Clustering algorithms

Konstantinos Koutroumbas

Unit 4

- Sequential Clustering algorithms (TTSAS, Maxmin)
- Hard CFO clustering algorithms (k-means)

Sequential clustering algorithms

A two-threshold sequential scheme (TTSAS)

- The formation of the clusters, as well as the assignment of vectors to clusters, is carried out concurrently (like BSAS and unlike MBSAS)
- Two thresholds Θ_1 and Θ_2 ($\Theta_1 < \Theta_2$) are **employed**.
- The general idea is the following:

If the distance d(x, C) of x from its closest cluster, C, is greater than Θ_2 then:

-A new cluster represented by x is created.

Else if $d(x, C) < \Theta_1$ then -x is assigned to C.

Else

-The decision is **postponed** to a later stage.

• <u>The unassigned vectors are presented iteratively to the algorithm until all of them are classified.</u>

Remarks:

End {if}

- •In practice, a few passes (≥ 2) of the data set are required.
- •TTSAS is less sensitive to the order of data presentation, compared to BSAS.

Sequential clustering algorithms

The maxmin algorithm

W may be initialized by (a) the two most distant points or(b) the mean of the data set.

Let W be the set of all points that have been chosen to define clusters up to the current iteration step. The <u>definition of clusters</u> is carried out as follows:

- For each $x \in X W$ determine $d_x = \min_{z \in W} d(x, z)$
- Determine y: $d_y = max_{x \in X W} d_x$
- If d_y is greater than a prespecified threshold (Θ) then
 - y defines a new cluster
- else
 - -the cluster determination phase of the algorithm terminates.
- End {if}

After the definition of the clusters, each unassigned vector is assigned to its closest cluster.

Remarks:

- •The maxmin algorithm is more computationally demanding than MBSAS.
- •Its result is independent of the order of data presentation to the algorithm.
- •It is expected to produce better clustering results than MBSAS.
- •Its performance may be degraded in the presence of noise.

Data

$$X = \{x_j \in R^l, j = 1, ..., N\}$$

Basic parameters - notation

- $\checkmark \quad \Theta = \{\theta_j, j = 1, ..., m\}$ (θ_j is the representative of cluster C_j).
 - Proximity between x_i and C_i : $d(x_i, \theta_i)$

$$V \qquad U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1m} \\ u_{21} & u_{22} & \cdots & u_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ u_{N1} & u_{N2} & \cdots & u_{Nm} \end{bmatrix} \equiv \begin{bmatrix} \boldsymbol{u}_1^T \\ \boldsymbol{u}_2^T \\ \vdots \\ \boldsymbol{u}_N^T \end{bmatrix}$$

In the probabilistic case u_{ij} stands for $P(j|x_i)$

- $u_{ij} \in [0,1]$ quantifies the "relation" between x_i and C_j .
- "Large" ("small") u_{ij} values indicate close (loose) relation between x_i and C_j .

 $\Rightarrow u_{ij}$ varies inversely proportional wrt $d(x_i, \theta_j)$.

• u_i : vector containing the u_{ij} 's of x_i with all clusters.

(*) Unless otherwise stated, the case where **cluster representatives** are used is considered.

Aim:

✓ To place the representatives into dense in data regions (physical clusters).

How this is achieved:

 \checkmark Via the minimization of the following type of cost function (wrt Θ , U)

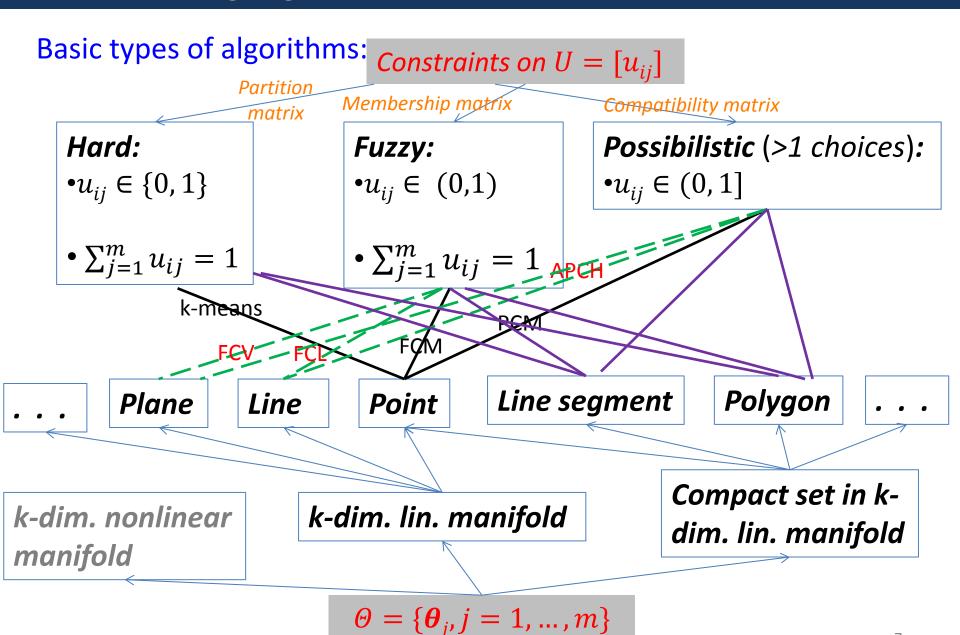
$$J(\Theta, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij}^{q} d(\mathbf{x}_{i}, \boldsymbol{\theta}_{j}) (q \ge 1)$$

s.t. some **constraints** on U, C(U).

For the probabilistic case $d(x_i, \theta_j)$ is embedded in the log-likelihood of suitably defined exponential distributions

Intuition:

- \checkmark For **fixed** θ_i 's, $J(\theta, U)$ is a weighted sum of **fixed** distances $d(x_i, \theta_i)$.
- \Rightarrow Minimization of $J(\Theta, U)$ wrt u_{ij} instructs for large weights (u_{ij}) for small distances $d(x_i, \theta_i)$.
- For **fixed** u_{ij} 's, **minimization** of $J(\Theta, U)$ wrt θ_j 's leads θ_j 's closer to their most relative data points.



"Array of CFO algorithms" algorithm -C(U)Hard Possib, Fuzzy Constr. Constr. Constr. **Point** Line Hyperplane Hyperellipsoid

There are **several** unexplored areas (groups of algorithms) in this array.

General cost function opt. (CFO) scheme:

- ✓ Initialize $\Theta = \Theta(0)$
- $\checkmark t = 0$
- ✓ Repeat
 - $U(t) = argmin_U J(\Theta(t), U)$, s.t. C(U(t))
 - t = t + 1
 - $\Theta(t) = argmin_{\Theta} J(\Theta, U(t-1))$
- ✓ Until convergence

"Array of CFO algorithms"

C(U)

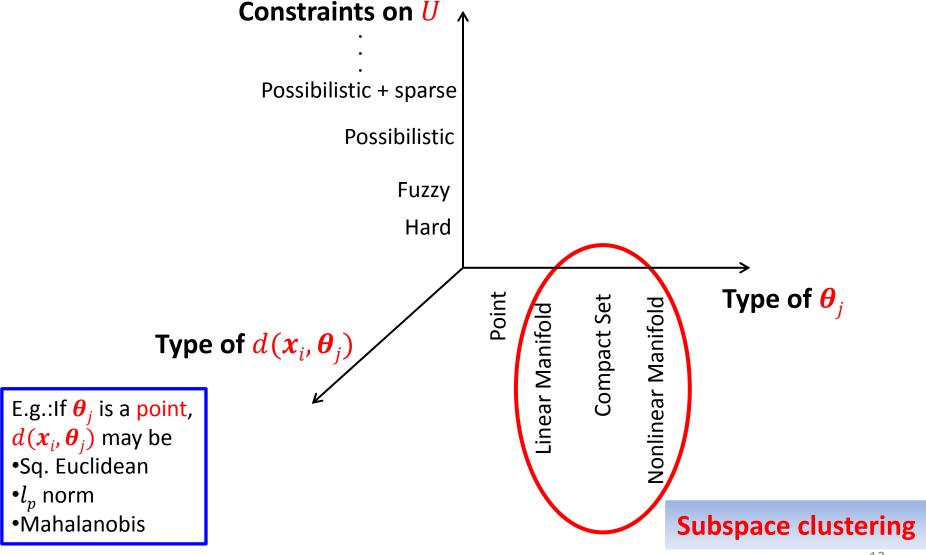
	Hard Constr.	Fuzzy Constr.	Possib. Constr.	
Point	Je	me	me	
Line	scheme	cher	che	
Hyperplane	FO S	50 s	FO	
Hyperellipsoid		Ó	sib. (
	I	Fuzzy	Possib	

"Array of CFO algorithms"

C(U)

		Hard Constr.	Fuzzy Constr.	Possib. Constr.	• • •
Poin	t	c-mea	ins sch	eme	
Line		c-line:	s scher	ne (
Нур	erplane	c-hyp	erplan	es sche	me
Нур	erellipsoid	c-hyp	erellips	oids so	heme

CFO clustering algorithms: A loose presentation



"Array of CFO algorithms"

C(U)

	Hard Constr.	Fuzzy Constr.	Possib. Constr.	
Point	Je			
Line	scheme		200	
Hyperplane	FO S	3		
Hyperellipsoid	<u>5</u>			
	T			

Cost function optimization (CFO) algorithms

Hard clustering algorithms:

Let $X = \{x_1, x_2, ..., x_N\}$ be a set of data points.

Each vector belongs exclusively to a single cluster.

Each cluster is **represented** by a representative θ_j (point repr., hyperplane...). Let $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$

Define
$$u_{ij} = \begin{cases} 1, & if \ x_i \in C_j \\ 0, & otherwise \end{cases}$$
 and $U = [u_{ij}]_{Nxm}$

It is
$$\sum_{j=1}^m u_{ij} = 1$$
 , $i = 1, ..., N$

Define the cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_i, \boldsymbol{\theta}_j) = \sum_{j=1}^{m} \sum_{\mathbf{x}_i \in C_i} d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

When $J(U,\Theta)$ is **minimized**?

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} d(\mathbf{x}_i, \boldsymbol{\theta}_j) = \sum_{j=1}^{m} \sum_{\mathbf{x}_i \in C_j} d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

For <u>fixed θ_j 's:</u> When, <u>for each x_i </u>, **only** <u>its distance from its closest</u> <u>representative is taken into account</u>.

This suggests to define
$$u_{ij} = \begin{cases} 1, & if \ d(\mathbf{x_i}, \boldsymbol{\theta_j}) = min_{q=1,\dots,m} d(\mathbf{x_i}, \boldsymbol{\theta_q}) \\ 0, & otherwise \end{cases}$$

For <u>fixed u_{ij} 's:</u> Solve the following <u>m</u> independent problems

$$min_{\theta_j} \sum_{\mathbf{x}_i \in C_j} d(\mathbf{x}_i, \boldsymbol{\theta}_j) \equiv min_{\theta_j} \sum_{i=1}^N u_{ij} d(\mathbf{x}_i, \boldsymbol{\theta}_j)$$

Thus, the Generalized Hard Algorithmic Scheme (GHAS) is given below

Generalized Hard Algorithmic Scheme (GHAS)

- Choose $\theta_i(0)$ as initial estimates for θ_i , i=1,...,m.
- t = 0
- Repeat

$$-t = t + 1$$

```
– For j=1 to m % Parameter updating o Set  \pmb{\theta}_j(t) = argmin_{\pmb{\theta}_j} \sum\nolimits_{i=1}^N u_{ij}(t-1) \, d \big(\pmb{x}_i, \pmb{\theta}_j\big), j=1,...,m  – End {For-j}
```

Until a termination criterion is met.

Generalized Hard Algorithmic Scheme (GHAS)

Remarks:

- In the update of each θ_j , only the vectors x_i for which $u_{ij}(t-1)=1$ are used.
- GHAS may terminate when either
 - $-||\theta(t) \theta(t-1)|| < \varepsilon$ or
 - U remains unchanged for two successive iterations.
- The two-step optimization procedure in GHAS does not necessarily lead to a local minimum of $J(U, \Theta)$.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

General comments

- It is a special case of GHAS where
 - -Point representatives are used.
 - -The **squared** Euclidean distance is **employed**.
- The cost function $J(U,\Theta)$ becomes now

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||\mathbf{x}_i - \mathbf{\theta}_j||^2$$

- Applying GHAS in this case, it turns out that it converges to a minimum of the cost function.
- Isodata recovers clusters that are as compact as possible.
- For other choices of the distance (including the Euclidean), the algorithm converges but not necessarily to a minimum of $J(U, \Theta)$.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

- Choose arbitrary initial estimates $\theta_i(0)$ for the θ_i 's, j=1,...,m.
- t = 0
- Repeat

```
- For i = 1 to N % Determination of the partition
       o For j=1 to m
    u_{ij}(t) = \begin{cases} 1, & \text{if } ||\boldsymbol{x}_i - \boldsymbol{\theta}_j(t)||^2 = \min_{q=1,\dots,m} ||\boldsymbol{x}_i - \boldsymbol{\theta}_q(t)||^2 \\ 0, & \text{otherwise} \end{cases}
       o End {For-j}
- End \{For-i\}
```

-t = t + 1

- For
$$j=1$$
 to m % Parameter updating o Set
$$\pmb{\theta}_j(t) = \frac{\sum_{i=1}^N u_{ij}(t-1)\pmb{x}_i}{\sum_{i=1}^N u_{ij}(t-1)}, j=1,\dots,m$$
 - End {For- j }

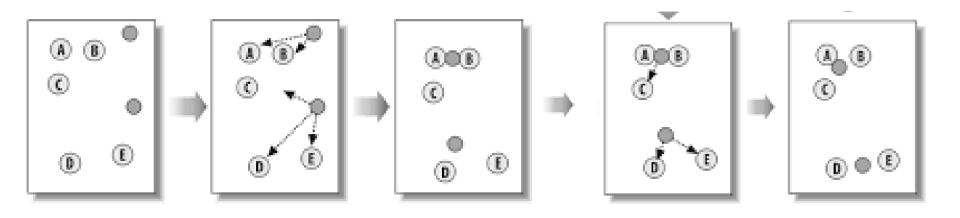
Until no change in θ_i 's occurs between two successive iterations

The k-means case.

Choose arbitrary initial estimates $\theta_i(0)$ for the θ_i' s, j=1,...,m. Repeat

- For i = 1 to N Partition determination o Determine the closest representative, say $oldsymbol{ heta}_i$, for $oldsymbol{x}_i$ o Set $u_{ij}=1$ and $u_{iq}=0$, $q=1,\ldots,m$, $q\neq j$.
- End {For}
- For j = 1 to m Parameter updating
 - o Determine θ_i as the mean of the vectors $\mathbf{x}_i \in X$ with $u_{ij} = 1$.
- End {For}

Until no change in θ_i s occurs between two successive iterations



Remarks

- > t is a batch, single clustering algorithm
- \bowtie t is a hard clustering algorithm that uses point representatives θ_j for the clusters C_i .
- >t results from the optimization of the following cost function

$$J(U,\Theta) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} ||x_i - \theta_j||^2$$

where $U = [u_{ij}]$ and $\Theta = \{\boldsymbol{\theta}_1, ..., \boldsymbol{\theta}_m\}$

- >t is of iterative nature.
- \bowtie nitially it places the representatives θ_i at random positions in space.
- It gradually moves the representatives towards the centers of the true clusters.
- \bowtie t requires the number of clusters m to be known a priori.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Example 1: (a) Consider three two-dimensional normal distributions with mean values:

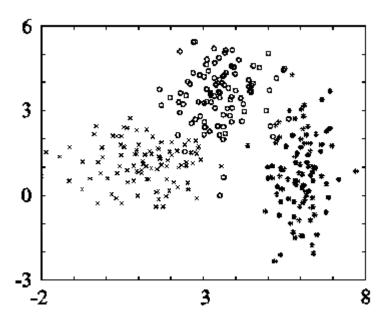
$$\mu_1 = [1,1]^T$$
, $\mu_2 = [3.5,3.5]^T$, $\mu_3 = [6,1]^T$

and respective covariance matrices

$$\Sigma_1 = \begin{bmatrix} 1 & -0.3 \\ -0.3 & 1 \end{bmatrix}, \Sigma_2 = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}, \Sigma_3 = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$$

Generate a group of 100 vectors from each distribution. These form the data

set X.



Confusion matrix for the results of k-means.

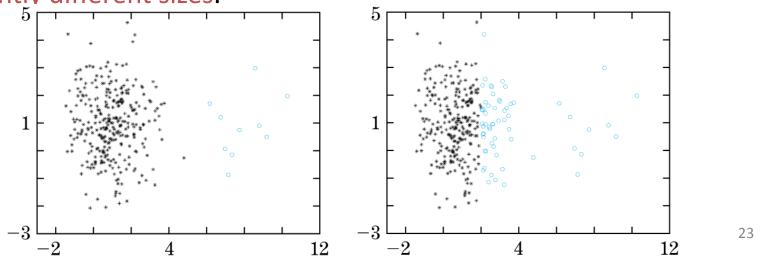
$$A = \begin{bmatrix} 94 & 3 & 3 \\ 0 & 100 & 0 \\ 9 & 0 & 91 \end{bmatrix}$$

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Example 2: (i) Consider two 2-dimensional Gaussian distributions $N(\mu_1, \Sigma_1)$, $N(\mu_2, \Sigma_2)$, with $\mu_1 = [1, 1]^T$, $\mu_2 = [8, 1]^T$, $\Sigma_1 = 1.5I$ and $\Sigma_2 = I$. (ii) Generate 300 points from the 1st distribution and 10 points from the 2nd distribution. (iii) Set m = 2 and initialize randomly θ_i 's ($\theta_i = \mu_i$).

- After convergence <u>the large group has been split into two clusters</u>.
- Its right part has been assigned to the same cluster with the points of the small group (see figure below).
- This indicates that k-means cannot deal accurately with clusters having significantly different sizes.



Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Remarks:

- k-means recovers compact clusters.
- The computational complexity of the k-means is O(Nmq), where q is the number of iterations required for convergence. In practice, m and q are significantly less than N, thus, k-means becomes eligible for processing large data sets.
- Sequential (online) versions of the k-means, where the updating of the representatives takes place immediately after the identification of the representative that lies closer to the current input vector \mathbf{x}_i , have also been proposed.
- A variant of the k-means results if the number of vectors in each cluster is constrained a priori.

Further remarks:

Some drawbacks of the original k-means accompanied with the variants of the k-means that deal with them are discussed next.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Drawback 1: Different initial partitions may lead k-means to produces different final clusterings, each one corresponding to a different local minimum of the cost function.

Strategies for facing drawback 1:

- Single run methods
 - –Use a sequential algorithm (discussed previously) to produce initial estimates for θ_i 's.
 - -Partition randomly the data set into m subsets and use their means as initial estimates for $\boldsymbol{\theta}_i$'s.
- Multiple run methods
 - -Create different partitions of X, run k-means for each one of them and select the best result (associated with the minimum cost function value).
- <u>Utilization of tools from stochastic optimization techniques</u> (simulated annealing, genetic algorithms etc).

<u>Generalized Hard Algorithmic Scheme (GHAS)</u>

The Isodata or k-Means or c-Means algorithm

Drawback 2: Knowledge of the number of clusters m is required a priori.

Strategies for facing drawback 2:

- Employ splitting, merging and/or discarding operations of the clusters resulting from k-means.
- Estimate *m* as follows:
 - -Run a **sequential** algorithm many times for different thresholds of dissimilarity Θ .
 - -Plot Θ versus the number of clusters and identify the largest plateau in the graph and set m equal to the value that corresponds to this plateau.

Generalized Hard Algorithmic Scheme (GHAS)

The Isodata or k-Means or c-Means algorithm

Drawback 2: Knowledge of the number of clusters m is required a priori.

Strategies for facing drawback 2 (cont.):

- Estimate *m* as follows:
 - -Run the k-means algorithm for different values of the number of clusters m.
 - For each of the resulting clusterings compute the value of J.
 - -**Plot** J **versus** the number of clusters m and identify the most significant knee in the graph. Its position indicates the number of physical clusters.

<u>Generalized Hard Algorithmic Scheme (GHAS)</u>

The Isodata or k-Means or c-Means algorithm

Drawback 3: k-means is sensitive to outliers and noise.

Strategies for facing drawback 3:

- Discard all "small" clusters (they are likely to be formed by outliers).
- Use a k-medoids algorithm (see below), where a cluster is represented by one of its points.

Drawback 4: *k*-means is not suitable for data with nominal (categorical) coordinates.

Strategies for facing drawback 4:

Use a k-medoids algorithm.