 𝒖𝑗 , 𝜽𝑗 =  𝑢𝑖𝑗 𝑑𝑖𝑗 − 𝜂𝑗 + 𝜂𝑗
𝑁

𝑖=1
 

Thus, minimizing 𝐽 𝒖𝑗 , 𝜽𝑗  is equivalent to minimizing  

 𝑢𝑖𝑗 𝑑𝑖𝑗 − 𝜂𝑗
𝑁

𝑖=1
 

The latter achieves it minimum (negative) value by selecting 𝑢𝑖𝑗 = 1, for 𝑑𝑖𝑗 < 𝜂𝑗 

and 𝑢𝑖𝑗 = 0, for 𝑑𝑖𝑗 > 𝜂𝑗.  

 
However, in the above situation, all points having distance less than 𝜂𝑗 from 𝜽𝑗, they 

all have the same weight in the determination of 𝜽𝑗, while all the other points have no 

influence in the determination of 𝜽𝑗. 
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The role of 𝑞 in the parameters updating in fuzzy and possibilistic clustering  
 
Consider the updating equation for the point representative case and the 
squared Euclidean distance case (fuzzy and 1st possibilistic clust. algorithms) 

𝜽𝑗(𝑡) =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

, 𝑗 = 1,… ,𝑚 

For 𝑞 > 1, and since 𝑢𝑖𝑗 ∈ (0,1), the previous observation indicates that the 

𝒙𝑖’s with high (low) 𝑢𝑖𝑗, will have more (much less) significant contribution to 

the estimation of 𝜽𝑗(𝑡), compared with the 𝑞 = 1 case. 

 
Example: Let 𝒙1 = 0, 0 𝑇 and 𝒙2 = 10, 10 𝑇, and 𝑢1𝑗 = 0.1, 𝑢2𝑗 = 0.9. Then 

𝜽𝑗 =
𝑢1𝑗𝒙1 + 𝑢2𝑗𝒙2

𝑢1𝑗 + 𝑢2𝑗
=

9
9

   (𝑞 = 1) 

and 

𝜽𝑗 =
𝑢1𝑗

𝑞𝒙1 + 𝑢2𝑗
𝑞𝒙2

𝑢1𝑗
𝑞 + 𝑢2𝑗

𝑞 =
9.9
9.9

   (𝑞 = 2) 

 



Hierarchical Clustering Algorithms 

 They produce a hierarchy of (hard) clusterings instead of a single 
clustering. 
 

 They find applications in: 
 Social sciences 
 Biological taxonomy 
 Modern biology 
 Medicine 
 Archaeology 
 Computer science and engineering 



Hierarchical Clustering Algorithms 

Let 𝑋 = {𝒙1, … , 𝒙𝑁},   𝒙𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝑙]
𝑇.  

Recall that: 
 In hard clustering each vector belongs exclusively to a single cluster. 
 An 𝑚-(hard) clustering of 𝑋, , is a partition of X into m sets (clusters) 

𝐶1, … , 𝐶𝑚  
, so that: 

 
 𝐶𝑗 ≠ ∅, 𝑗 = 1,… ,𝑚 

 
 ∪𝑗=1

𝑚 𝐶𝑗 = 𝑋 

 
 𝐶𝑖 ∩ 𝐶𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, , … ,𝑚 

 
     By the definition:  = {𝐶𝑗, 𝑗 = 1,…𝑚} 

 



Hierarchical Clustering Algorithms 

 Definition: A clustering 1 consisting of k clusters is said to be nested in 
the clustering 2 consisting of 𝑟 (< 𝑘) clusters, if each cluster in 1 is a 
subset of a cluster in 2. 

We write 1 2 

 

 
Example: Let 1 = {{𝒙1, 𝒙3}, {𝒙4}, {𝒙2, 𝒙5}}, 2 = {{𝒙1, 𝒙3, 𝒙4}, {𝒙2, 𝒙5}},  
 
          3 = {{𝒙1, 𝒙4}, {𝒙3}, {𝒙2, 𝒙5}}, 4 = {{𝒙1, 𝒙2, 𝒙4}, {𝒙3, 𝒙5}}. 
 
                   It is 1 2, but not 1 3, 1 4, 1 1. 

 



Hierarchical Clustering Algorithms 

Remarks: 
• Hierarchical clustering algorithms produce a hierarchy of nested clusterings. 

 
• They involve N steps at the most. 

 
• At each step t, the clustering 𝑡 is produced by 𝑡−1. 
 
  Main strategies: 

Agglomerative hierarchical 
clustering algorithms 

Divisive hierarchical 
clustering algorithms 

0 = {{𝒙1}, … , {𝒙𝑁}} 0 = {{𝒙1, … , 𝒙𝑁}} 

.   .   . .   .   . 

𝑁−1 = {{𝒙1, … , 𝒙𝑁}} 𝑁−1 = {{𝒙1}, … , {𝒙𝑁}} 

0 …  𝑁−1 𝑁−1 …  
0 



Agglomerative Clustering Algorithms 

Let 𝑔(𝐶𝑖 , 𝐶𝑗) a proximity function between two clusters 𝐶𝑖  and 𝐶𝑗  of X. 

 

Generalized Agglomerative Scheme (GAS) 

 Initialization 
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}} 
•  𝑡 = 0 

 Repeat 
•  𝑡 = 𝑡 + 1 

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that 

 

 𝑔 𝐶𝑖 , 𝐶𝑗 =  
𝑚𝑖𝑛𝑟,𝑠𝑔 𝐶𝑟 , 𝐶𝑠 , 𝑖𝑓 𝑔 𝑖𝑠 𝑎 𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑟,𝑠𝑔 𝐶𝑟 , 𝐶𝑠 , 𝑖𝑓 𝑔 𝑖𝑠 𝑎 𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 

 

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗  and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞} 

 

 Until all vectors lie in a single cluster. 



Agglomerative Clustering Algorithms 

Remarks: 
• If two vectors come together into a single cluster at level t of the hierarchy, 

they will remain in the same cluster for all subsequent clusterings. As a 
consequence, there is no way to recover a “poor” clustering that may have 
occurred in an earlier level of hierarchy. 
 

• Number of operations: 𝑂(𝑁3) 



Agglomerative Clustering Algorithms 

Definitions of some useful quantities: 
Let 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁}, with 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑙]

𝑇. 

 

 Pattern matrix (𝐷(𝑋)): An 𝑁x𝑙 matrix whose 𝑖-th row is  𝒙𝑖 (transposed). 
 

 Proximity (similarity or dissimilarity) matrix (𝑃(𝑋)): An 𝑁x𝑁 matrix whose 
(𝑖, 𝑗) element equals the proximity (𝒙𝑖, 𝒙𝑗) (similarity 𝑠(𝒙𝑖, 𝒙𝑗), 
dissimilarity 𝑑(𝒙𝑖, 𝒙𝑗)).  
 

Example 1: Let 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, with  
       𝒙1 = [1, 1]𝑇, 𝒙2 = [2, 1]𝑇, 𝒙3 = [5, 4]𝑇, 𝒙4 = [6, 5]𝑇, 𝒙5 = [6.5, 6]𝑇 

   Pattern matrix            Euclidean distance                         Tanimoto distance 
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Agglomerative Clustering Algorithms 
Definitions of some useful quantities: 
Threshold dendrogram (or dendrorgram): It is an effective way of 
representing the sequence of clusterings, which are produced by an 
agglomerative algorithm. 

Example 1 (cont.): If 𝑑𝑚𝑖𝑛
𝑠𝑠 𝐶𝑖 , 𝐶𝑗  is employed as the distance measure 

between two sets and the Euclidean one as the distance measure between 
two vectors, the following series of clusterings are produced:  
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x1 x2
x3 x4 x5{{ },{ },{ },{ },{ }}x x x x x1 2 3 4 5

{{ , },{ },{ },{ }}x x x x x1 2 3 4 5

{{ , },{ },{ , }}x x x x x1 2 3 4 5

{{ , },{ , , }}x x x x x1 2 3 4 5

{{ , , , , }}x x x x x1 2 3 4 5



Agglomerative Clustering Algorithms 
Definitions of some useful quantities: 
Proximity (dissimilarity or dissimilarity) dendrogram:  A dendrogram 
that takes into account the level of proximity (dissimilarity or similarity) 
where two clusters are merged for the first time. 
 
Example 1 (cont.): In terms of the previous example, the proximity 
dendrograms that correspond to P΄(X) and P(X) are 
 
 
 
 
 
 
 
 
 
Remark: One can readily observe the level in which a cluster is formed 
and the level in which it is absorbed in a larger cluster (indication of the 
natural clustering). 
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Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 
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Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.5 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

Agglomerative philosophy: 
•In the initial clustering all data vectors belong to different clusters. 
•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 



Agglomerative Clustering Algorithms 

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 
1.4 

1.8 

1.5 

2.2 

Agglomerative philosophy: 
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•At each step a new clustering  is defined by merging the two most similar clusters  to 
one. 
•At the final clustering all vectors belong to the same cluster. 

Example: 
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•In the initial clustering all data vectors belong to different clusters. 
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