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A two-threshold sequential scheme (TTSAS) 
• The formation of the clusters, as well as the assignment of vectors to clusters, 

is carried out concurrently (like BSAS and unlike MBSAS)  
• Two thresholds 𝛩1 and 𝛩2 (𝛩1 < 𝛩2) are employed. 
• The general idea is the following: 

 
If the distance 𝑑(𝒙, 𝐶) of 𝒙 from its closest cluster, 𝐶, is greater than 𝛩2 then: 
A new cluster represented by 𝒙 is created. 

Else if 𝑑(𝑥, 𝐶) < 𝛩1 then 
x is assigned to 𝐶. 

Else 
The decision is postponed to a later stage. 

End {if} 
 
• The unassigned vectors are presented iteratively to the algorithm until all of 

them are classified. 
Remarks: 
•In practice, a few passes (2) of the data set are required.  
•TTSAS is less sensitive to the order of data presentation, compared to BSAS. 
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The maxmin algorithm 
 
Let 𝑊 be the set of all points that have been chosen to define clusters up to 
the current iteration step. The definition of clusters is carried out as follows: 
• For each 𝒙𝑋 −𝑊 determine 𝑑𝒙 = 𝑚𝑖𝑛𝒛𝑊 𝑑(𝒙, 𝒛) 
• Determine 𝒚:  𝑑𝒚 = 𝑚𝑎𝑥𝑥∈𝑋−𝑊𝑑𝒙 

• If 𝑑𝒚 is greater than a prespecified threshold (𝛩) then 
 𝒚 defines a new cluster 

• else 
the cluster determination phase of the algorithm terminates. 

• End {if} 
 

After the definition of the clusters, each unassigned vector is assigned to its 
closest cluster. 
Remarks: 
•The maxmin algorithm is more computationally demanding than MBSAS. 
•Its result is independent of the order of data presentation to the algorithm. 
•It is expected to produce better clustering results than MBSAS. 
•Its performance may be degraded in the presence of noise. 

𝑊 may be initialized by (a) the two most distant points or 
(b) the mean of the data set. 
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Data 

𝑋 =  {𝒙𝑗 ∈  𝑅𝑙, 𝑗 = 1,… ,𝑁} 

Basic parameters - notation 

 Θ =  {𝜽𝑗, 𝑗 = 1,… ,𝑚} (𝜽𝑗 is the representative of cluster 𝐶𝑗). 

• Proximity between 𝒙𝑖 and 𝐶𝑗: 𝑑(𝒙𝑖, 𝜽𝑗) 
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Basic parameters – notation (cont.) 

 

   

 

• 𝑢𝑖𝑗  [0,1] quantifies the “relation” between 𝒙𝑖 and 𝐶𝑗. 

• “Large” (“small”) 𝑢𝑖𝑗 values indicate close (loose) relation   
 between 𝒙𝑖 and 𝐶𝑗.  

 
 
• 𝒖𝑖 : vector containing the 𝑢𝑖𝑗’s  of 𝒙𝑖 with all clusters. 

----- 
(*) Unless otherwise stated, the case where cluster representatives are used is 
considered. 

  𝑢𝑖𝑗 varies inversely proportional wrt 𝑑(𝒙𝑖, 𝜽𝑗). 

In the probabilistic case 
𝑢𝑖𝑗 stands for 𝑃(𝑗|𝒙𝑖) 

𝑈 =

𝑢11 𝑢12
𝑢21 𝑢22

⋯ 𝑢1𝑚
⋯ 𝑢2𝑚

⋮ ⋮
𝑢𝑁1 𝑢𝑁2

⋱ ⋮
⋯ 𝑢𝑁𝑚

≡

𝒖1
𝑇

𝒖2
𝑇

⋮
𝒖𝑁

𝑇
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Aim: 
 To place the representatives into dense in data regions (physical 

clusters). 

How this is achieved: 
 Via the minimization of the following type of cost function (wrt 𝛩, 𝑈) 

 s.t. some constraints on 𝑈, 𝐶(𝑈). 

Intuition: 
 For fixed 𝜽𝑗’s,  𝐽(𝛩, 𝑈) is a weighted sum of fixed distances 𝑑(𝒙𝑖, 𝜽𝑗). 

  Minimization of 𝐽(𝛩, 𝑈) wrt 𝑢𝑖𝑗 instructs for large weights (𝑢𝑖𝑗) for 
small distances 𝑑(𝒙𝑖, 𝜽𝑗). 

(𝑞 ≥ 1) 

 For fixed 𝑢𝑖𝑗’s, minimization of 𝐽(𝛩, 𝑈) wrt 𝜽𝑗’s leads 𝜽𝑗’s closer to 
their most relative data points. 

For the probabilistic 
case 𝑑(𝒙𝑖 , 𝜽𝑗) is 

embedded in the log-
likelihood of suitably 
defined  exponential 

distributions 

𝐽 𝛩, 𝑈 =   𝑢𝑖𝑗
𝑞𝑑 𝒙𝑖 , 𝜽𝑗

𝑚

𝑗=1

𝑁

𝑖=1
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Partition  
matrix 

Basic types of algorithms: Constraints on 𝑈 = [𝑢𝑖𝑗] 

Hard: 
•𝑢𝑖𝑗 ∈ {0, 1} 

 
•  𝑢𝑖𝑗

𝑚
𝑗=1 = 1 

Fuzzy: 
•𝑢𝑖𝑗 ∈  (0,1) 

 
•  𝑢𝑖𝑗

𝑚
𝑗=1 = 1 

Possibilistic (>1 choices): 
•𝑢𝑖𝑗 ∈ (0, 1] 

𝛩 = {𝜽𝑗, 𝑗 = 1,… ,𝑚} 

Point 

k-dim. lin. manifold 
Compact set in k-
dim. lin. manifold 

Line Plane Line segment Polygon .  .  . .  .  . 

k-dim. nonlinear 
manifold 

k-means 
PCM 

FCM FCL FCV 

APCH 

Membership matrix Compatibility matrix 
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“Array of CFO algorithms” 
𝐶(𝑈) 

𝜽
𝑗 

algorithm 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

There are several unexplored areas (groups of algorithms) in this array. 
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General cost function opt. (CFO) scheme: 
 Initialize 𝛩 = 𝛩 0  

 
 𝑡 = 0 

 
 Repeat 

 
• 𝑈(𝑡)  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑈  𝐽(𝛩(𝑡), 𝑈) , s.t. 𝐶(𝑈(𝑡)) 

 
• 𝑡 = 𝑡 + 1 

 
• 𝛩(𝑡)  =  𝑎𝑟𝑔𝑚𝑖𝑛Θ  𝐽(𝛩, 𝑈(𝑡 − 1)) 
 

 Until convergence 
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“Array of CFO algorithms” 

Hard 
Constr. 

Fuzzy 
Constr. 

Possib. 
Constr. 

.  .  . 

Point 
 

Line 
 

Hyperplane 
 

Hyperellipsoid 
 

.  .  . 
 

𝐶(𝑈) 

𝜽
𝑗 

c-means scheme 

c-lines scheme 

c-hyperellipsoids scheme 

c-hyperplanes scheme 
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CFO clustering algorithms: A loose presentation 

Constraints on 𝑈 

Type of 𝜽𝑗 

Type of 𝑑(𝒙𝑖, 𝜽𝑗) 

Hard 

Fuzzy 

Possibilistic 

Possibilistic + sparse 

.  
.  

. 

Po
in

t  

Li
n

e
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o

ld
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o

m
p
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t 
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t  
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e
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o
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E.g.:If 𝜽𝑗 is a point, 
𝑑(𝒙𝑖, 𝜽𝑗) may be 
•Sq. Euclidean 
•𝑙𝑝 norm 
•Mahalanobis Subspace clustering 
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Hard clustering algorithms: 
Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁  be a set of data points. 
 
Each vector belongs exclusively to a single cluster. 
 
Each cluster is represented by a representative 𝜽𝑗 (point repr., hyperplane…). 

Let 𝛩 = {𝜽1, 𝜽2, … , 𝜽𝑚} 
 

Define 𝑢𝑖𝑗 =  
1, 𝑖𝑓 𝒙𝑖 ∈ 𝐶𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            and 𝑈 = 𝑢𝑖𝑗 𝑁𝑥𝑚
 

 
It is            𝑢𝑖𝑗 = 1𝑚

𝑗=1 , 𝑖 = 1, … ,𝑁 

 
Define the cost function  

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 =   𝑑(𝒙𝑖 , 𝜽𝑗)

𝒙𝑖∈𝐶𝑗

𝑚

𝑗=1
 

When 𝐽 𝑈, 𝛩  is minimized? 
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𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 =   𝑑(𝒙𝑖 , 𝜽𝑗)

𝒙𝑖∈𝐶𝑗

𝑚

𝑗=1
 

 
For fixed 𝜽𝒋‘s: When, for each 𝒙𝑖, only its distance from its closest 

representative is taken into account. 
 

This suggests to define 𝑢𝑖𝑗 =  
1, 𝑖𝑓 𝑑(𝒙𝒊, 𝜽𝑗) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑(𝒙𝒊, 𝜽𝑞)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
For fixed 𝑢𝑖𝑗‘s: Solve the following 𝑚 independent problems 

𝑚𝑖𝑛𝜽𝑗  𝑑(𝒙𝑖 , 𝜽𝑗)
𝒙𝑖∈𝐶𝑗

≡ 𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗
𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗  

 
Thus, the Generalized Hard Algorithmic Scheme (GHAS) is given below 



Generalized Hard Algorithmic Scheme (GHAS) 
• Choose 𝜽𝑗(0) as initial estimates for 𝜽𝑗, 𝑗 = 1,… ,𝑚. 

• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of the partition 
o For 𝑗 = 1 to 𝑚 

                                    𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 𝑑(𝒙𝒊, 𝜽𝑗(𝑡)) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑(𝒙𝒊, 𝜽𝑞(𝑡))

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-𝑗} 
 End {For-𝑖} 

 
𝑡 = 𝑡 + 1 

 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽𝑗  𝑢𝑖𝑗(𝑡 − 1)
𝑁

𝑖=1
𝑑 𝒙𝑖 , 𝜽𝑗 , 𝑗 = 1, … ,𝑚 

 
 End {For-𝑗} 

 
• Until a termination criterion is met. 
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Generalized Hard Algorithmic Scheme (GHAS) 
Remarks: 
• In the update of each 𝜽𝑗, only the vectors 𝒙𝑖 for which 𝑢𝑖𝑗 𝑡 − 1 = 1 are 

used. 
 

• GHAS may terminate when either 
 ||𝛩(𝑡) − 𝛩(𝑡 − 1)|| < 𝜀  or 
 𝑈 remains unchanged for two successive iterations. 
 

• The two-step optimization procedure in GHAS does not necessarily lead to a 
local minimum of 𝐽(𝑈, 𝛩). 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
General comments 
• It is a special case of GHAS where 

Point representatives are used. 
The squared Euclidean distance is employed. 
 

• The cost function 𝐽 𝑈, 𝛩  becomes now 

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

• Applying GHAS in this case, it turns out that it converges to a minimum of 
the cost function. 
 

• Isodata recovers clusters that are as compact as possible. 
 

• For other choices of the distance (including the Euclidean), the algorithm 
converges but not necessarily to a minimum of 𝐽 𝑈, 𝛩 . 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
• Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, j=1,…,m. 
• 𝑡 = 0 
• Repeat 

 For 𝑖 = 1 to 𝑁  % Determination of the partition 
o For j=1 to 𝑚 

𝑢𝑖𝑗(𝑡) =  
1, 𝑖𝑓 ||𝒙𝒊 − 𝜽𝑗(𝑡)||

2 = 𝑚𝑖𝑛𝑞=1,…,𝑚||𝒙𝒊 − 𝜽𝑞(𝑡)||
2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

o End {For-𝑗} 
 End {For-𝑖} 
 𝑡 = 𝑡 + 1 
 For 𝑗 = 1 to 𝑚 % Parameter updating 

o Set 

𝜽𝑗 𝑡 =
 𝑢𝑖𝑗(𝑡 − 1)𝒙𝑖
𝑁
𝑖=1

 𝑢𝑖𝑗(𝑡 − 1) 𝑁
𝑖=1

, 𝑗 = 1,… ,𝑚 

 End {For-𝑗} 
• Until no change in 𝜽𝑗’ s occurs between two successive iterations 
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The k-means case. 
Choose arbitrary initial estimates 𝜽𝑗(0) for the 𝜽𝑗’ s, 𝑗 = 1,… ,𝑚. 
Repeat 

 For 𝑖 = 1 to 𝑁  Partition determination 
o Determine the closest representative, say 𝜽𝑗, for 𝒙𝑖 
o Set 𝑢𝑖𝑗 = 1 and 𝑢𝑖𝑞 = 0, 𝑞 = 1,… ,𝑚, 𝑞𝑗. 

 End {For} 
 For 𝑗 = 1 to 𝑚  Parameter updating 

o Determine 𝜽𝑗 as the mean of the vectors 𝒙𝑖𝑋 with 𝑢𝑖𝑗 = 1. 
 End {For} 

Until no change in 𝜽j’ s occurs between two successive iterations 
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It is a batch, single clustering algorithm 
It is a hard clustering algorithm that uses point representatives 𝜽𝑗 for the 
clusters 𝐶𝑗. 
It results from the optimization of the following cost function 

𝐽 𝑈, 𝛩 =   𝑢𝑖𝑗
𝑚

𝑗=1

𝑁

𝑖=1
| 𝒙𝑖 − 𝜽𝑗 |2 

    where 𝑈 = [𝑢𝑖𝑗] and 𝛩 = {𝜽1, … , 𝜽𝑚} 
It is of iterative nature. 
Initially it places the representatives 𝜽𝑗  at random positions in space. 
It gradually moves the representatives towards the centers of the true 
clusters. 
In practice, its time complexity is 𝑂(𝑞 ∙ 𝑚 ∙ 𝑁) (𝑞 is the number of iterations). 
It requires the number of clusters 𝑚 to be known a priori. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
Example 1: (a) Consider three two-dimensional normal distributions with mean 
values: 
                              𝝁1 = 1,1 𝑇,  𝝁2 = 3.5,3.5 𝑇,  𝝁3 = 6,1 𝑇  
and respective covariance matrices 

𝛴1 =
1 −0.3

−0.3 1
, 𝛴2 =

1 0.3
0.3 1

, 𝛴3 =
1 0.7
0.7 1

 

 
Generate a group of 100 vectors from each distribution. These form the data 
set 𝑋. 
 Confusion matrix for the 

results of k-means. 

Α =
94 3 3
0 100 0
9 0 91
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Example 2: (i) Consider two 2-dimensional Gaussian distributions 𝑁(𝝁1, 𝛴1), 
𝑁(𝝁2, 𝛴2), with 𝝁1 = [1, 1]𝑇, 𝝁2 = [8, 1]𝑇, Σ1 = 1.5𝐼 and Σ2 = 𝐼. (ii) Generate 
300 points from the 1st distribution and 10 points from the 2nd distribution. (iii) 
Set 𝑚 = 2 and initialize randomly 𝜽𝑗’s (𝜽𝑗𝝁𝑗). 
 
 After convergence the large group has been split into two clusters. 
 Its right part has been assigned to the same cluster with the points of the 

small group (see figure below). 
 This indicates that k-means cannot deal accurately with clusters having 

significantly different sizes. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or k-Means or c-Means algorithm 
Remarks: 
• 𝑘-means recovers compact clusters. 
• The computational complexity of the 𝑘-means is 𝑂(𝑁𝑚𝑞), where q is the 

number of iterations required for convergence. In practice, 𝑚 and 𝑞 are 
significantly less than 𝑁, thus, 𝑘-means becomes eligible for processing 
large data sets. 

•  Sequential (online) versions of the 𝑘-means, where the updating of the 
representatives takes place immediately after the identification of the 
representative that lies closer to the current input vector 𝒙𝑖, have also been 
proposed. 

• A variant of the 𝑘-means results if the number of vectors in each cluster is 
constrained a priori. 

 
Further remarks: 
Some drawbacks of the original 𝑘-means accompanied with the variants of the 
𝑘-means that deal with them are discussed next. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 1: Different initial partitions may lead 𝑘-means to produces 
    different final clusterings, each one corresponding to a different local 

minimum of the cost function. 
Strategies for facing drawback 1: 
• Single run methods 

Use a sequential algorithm (discussed previously) to produce initial 
estimates for 𝜽𝑗’s. 
Partition randomly the data set into m subsets and use their means as 

initial estimates for 𝜽𝑗’ s. 
• Multiple run methods 

Create different partitions of 𝑋, run 𝑘-means for each one of them and 
select the best result (associated with the minimum cost function value).  

• Utilization of tools from stochastic optimization techniques (simulated 
annealing, genetic algorithms etc). 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 2: Knowledge of the number of clusters 𝑚 is required a priori. 
 
Strategies for facing drawback 2: 
• Employ splitting, merging and/or discarding operations of the clusters 

resulting from 𝑘-means. 
 

• Estimate m as follows: 
Run a sequential algorithm many times for different thresholds of 

dissimilarity 𝛩. 
Plot 𝛩 versus the number of clusters and identify the largest plateau in 

the graph and set 𝑚 equal to the value that corresponds to this plateau. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 2: Knowledge of the number of clusters 𝑚 is required a priori. 
Strategies for facing drawback 2 (cont.): 
• Estimate 𝑚 as follows: 

Run the 𝒌-means algorithm for different values of the number of clusters 
𝑚. 
  For each of the resulting clusterings compute the value of 𝐽. 
Plot 𝐽 versus the number of clusters 𝑚 and identify the most significant 

knee in the graph. Its position indicates the number of physical clusters. 

Clustered data 

Non-clustered 
data 
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Generalized Hard Algorithmic Scheme (GHAS) 
The Isodata or 𝑘-Means or 𝑐-Means algorithm 
Drawback 3: 𝑘-means is sensitive to outliers and noise.  
 
Strategies for facing drawback 3: 
• Discard all “small” clusters (they are likely to be formed by outliers). 
• Use a 𝑘-medoids algorithm (see below), where a cluster is represented by 

one of its points. 
 
Drawback 4: 𝑘-means is not suitable for data with nominal (categorical) 
coordinates.  
 
Strategies for facing drawback 4: 
• Use a 𝑘-medoids algorithm. 
 


