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Proximity measures: Definitions

(A) Between vectors

(1) Dissimilarity measure (between vectors of X) is a function

d: XXX >R
with the following properties
1. 3dy eR:0 < dy <d(x,y) < +oo,Vx,y € X

2. d(x,x) =do,Vx€X Examples: Euclidean distance,

Manhattan dist tc.
3. d(x,y) — d(y’x)’ vx,y EX dnNnattan distance etc

If in addition:
4 dx,y)=dy=x=y

5 d(x,z) <d(x,y) +d(y,z),Vx,y,z € X (triangular inequality)

d is called metric dissimilarity measure. ,



Proximity measures : Definitions

(A) Between vectors

(2) Similarity measure (between vectors of X) is a function

Examples: inner product,

, _ _S:X XX >R Tanimoto distance etc.
with the following properties

1. 3ds, € R: s(x,y) < sy < +oo,Vx,y € X

NOTE:

Similarity measures and
dissimilarity measures
are also referred as
proximity measures.

2. s(x,x) =s53,Vx€EX

3 s(x,y) =s(y,x),Vx,y € X

If in addition:
4. s(x,y) =so=>x=y NOTATION:
e Similarity measure: s
5 < ——— Vx,y,Zz€ X dissimilarity measure: d

s(xz) — s(xy)  s(y2z)’ .
* proximity measures: ©

s is called metric similarity measure. ’



Proximity measures : Definitions

Exercise:

Consider the case where the elements of X are scalars.
Which of the following is

(a) a dissimilarity measure,

(b) a metric dissimilarity measure?

1. di(x,y) =|x—yl

2. d,(x,y) = |x% — y?|
3. ds(x,y) = cos(x —y)

4. du(x,y) =sin(|x — y|)



Proximity measures: Definitions

(B) Between sets

letD; c X, i=1,..,k,andU = {D4, ..., Dy }.
A proximity measure (similarity or dissimilarity) g on U is a function
:UXU->R
For dissimilarity measure the following properties should hold
1. 3dy €R:0 < dy <d(D;,Dj) < +,VD;,D; € X

2. d(Di,Di) — dO,VDi e X
3. d(D;,D;) =d(D;,D;),vD;, D; € X

If in addition:
4. d(D;,D;) =dy < D; = D;

5. d(D;,Dy) < d(D;,D;) + d(Dj, D), VD;

d is called metric dissimilarity measure.

Question: What is the
definition when § stands for
a similarity measure?

D, Dy € X



Proximity measures: Definitions

(B) Between sets
NOTE: The definition of the proximity functions between sets passes through

the definition of proximity functions between a point and a set.

Roadmap for the next few slides:

Proximity functions between a point and a set
- Nonparametric case

- Parametric case
» Point representatives
* Mean vector
* Mean center
* Median center
» Hyperplane representatives
» Hypersphere representatives

> ..



Proximity measures: Definitions

Proximity functions between a point and a set
- Nonparametric case




Proximity functions between a point and a set

Remark: Having in mind that a cluster is actually a set C, a proximity function

between a point x and a set C actually quantifies the resemblance/relation of

x with the cluster C.

let X = {x41,...,xy}andx € X,C c X

Definitions of @(x, C):

(a) All points of C contribute to the definition of 2(x, C) (nonparametric repr.).
dps  (x,C) = maxyecd(x,y)

- Max proximity function sPS (X, C) = maxyecs(x,y)

0P 10, €) = MAXyecfo(x,Y)

dps . (x,C) = miny,ecd(x,y)

- Min proximity function sPS i (%, C) = minyecs(x,y)

SOpSmin (xr C) — minyECgo(x' y)

- Average proximity function

P g (X C) = —z £ Y)F” ngisthe

yec cardinality of C.




Proximity measures: Definitions

Proximity functions between a point and a set

- Parametric case
» Point representatives
* Mean vector
* Mean center
* Median center



Proximity functions between a point and a set

Definitions of @(x, C) (cont.):
(b) A representative of C, 1, contributes to the definition of o (x, C)
(parametric repr.).

p(x,0) = p(x,7c)

In this case
Typical point representatives are: ne is the
- The mean vector cardinality of C.

- The mean center d: dissimilarity
m. € C: d < 2yec , C measure.

- The median center
Myeq € C:med(d(Myeq, Y)Yy €C) <med(d(z,y)|lye(C),VzeC

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in
certain applications (e.g., object identification using clustering techniques)’



Proximity functions between a point and a set

Definitions of @(x, C) (cont.):
(b) A representative of C, 1, contributes to the definition of @ (x, C).

In this case © o (x, C) = p(x, 1)

Exercise 5: Let C = {x{, X5, X3, X4, Xc}, where x; = [1,1]F, x, = [3,1]7 , x5 =

11,217, x, = [1,3]7, x5 = [3,3]". All points lie in the discrete space

{0,1,2, ..., 6}%. Use the Euclidean distance to measure the dissimilarity

between two vectors in C.

(a) Determine the mean vector, the mean center and the median center of C.

(b) Compute the distance of point x = [6,4]" from C using the above defined
representatives (where it is valid).




Proximity measures: Definitions

Proximity functions between a point and a set

- Parametric case

» Hyperplane representatives

» Hypersphere representatives
> ..
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Proximity functions between a point and a set

Definitions of @(x, C) (cont.):
(b) A representative of C, 1, contributes to the definition of @ (x, C).

In this case © o (x, C) = p(x, 1)

Linear-shaped clusters:

* Such clusters occur e.g., in computer vision applications.

* In this case, a hyperplane is a better representative of such clusters
* Equation of a hyperplane H:

l
2_ aixj+ap=a"x+ay=0
J=1

where x = [xq, x5, ..., x;]%, a = [aq, ay, ..., a;]" is the direction vector of H
and a is its offset.

* If d(x, z) is the Euclidean distance, it is
la’x + a,|

d(x,H) =

||al]



Proximity functions between a point and a set

Definitions of @(x, C) (cont.):
(b) A representative of C, 1, contributes to the definition of @ (x, C).

In this case © o (x, C) = p(x, 1)

Hyperspherical clusters:
* Such clusters occur e.g., in computer vision applications.
* In this case, a hypersphere is a better representative of such clusters
* Equation of a hypersphere Q:
(x—o)T(x—¢c) =r?
where x = [xq, x5, ..., x;]%, ¢ = [cq, Cp, ..., ¢;]F is the center of Q and 7 is its
radius.

ff'[-l'p Q}

* Distance of a point x from Q: d(x, Q) = min,eod(x,2) / Q
* For Euclidean distance between two points, d(x, Q) has
a geometric insight. d(y, Q)

* However, other non-geometric alternatives have also been proposed. ..



Proximity functions between two sets

Remark: Having in mind that a cluster is actually a set C, a proximity function
between two sets actually quantifies the resemblance/relation between two

clusters.
Let X = {xy,...,xy}and D;, D; ¢ X withn; = |D;|, n; = |D;].
Definitions of go(Dl, ])
(a) All points of each set contribute to the definition of ¢(D;, D;).
1, Dj ) = MQXxep;,yeD; a(x,y)
- Max proximity function Sssmax(Dl’ i) = Maxeep, yep (X, ¥)

max(Dl' ]) maxxED YED

- Min proximity function

- Average proximity function




Proximity functions between two sets

Definitions of go(Dl-, Dj) (cont.):
(b) Each set D; is represented by a point representative m;.
- Mean proximity function
05 ..(Di,D;) = p(m;, m;)
dssmean(Di'Df) = d(mi'mj)
Sssmean(Di'Dj) = S(mi’mf)

NOTE: Proximity functions between a vector x and a set C may be derived
from the above functions if we set D; = {x}.
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Proximity measures between vectors

In the sequel we consider the cases:

(A) Real-valued vectors — dissimilarity measures (DMs

(B) Real-valued vectors — similarity measures (SMs)

(C) Discrete-valued vectors — similarity-dissimilarity measures

(D) Mixed-valued vectors — dissimilarity and similarity measures

NOTE: Some of the measures below may seem “weird”. However, they have
been tailored for certain types of applications.

17



Proximity measures between vectors

(A) Real-valued vectors — dissimilarity measures (DMs)

* Weighted [,, metric DMs

z Yo
dy(x,y) = (Z._lwilxi - Yi|p>

Interesting instances are obtained for:
p=1-2>d(xy) = %=1 w; |x; — y;| (I or Manhattan or city block dist.)

p=22d,(x,y) = \/Z%zl w;(x; — v;)? (I, or Euclidean distance)

p =0 2> dy(x,y) = maxj=1__W;lx; — ¥l (lcc or maximum distance)

NOTES:
v' For w; = 1, we obtain the unweighted versions of the [, metrics.

v Itholds:do (x,y) < d,(x,y) <d,(x,y) 18



Proximity measures between vectors

(A) Real-valued vectors — dissimilarity measures (DMs)

* Mahalanobis distance

d(x,y) = (x—y)TB(x —y)

*Features may take positive
and/or negative values
*Normalization per feature:

B is symmetric, positive definite matrix

* Other measures
B |x; —
—dg(x,y) = —logio|1—~
=1 |b

where b; and @; are the maximum and the minimum values of the iI-th
feature, among the vectors of X (dependence on the current data set)

do(x,y) = 1zl %= i)’
Y= T Lo\ + i) O

*Featlires may take only
non-negative values
*Normalization per feature:

XitYi




Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

* Inner product

l
Sinner (X, y) = xTy = z 1xiyi
i=

It is usually used either (i) for non-negative valued
vectors or (ii) for normalized vectors, i.e., ||x|| = p.
- Concerning (ii), in order to comply with the non-
negativity requirement in the definition of the
similarity measure, we may consider the similarity
measure S;ner (X, ) + p?

* Cosine similarity measure

xTy

Scosine (X, Y) = TEATRT

where ||x|| =VxTx = \/Z%:l x;% and ||}’|| =Jyly = \/Z%=1 Vi 20



Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

* Pearson’s correlation coefficient

T
Xd Yd
[xgl] - ||yall

TPearson(x: y) = € [_1'1]

wherex; =[x; — %, ..,x; — X1, yqg = [y1 — ¥, ..., y; — Y] with
%Z%zl x;jand y = %Z%:l}’i; respectively.  °O()

X

correlation
(covariance)
between x, 2

A related dissimilarity measure:

1- T'Pearson(x» y) c
2

D(x,y) = [0,1]

21



Proximity measures between vectors

(B) Real-valued vectors —similarity measures (SMs)

e Tanimoto distance

xTy
1x]12 + ||y]|? — xTy

ST(xr y) =

Algebraic manipulations give

The larger the

1 a
_ greement between
ST(X, J’) — ) (x — y)T(x —v) x,y, the larger the ~
+ xTy ST(xi y)

NOTE: s;(x, y) is inversely proportional to the Euclidean distance and
proportional to the inner product.

e Other measure:

AJE=-Tx -y
|1x1| + [1y1]

sc(x,y) =1 € [0,1]
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Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Let F; be the discrete set of values the i-th feature (nominal/categorical
attribute) can take

and n; be its cardinality, i = 1, ..., L.

Consider two |-dimensional vectors
X = [X1, X0, e, Xjey oo, X |T € FyxFoX oo XFi X .. XF
Y = [V, V2, e Viey oo, V1T € FixFox . XFp X ... XF)

The similarity measure s(x, y) is defined as

l
s(x,y) = z Wi Sk (XK, Vi)

k=1

where sy (X, Vi) is the feature similarity measure between the values x;,, v
of the k-th feature.

Thus, in order to define s(x, y), we need to define s, (xi, vi).

23



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Example: Let [=3 and

F, ={a,b,c}
F, = {1,2,3,4)
F3 — {A, B, C}

Consider the vectors:
X = [x1»x2»x3]T: [Cl, Z'A]T
Yy = [)’1»)’2»3’3]T: la, 3»B]T

Thatis, x; = a, y; = a,
xz — Z,yz — 3,
X3 :A,y3 = B.

Thus s1(x1,¥1) = s1(a, a)
S2(x2,¥2) = 52(2,3)
s3(x3,¥3) = s3(4,B)
and
s(x,y) =wy - si(a,a) + wy - 5,(2,3) + ws - s3(4,B) 2



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Let F; be the discrete set of values the I-th (nominal/categorical) feature can

take
and n; be its cardinality, i=1,...,/.

l

Recall that, in order to define s(x, y), we need to define s, (x, vi).

Each s, (+,") is completely defined by the associated similarity matrix.

If F,, = {1,2, ..., q}, the similarity matrix associated with the k-th feature is

-_n NOTE: (a) The similarity matrix is
sk(L1) sp(1,2) . . . sg(1,q9) completely defined if all of its entries
sk(21)  s(22) . . . sp(2,q) aredefined.

: (b) Such a similarity matrix is
associated with a similarity measure
for a single discrete-valued feature.

sk(@,1) sx(q,2) . . . sx(q,9)



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)

There are plenty of similarity measures for single discrete-valued features.

Defining such a similarity measure< filling the entries of the similarity matrix.

The entries filling may be carried out by utilizing:

 Simply 0 and 1 entries

* The size of the dataset N

 The number of attributes n involved in the current problem

* The cardinality of F;, n,.

* The number of times, f,.(j), the j-th symbol is encountered as k-th feature
in the data set

* The frequency of occurrence of the j-th symbol as k-th feature in the data

set, defined as P (j) = fx(j)/N, or, in some cases, p;2(j) = frDUFr()-1)

N(N-1)
Lt 2 ... a
T s (L) s(12) ... se(Lg)
sk(2,1)  s.(22) . . . sx(2,9)

sk(@,1) sx(q,2) . . . sx(q,9) 26



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
These similarity measures can be categorized in terms of:

v The way they fill the entries of the similarity matrix
I. Fill the diagonal entries only
Il. Fill the non-diagonal entries only
lll. Fill both diagonal and non-diagonal entries

v' The arguments they use to define the measure (information theoretic,
probabilistic etc).

27



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category I: Fill the diagonal entries only.

e Overlap measure C
S (x y ) — {1, if xk = yk W = l S(x;Y) _Zk=1wksk(xkiyk .
e\l Tk 0, otherwise’ % 1 > .
°c00
e Goodall3 measure
1—pr®(xk), if xx = Vi W, = 1
. =

0, otherwise’ l
o o O

Sk (X, yi) = {

sk (X, yi) € [0,1 — |

—
e ——

N(N — 1)

Comment: It assigns a high similarity if the matching values are infrequent
regardless of the frequencies of the other values.

28



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category IlI: Fill the non-diagonal entries only.

e Eskin measure { 2
. S (X, eEl-,1
1, if X =y, °© k( iYR) [3 ]

T —
Sk (Xk, Vi) = { ng*

Wy = —
Ng2+2

l

, otherwise’

Comments:
- It gives more weight to mismatches for attributes that take many values.
- It has been used for record-based network intrusion detection data

Sk (X, yie) € [ N , 1]
* Inverse Occurrence Frequency (IOF) measurs 1+ (log/j)L
: ) { 1, T X = Y .
Sk Xk» Vi) = 1 cp’r Wk =7
, otherwise l
1+logfr(xk)logfr(Vi)

Comments:

- It assigns lower similarity to mismatches on more frequent values..

- It is related to the concept of inverse document frequency which comes
from information retrieval, where it is used to signify the relative number
of documents that contain a specific word. 29



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)
Indicative measures from category lll: Fill both diagonal & non-diagonal entries
* Lin measure

2 logpy(xy), if xp = yi

SOtk Vie) = {2 log(Pr(xx) + Dr(yk)), otherwise’
1

\V.V4 —
T 2l (log Bi(x) +1logpi(y)
se (e, i) € [~ ZIogN 0] for match \
si(Xk, Vi) € [ Zlog— 0] for mismatch >./
Comments:
It gives

- higher weight to matches on frequent values, and
- lower weight to mismatches on infrequent values.
It has been used in word similarity procedure.

(*) S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A
Comparative Evaluation,” in Proc. SDM, pp. 243-254, 2008. 30



Proximity measures between vectors

(C) Discrete-valued vectors — similarity & dissimilarity measures (SMs-DMs)

-mmm Exercise 1: Consider the data set X given in the

1 - adjacent table.

X2 b 4 B Determine the similarity between the vectors
X3 3 3 B = [a, 2, A]" and
X, c 2 A y=][a3,B]" utilizing
X a 2 A
xz 3 2 B (a) The overlap measure
X, b 1 5 (b) The Goodall3 measure
. : " A (c) The Eskin measure

(d) The IOF measure
%o ° . A (e) The Lin measure.
X10 a 3 B
*11 d E A Exercise 2: Define corresponding dissimilarity
X12 b 4 C measures for the above defined similarity
X13 b 3 A measures.
X14 C 2 A
X5 a 2 C 31



