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Fuzzy clustering algorithms: 
Let 𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁  be a set of data points. 
 
Each vector 𝒙𝑖 belongs to all clusters up to a certain degree, 𝑢𝑖𝑗 , 𝑗 = 1,… ,𝑚, 

Subject to the constraints 
• 𝑢𝑖𝑗 ∈ 0,1 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑚 
•  𝑢𝑖𝑗 = 1
𝑚
𝑗=1 , 𝑖 = 1,… ,𝑁  

• 0 <  𝑢𝑖𝑗 < 𝑁, 𝑗 = 1,… ,𝑚
𝑁
𝑖=1  

 
Each cluster is represented by a representative 𝜽𝑗 (point repr., hyperplane…). 

Let 𝛩 = {𝜽1, 𝜽2, … , 𝜽𝑚} 
 
Define the cost function  

𝐽𝑞 𝑈,𝛩 =  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 ,      (𝑞 > 1) 

When 𝐽𝑞 𝑈,𝛩  is minimized? 

 
When large 𝑢𝑖𝑗’s are multiplied with small  𝑑(𝒙𝑖 , 𝜽𝑗) ‘s. 
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Minimizing the cost function  

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 
Since 𝜽𝑗’s, 𝑢𝑖𝑗’s are continuous valued, tools from analysis may be employed 

for both of them. 
 
For fixed 𝜽𝒋‘s: Define the Lagrangian function 

ℒ𝑞 𝑈,𝛩 =  𝑢𝑖𝑗
𝑞

𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 − 𝜆𝑖  𝑢𝑖𝑗 − 1

𝑚

𝑗=1

𝑁

𝑖=1
 

 
Equating the partial derivative of ℒ𝑞 𝑈,𝛩  wrt 𝑢𝑟𝑠 to 0, it turns out that 

𝜕ℒ𝑞 𝑈,𝛩

𝜕𝑢𝑟𝑠
= 0 ⟺ 𝑢𝑟𝑠 =

1

 
𝑑(𝒙𝑟, 𝜽𝑠)
𝑑(𝒙𝑟 , 𝜽𝑗)

1
𝑞−1

𝑚
𝑗=1

 

For fixed 𝑢𝑖𝑗‘s: Solve the following 𝑚 independent minimization problems 

𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗 𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
 



Generalized Fuzzy Algorithmic Scheme (GFAS) 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For 𝑗 = 1 to 𝑚 

𝑢𝑖𝑗(𝑡) =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))

𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

 

o End {For-𝑗} 
 End {For-𝑖} 

 
𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
 

• Until a termination criterion is met. 

Fuzzy CFO clustering algorithms  

4 



Fuzzy CFO clustering algorithms  

5 

Remarks: 
• A candidate termination condition is 
    ||𝜽(𝑡) − 𝜽(𝑡 − 1)|| < 𝜀,  
 where || ∙ || is any vector norm and 𝜀 a user-defined constant. 
 
• GFAS may also be initialized from 𝑈(0) instead of 𝜽𝑗(0), 𝑗 = 1,… ,𝑚 and 

start iterations with computing 𝜽𝑗 first. 
 

• If a point 𝒙𝑖 coincides with one or more representatives, then it is shared 
arbitrarily among the clusters whose representatives coincide with 𝒙𝑖, s.t. 
the constraint that the summation of all 𝑢𝑖𝑗’s sum to 1. 

 
• The degree of membership of 𝒙𝑖 in 𝐶𝑗 cluster is related to the grade of 

membership of 𝒙𝑖 in rest 𝑚− 1 clusters. 
 

• If 𝑞 = 1, no fuzzy clustering is better than the best hard clustering in terms 
of 𝐽𝑞(𝛩, 𝑈). 

• If 𝑞 > 1, there are fuzzy clusterings with lower values of  𝐽𝑞(𝛩, 𝑈) than the 
best hard clustering. 
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Fuzzy Clustering – The point representatives case 
• Point representatives are used in the case of compact clusters. 
• Each 𝜽𝑗 consists of 𝑙 parameters. 
• Any dissimilarity measure 𝑑(𝒙𝑖, 𝜽𝑗) between two points can be used. 
• Common choices for 𝑑(𝒙𝑖, 𝜽𝑗) are 

 𝑑(𝒙𝑖, 𝜽𝑗)  =  (𝒙𝑖 −  𝜽𝑗)
𝑇𝐴(𝒙𝑖 −  𝜽𝑗), 

   where 𝐴 is symmetric and positive definite matrix.  
   It is: 

   
𝜕𝑑 𝒙𝑖,𝜽𝑗

𝜕𝜽𝑗
= 2𝐴 𝜽𝑗 − 𝒙𝑖  

   In this case the problem  

𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗 𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
 

   is solved as 
𝜕

𝜕𝜽𝑗
 𝑢𝑖𝑗

𝑞𝑑 𝒙𝑖 , 𝜽𝑗
𝑁

𝑖=1
= 0 ⟺ 2𝐴 𝑢𝑖𝑗

𝑞 𝜽𝑗 − 𝒙𝑖 = 0
𝑁

𝑖=1
⟺ 

𝜽𝑗 =
 𝑢𝑖𝑗

𝑞𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞𝑁

𝑖=1

 



GFAS – The point representative with squared Mahalanobis distance 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For 𝑗 = 1 to 𝑚 

𝑢𝑖𝑗(𝑡) =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))

𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

 

o End {For-𝑗} 
 End {For-𝑖} 

 
𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗(𝑡) =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
• Until a termination criterion is met. 
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Fuzzy Clustering – The point representatives case 

Remarks: 

• GFAS with the Euclidean distance (𝐴 = 𝐼) is also known as Fuzzy c-Means 
(FCM) or Fuzzy k-Means algorithm. 

 

• FCM converges to a stationary point of the cost function or it has at least 
one subsequence that converges to a stationary point. This point may be a 
local (or global) minimum or a saddle point. 
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Fuzzy Clustering – The point representatives case 

Example: 

Generate and plot the data set X7, which consists of N=216 2-dim. vectors. 
The first 100 stem from the normal distribution with mean m1=[0, 0]T , the 
next 100 stem from the normal distribution with mean m2=[13, 13]T . The 
other two groups of eight points each stem from the normal distribution with 
means m3=[0, -40]T and m4=[-30, -30]T, respectively. The covariance matrices 
for all distributions are all equal to the 2x2 identity matrix. Obviously, the last 
two groups of points may be considered as outliers. 

 

Apply the FCM on the data set X7 with m=2 clusters, plot the results and 
comment on the grade of memberships of the vectors to the two obtained 
clusters. 

 

Apply also the k-means and the PAM on X7 and compare the results obtained 
from the three algorithms. (SEE attached code) 
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Fuzzy Clustering – The quadric surfaces representatives case 

• Here the representatives are quadric surfaces (hyperellipsoids,   
 hyperparaboloids, etc.) 

• First issue: How to represent them? 

• General forms of an equation describing a quadric surface 𝑄: 

1. 𝒙𝑇𝐴𝒙 + 𝒃𝑇𝒙 + 𝑐 = 0, 
 where 𝐴 is an 𝑙 × 𝑙 symmetric matrix, 𝒃 is an 𝑙 × 1 vector, 𝑐 is a scalar and 
𝒙 = 𝑥1, … , 𝑥𝑙

𝑇. 

 For various choices of 𝐴, 𝒃 and 𝑐 we obtain hyperellipses, hyperparabolas 
and so on. 

 

2. 𝒒𝑇𝒑 = 0,  

 where 

 𝒒 = 𝑥1
2, 𝑥2
2, … , 𝑥𝑙

2, 𝑥1𝑥2, … , 𝑥𝑙−1𝑥𝑙 , 𝑥1, 𝑥2, … , 𝑥𝑙 , 1
𝑇  

 and  

 𝒑 = 𝑝1, 𝑝2, … , 𝑝𝑙 , 𝑝𝑙+1, … , 𝑝𝑟 , 𝑝𝑟+1, … , 𝑝𝑠
𝑇  

 with 𝑟 =
𝑙(𝑙+1)

2
 and 𝑠 = 𝑟 + 𝑙 + 1. 

NOTE: The above 
representations of 𝑄 are 
equivalent. 
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Fuzzy Clustering – The quadric surfaces representatives case 

• Second issue: “Definition of the distance of a point x to a quadric surface 𝑄” 

 

Types of distances 

 

– Perpendicular distance: 

   𝑑𝑝
2 𝒙, 𝑄 = 𝑚𝑖𝑛𝒛 𝒙 − 𝒛

2, 

subject to the constraint 

    𝒛𝑇𝐴𝒛 + 𝒃𝑇𝒛 + 𝑐 = 0 

 

In words, 𝑑𝑝
2 𝒙, 𝑄  is the distance between 𝒙 and the closest to 𝒙 point 

that lies in 𝑄. 

 

– (Squared) Algebraic distance: 
𝑑𝑝
2 𝒙, 𝑄 = 𝒙𝑇𝐴𝒙 + 𝒃𝑇𝒙 + 𝑐 2 ≡ 𝒑𝑇𝑀𝒑 

where 𝑀 = 𝒒𝒒𝑇. 

 

 

 

Prove it for the 𝑙 = 2 case. 
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Fuzzy Clustering – The quadric surfaces representatives case 

– Radial distance (only when 𝑄 is a hyperellipsoidal): 

For 𝑄 hyperellipsoidal, the representative equation can be written as 

 
𝒙 − 𝒄 𝑇𝐴 𝒙 − 𝒄 = 1 

 

where 𝒄 is the center of the ellipse and 𝐴 a positive definite symmetric 
matrix defining major axis, minor axis and orientation. 

Then the radial distance is defined as 
𝑑𝑟
2 𝒙, 𝑄 = 𝒙 − 𝒛 2 

subject to the constraints 
𝒛 − 𝒄 𝑇𝐴 𝒛 − 𝒄 = 1 

and 

    𝒛 − 𝒄 = 𝑎 𝒙 − 𝒄 . 

In words,  

the intersection point 𝒛 between the line segment 𝒙 − 𝒄 and 𝑄 is determined 

the 𝑑𝑟
2 𝒙, 𝑄   is defined as the squared Euclidean distance between 𝒙 and 𝒛. 
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Fuzzy Clustering – The quadric surfaces representatives case 

– (Squared) Normalized radial distance (only when 𝑄 is a hyperellipsoidal): 

           𝑑𝑛𝑟
2 𝒙, 𝑄 = 𝒙 − 𝒄 𝑇𝐴 𝒙 − 𝒄

1/2
− 1

2

 

– Example 3: 

• Consider two ellipses 𝑄 and 𝑄1, centered at 𝒄 = 0, 0 𝑇, with  

𝐴 = 𝑑𝑖𝑎𝑔(
1

4
, 1) and 𝐴1 = 𝑑𝑖𝑎𝑔

1

16
,
1

4
, respectively. 

• Let 𝑃 𝑥1, 𝑥2  be a point in 𝑄1 moving from 𝐴(4,0) to 𝐵(−4,0), with 𝑥2 > 0 

 

𝑑𝑟
2 𝒙, 𝑄 = 𝑑𝑛𝑟

2 𝒙, 𝑄 𝒙 − 𝒛 2 
𝒛: intersection of 𝒙 − 𝒄 and 𝑄. 
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Fuzzy Clustering – The quadric surfaces representatives case 

 

Remarks: 
•𝑑𝑎 and 𝑑𝑛𝑟 do not vary as 𝑃 moves. 
•𝑑𝑟 can be used as an approximation of 𝑑𝑝, when 𝑄 is a hyperellipsoid. 
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Fuzzy Clustering – The quadric surfaces representatives case 

• Third issue: Choice of algorithm. 

Recall that 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

• The algorithms in this case fall under the umbrella of GFAS. 

• They all share the same rule for updating the matrix 𝑈. 

• They differ on the choice of the distance between a point and the 
representative of a quadric surface. 

 they differ in the representatives updating part. 

• At each iteration, the updating of the representatives is carried out by 
setting the gradient of 𝐽𝑞 wrt them equal to 𝟎 (for fixed 𝒖𝒊𝒋’s) and solving 

(usually using iterative schemes) for the involved parameters. 



Generalized Fuzzy Algorithmic Scheme (GFAS) 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of 𝑢𝑖𝑗
′ 𝑠 

o For 𝑗 = 1 to 𝑚 

𝑢𝑖𝑗(𝑡) =
1

 
𝑑(𝒙𝑖 , 𝜽𝑗(𝑡))

𝑑(𝒙𝑖 , 𝜽𝑘(𝑡))

1
𝑞−1

𝑚
𝑘=1

 

o End {For-𝑗} 
 End {For-𝑖} 

 
𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗 𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
 

• Until a termination criterion is met. 

Fuzzy CFO clustering algorithms  

16 



Fuzzy CFO clustering algorithms  

17 

Fuzzy Clustering – The quadric surfaces representatives case 

• Third issue: Choice of algorithm. 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

Algorithms: 

• Fuzzy C Ellipsoidal Shells (FCES) Algorithm: 

- It adopts the radial distance between a vector and the surface representative 

- It recovers only ellipsoidal clusters. 

 

• Fuzzy C Quadric Shells (FCQS) Algorithm: 

- It adopts the algebraic distance between a vector and the surf. repr. in the 

form 𝑑𝑎
2 𝒙, 𝑄 = 𝒑𝑇𝑀𝒑, imposing constraints on vector 𝒑. 

- It recovers quadric clusters of any kind (ellipsoidal, hyperbolical, 
paraboloidal, pairs of lines).  
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Fuzzy Clustering – The quadric surfaces representatives case 

• Third issue: Choice of algorithm. 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

Algorithms: 

• Modified Fuzzy C Quadric Shells (MFCQS) Algorithm: 

- It adopts : 

 the perpendicular distance between a vector and the surface 
representative for the updating of matrix 𝑈 

 The algebraic distance between a vector and the surface representative 
for the updating of the cluster representatives. 

- It recovers quadric clusters of any kind (ellipsoidal, hyperbolical, 
paraboloidal, pairs of lines).  
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Fuzzy Clustering – The hyperplane surfaces representatives case 

• Here the representatives are hyperplanes (lines in the 2-D space, planes in 
the 3-D space etc.) 

• First issue: How to represent them? 

1. Via the equation of a hyperplane 𝐻: 
𝐻: 𝜽𝛵𝒙 + 𝜃0 = 0, 

where 𝜽 = [𝜃1, 𝜃2, … , 𝜃𝑙]
𝑻, 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑙]

𝑻. 

 

2. Via a center 𝒄𝑗 and a covariance matrix 𝛴𝑗, that is, 𝜽𝑗 = (𝒄𝑗, 𝛴𝑗). 

 

ΝΟΤΕ: Another choice for representing such clusters is by using line segments. 
(only for the 2-D case). 
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Fuzzy Clustering – The hyperplane surfaces representatives case 

• Second issue: “Definition of the distance of a point 𝒙 to a cluster” 

 

Types of distances 

 

– Distance of a point from a hyperplane: 

 

𝑑 𝒙,𝐻 =
|𝜽𝛵𝒙 + 𝜃0|

||𝜽||
 

– GK distance: 

 

𝑑𝐺𝐾
2 𝒙, 𝜽𝑗 = Σ𝑗

1/𝑙
𝒙 − 𝒄𝑗

𝑇
Σ𝑗
−1 𝒙 − 𝒄𝑗  
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Fuzzy Clustering – The hyperplane surfaces representatives case 

• Third issue: Choice of algorithm. 

Recall that 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

• The algorithms in this case fall under the umbrella of GFAS. 

• They all share the same rule for updating the matrix 𝑈. 

• They differ on the choice of the distance between a point and the 
representative of a plane cluster. 

 they differ in the representatives updating part. 

• At each iteration, the updating of the representatives is carried out by 
setting the gradient of 𝐽𝑞 wrt them equal to 𝟎 (for fixed 𝒖𝒊𝒋’s) and solving 

(usually using iterative schemes) for the involved parameters. 
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Fuzzy Clustering – The quadric surfaces representatives case 

• Third issue: Choice of algorithm. 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

Algorithms: 

• Fuzzy C varieties (FCV) Algorithm: 

- It adopts the classical distance between a point and a hyperplane. 

- Disadvantages:  

It tends to recover very long clusters and, thus, collinear distinct clusters 
may be merged to a single one. 

If, at a certain iteration, a hyperplane representative crosses two distinct 
clusters, there is no way to recover from this situation. 
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Fuzzy Clustering – The quadric surfaces representatives case 

• Third issue: Choice of algorithm. 

𝐽𝑞 𝑈,𝛩 =   𝑢𝑖𝑗
𝑞𝑚

𝑗=1
𝑁
𝑖=1 𝑑 𝒙𝑖 , 𝜽𝑗  s.t.  𝑢𝑖𝑗 = 1, 𝑖 = 1,… ,𝑁

𝑚
𝑗=1  

 

Algorithms: 

• Gustafson-Kessel (GK) algorithm: 

- It adopts the GK distance between a point and a cluster. 

- The parameter updating takes place via the following two equations 

𝒄𝑗 𝑡 =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)𝑁
𝑖=1 𝒙𝑖

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1

 

 

𝛴𝑗 𝑡 =
 𝑢𝑖𝑗

𝑞(𝑡 − 1)(𝒙𝑖−𝒄𝑗(𝑡))(𝒙𝑖−𝒄𝑗(𝑡))
𝑇𝑁

𝑖=1

 𝑢𝑖𝑗
𝑞(𝑡 − 1)𝑁

𝑖=1
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Fuzzy Clustering – The quadric surfaces representatives case 

• Gustafson-Kessel (GK) algorithm (cont.): 

• Example: 
Comments: 
In the first case, the clusters 
are well discriminated and the 
GK-algorithm recovers them 
correctly. 
 
In the second case, the clusters 
are not well discriminated and 
the GK-algorithm fails to 
recover them correctly. 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P1): Determine the position w* where the function J(w) achieves 
its minimum value. 
 
A simple method for solving (P1) is that of gradient descent. 
-Initialize 𝒘 = 𝒘(0) 
-𝑡 = 0 
-Repeat 

- 𝒘 𝑡 + 1 = 𝒘 𝑡 − 𝜇
𝜕𝐽 𝒘

𝜕𝒘
|𝒘=𝒘 𝑡  

        -  𝑡 = 𝑡 + 1 
-Until convergence 



Optimization theory – Basic concepts 

-An example: Let 𝒘 = [𝑤1, 𝑤2]
𝑇 and 𝐽(𝒘) = (𝑤1 − 1)

2 + (𝑤2 − 1)
2. Clearly, 

the minimum value of 𝐽(𝒘) is met at 𝒘∗ = [1, 1]
 𝑇. 

-It is 
 
-Applying the gradient descent algorithm 
for 𝒘(0) = [0, 5]

 𝑇, and 𝜇 = 0.1, we have 
 
 
 
 

-Thus, 𝒘(1) comes closer to 𝒘∗. 
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Optimization theory – Basic concepts 



Optimization theory – Basic concepts 

Remarks for gradient descent: 
-The value of 𝜇 should be chosen not too large, in order to avoid oscillations 
around the minimum and not too small in order to avoid unnecessary 
delays in the convergence 

-If 𝐽(𝒘) has more than one local minima, the gradient descent will converge 
(in general) to the one that is closest to 𝒘(0). 

-If the algorithm is trapped to a local minimum that correspond to a poor 
solution, the only way to escape from it is to re-initialize the algorithm from 
another initial position. 

-It can be proved that, under 
certain conditions, the algorithm 
converges asymptotically to a 
local minimum of 𝐽(𝒘). 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P2): Determine the position 𝒘∗ where the function 𝐽(𝒘) achieves 
its minimum value, under the constraint that 𝒘 satisfies some equality 
constraints. 
 
For linear equality constraints, the problem is stated as follows 
•Minimize 𝐽(𝒘) 
•Subject to the constraints 
𝐴𝒘 = 𝒃, where 𝐴 an 𝑚𝑥𝑙 
matrix and 𝒃 an 𝑚-dim. Vector. 

 
Solution: Lagrange multipliers 
Minimize 
- 𝐿(𝒘) = 𝐽(𝒘) + 𝝀Τ(𝐴𝒘 − 𝒃) 
- 𝝀 is an 𝑚-dim vector that is 
estimated through the 
constraints 𝐴𝒘 = 𝒃 



Optimization theory – Basic concepts 

Let 𝐽(𝒘) be a continuous function of 𝒘. 
Problem (P3): Determine the position 𝒘∗ where the function J(w) achieves 
its minimum value, under the constraint that w satisfies some inequality 
constraints. 
 
For linear inequality constraints, the problem is stated as follows 

•Minimize 𝐽(𝒘) 
•Subject to the constraints 
𝐴𝒘 ≥ 𝒃, where 𝐴 an 𝑚𝑥𝑙 
matrix and 𝒃 an 𝑚-dim. Vector. 


