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(A) Between vectors 
 
(1) Dissimilarity measure (between vectors of 𝑋) is a function  

 
𝑑: 𝑋 × 𝑋 → ℜ 

with the following properties 
1. ∃𝑑0 ∈ ℜ: 0 ≤  𝑑0 ≤ 𝑑 𝒙, 𝒚 < +∞, ∀𝒙, 𝒚 ∈ 𝑋 

 
2. 𝑑 𝒙, 𝒙 = 𝑑0, ∀𝒙 ∈ 𝑋 

 
3. 𝑑 𝒙, 𝒚 = 𝑑 𝒚, 𝒙 , ∀𝒙, 𝒚 ∈ 𝑋 

 
If in addition: 
4. 𝑑 𝒙, 𝒚 = 𝑑0 ⟺ 𝒙 = 𝒚 

 
5. 𝑑 𝒙, 𝒛 ≤ 𝑑 𝒙, 𝒚 + 𝑑 𝒚, 𝒛 , ∀𝒙, 𝒚, 𝒛 ∈ 𝑋 (triangular inequality) 

 
𝑑 is called metric dissimilarity measure. 

Examples: Euclidean distance, 
Manhattan distance etc. 
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(A) Between vectors 
 
(2) Similarity measure (between vectors of 𝑋) is a function  

 
𝑠: 𝑋 × 𝑋 → ℜ 

with the following properties 
1. ∃𝑠0 ∈ ℜ: 0 ≤ 𝑠 𝒙, 𝒚 ≤ 𝑠0 < +∞,∀𝒙, 𝒚 ∈ 𝑋 

 
2. s 𝒙, 𝒙 = 𝑠0, ∀𝒙 ∈ 𝑋 

 
3. 𝑠 𝒙, 𝒚 = 𝑠 𝒚, 𝒙 , ∀𝒙, 𝒚 ∈ 𝑋 

 
If in addition: 
4. s 𝒙, 𝒚 = 𝑠0 ⟺ 𝒙 = 𝒚 

 

5.
1

𝑠 𝒙,𝒛
≤

1

𝑠 𝒙,𝒚
+

1

𝑠 𝒚,𝒛
, ∀𝒙, 𝒚, 𝒛 ∈ 𝑋  

 
𝑠 is called metric similarity measure. 

NOTE:  
Similarity measures and 
dissimilarity measures  
are also referred as  
proximity measures. 

NOTATION:  
• Similarity measure: s 

dissimilarity measure: d  
• proximity measures:  

Examples: inner product, 
Tanimoto distance etc. 
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Exercise: 
Consider the case  where the elements of 𝑋 are scalars.  
Which of the following is  
(a) a dissimilarity measure,  
(b) a metric dissimilarity measure? 
 
1. 𝑑1 𝑥, 𝑦 = 𝑥 − 𝑦  

 
2. 𝑑2 𝑥, 𝑦 = 𝑥2 − 𝑦2  

 
3. 𝑑3 𝑥, 𝑦 = cos 𝑥 − 𝑦  

 
4. 𝑑4 𝑥, 𝑦 = sin ( 𝑥 − 𝑦 ) 
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(B) Between sets 
Let 𝐷𝑖 ⊂ 𝑋,  𝑖 = 1,… , 𝑘, and 𝑈 = {𝐷1, … , 𝐷𝑘}. 
A proximity measure (similarity or dissimilarity) ℘ on 𝑈 is a function  

℘:𝑈 × 𝑈 → ℜ 
For dissimilarity measure the following properties should hold 

1. ∃𝑑0 ∈ ℜ: 0 ≤  𝑑0 ≤ 𝑑 𝐷𝑖 , 𝐷𝑗 < +∞,∀𝐷𝑖 , 𝐷𝑗 ∈ 𝑋 

 
2. 𝑑 𝐷𝑖 , 𝐷𝑖 = 𝑑0, ∀𝐷𝑖 ∈ 𝑋 

 

3. 𝑑 𝐷𝑖 , 𝐷𝑗 = 𝑑 𝐷𝑗 , 𝐷𝑖 , ∀𝐷𝑖 , 𝐷𝑗 ∈ 𝑋 

 
If in addition: 

4. 𝑑 𝐷𝑖 , 𝐷𝑗 = 𝑑0 ⟺ 𝐷𝑖 = 𝐷𝑗 

 

5. 𝑑 𝐷𝑖 , 𝐷𝑘 ≤ 𝑑 𝐷𝑖 , 𝐷𝑗 + 𝑑 𝐷𝑗 , 𝐷𝑘 , ∀𝐷𝑖 , 𝐷𝑗 , 𝐷𝑘 ∈ 𝑋  

 
𝑑 is called metric dissimilarity measure. 

Question: What is the 
definition when ℘ stands for 
a similarity measure? 
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(B) Between sets 
NOTE: The definition of the proximity functions between sets passes through 
the definition of proximity functions between a point and a set. 
 
Roadmap for the next few slides: 
 
Proximity functions between a point and a set 
- Nonparametric case 

 
- Parametric case 
 Point representatives 

• Mean vector 
• Mean center 
• Median center 

 Hyperplane representatives 
 Hypersphere representatives 
 … 
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(B) Between sets 
NOTE: The definition of the proximity functions between sets passes through 
the definition of proximity functions between a point and a set. 
 
Roadmap for the next few slides: 
 
Proximity functions between a point and a set 
- Nonparametric case 

 
- Parametric case 
 Point representatives 

• Mean vector 
• Mean center 
• Median center 

 Hyperplane representatives 
 Hypersphere representatives 
 … 
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Remark: Having in mind that a cluster is actually a set 𝐶, a proximity function 
between a point 𝒙 and a set 𝐶 actually quantifies the resemblance/relation of 
𝒙 with the cluster 𝐶. 
Let 𝑋 = {𝒙1, … , 𝒙𝑁} and 𝒙 ∈ 𝑋, 𝐶 ⊂ 𝑋 
Definitions of ℘ 𝒙, 𝐶 : 
(a) All points of 𝐶 contribute to the definition of ℘ 𝒙, 𝐶  (nonparametric repr.). 
 
- Max proximity function 

℘𝑝𝑠
𝑚𝑎𝑥 𝒙, 𝐶 = 𝑚𝑎𝑥𝒚∈𝐶℘(𝒙, 𝒚) 

 
- Min proximity function 

℘𝑝𝑠
𝑚𝑖𝑛

𝒙, 𝐶 = 𝑚𝑖𝑛𝒚∈𝐶℘(𝒙, 𝒚) 

 
 
- Average proximity function 

℘𝑝𝑠
𝑎𝑣𝑔

𝒙, 𝐶 =
1

𝑛𝐶
 ℘(𝒙, 𝒚)

𝒚∈𝐶

 𝑛𝐶  is the 
cardinality of 𝐶.  

𝑑𝑝𝑠
𝑚𝑎𝑥 𝒙, 𝐶 = 𝑚𝑎𝑥𝒚∈𝐶𝑑(𝒙, 𝒚) 

𝑠𝑝𝑠
𝑚𝑎𝑥 𝒙, 𝐶 = 𝑚𝑎𝑥𝒚∈𝐶𝑠(𝒙, 𝒚) 

𝑑𝑝𝑠
𝑚𝑖𝑛

𝒙, 𝐶 = 𝑚𝑖𝑛𝒚∈𝐶𝑑(𝒙, 𝒚) 

𝑠𝑝𝑠
𝑚𝑖𝑛 𝒙, 𝐶 = 𝑚𝑖𝑛𝒚∈𝐶𝑠(𝒙, 𝒚) 

𝑑𝑝𝑠
𝑎𝑣𝑔

𝒙, 𝐶 =
1

𝑛𝐶
 𝑑(𝒙, 𝒚)

𝒚∈𝐶
 

𝑠𝑝𝑠
𝑎𝑣𝑔 𝒙, 𝐶 =

1

𝑛𝐶
 𝑠(𝒙, 𝒚)

𝒚∈𝐶
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(B) Between sets 
NOTE: The definition of the proximity functions between sets passes through 
the definition of proximity functions between a point and a set. 
 
Roadmap for the next few slides: 
 
Proximity functions between a point and a set 
- Nonparametric case 

 
- Parametric case 
 Point representatives 

• Mean vector 
• Mean center 
• Median center 

 Hyperplane representatives 
 Hypersphere representatives 
 … 
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶 ,  contributes to the definition of ℘ 𝒙, 𝐶  
(parametric repr.). 
 
 In this case 
 
Typical point representatives are: 
- The mean vector 

𝒎𝑝 =
1

𝑛𝐶
 𝒚

𝒚∈𝐶

 

- The mean center 
𝒎𝐶  ∈ 𝐶:  𝑑(𝒚∈𝐶  𝒎𝑪, 𝒚) ≤  𝑑(𝒚∈𝐶 𝒛, 𝒚), ∀ 𝒛 ∈ 𝐶 

 
- The median center 

𝒎𝑚𝑒𝑑  ∈ 𝐶:𝑚𝑒𝑑(𝑑(𝒎𝑚𝑒𝑑 , 𝒚)|𝒚 ∈ 𝐶)  ≤ 𝑚𝑒𝑑(𝑑(𝒛, 𝒚)|𝒚 ∈ 𝐶), ∀ 𝒛 ∈ 𝐶 
 
NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are useful in 
certain applications (e.g., object identification using clustering techniques). 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  

𝑛𝐶  is the 
cardinality of 𝐶.  

𝑑: dissimilarity 
measure. 
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Exercise 5: Let 𝐶 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, where 𝒙1 = [1,1]𝑇, 𝒙2 = [3,1]𝑇 , 𝒙3 =
[1,2]𝑇, 𝒙4 = [1,3]𝑇, 𝒙5 = [3,3]𝑇. All points lie in the discrete space 
{0,1,2,… , 6}2. Use the Euclidean distance to measure the dissimilarity 
between two vectors in 𝐶. 
(a) Determine the mean vector, the mean center and the median center of 𝐶. 
(b) Compute the distance of point 𝒙 = [6,4]𝑇 from 𝐶 using the above defined 

representatives (where it is valid). 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  
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(B) Between sets 
NOTE: The definition of the proximity functions between sets passes through 
the definition of proximity functions between a point and a set. 
 
Roadmap for the next few slides: 
 
Proximity functions between a point and a set 
- Nonparametric case 

 
- Parametric case 
 Point representatives 

• Mean vector 
• Mean center 
• Median center 

 Hyperplane representatives 
 Hypersphere representatives 
 … 
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Linear-shaped clusters: 
• Such clusters occur e.g., in computer vision applications. 
• In this case, a hyperplane is a better representative of such clusters 
• Equation of a hyperplane 𝐻: 

 𝑎𝑗𝑥𝑗 + 𝑎0 = 𝒂𝑇𝒙 + 𝑎0 = 0
𝑙

𝑗=1
 

 
where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑙]

𝑇 , 𝒂 = [𝑎1, 𝑎2, … , 𝑎𝑙]
𝑇 is the direction vector of H 

and 𝑎0 is its offset. 
 
• Distance of a point 𝒙 from 𝐻 : 𝑑 𝒙,𝐻 = 𝑚𝑖𝑛𝒛∈𝐻𝑑(𝒙, 𝒛) 
• If 𝑑(𝒙, 𝒛) is the Euclidean distance, it is 

𝑑 𝒙,𝐻 =
|𝒂𝑇𝒙 + 𝑎0|

| 𝒂 |
 

 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  

𝒂 =  𝛼𝑗
2

𝑙

𝑗=1
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Definitions of ℘ 𝒙, 𝐶  (cont.): 
(b) A representative of 𝐶, 𝑟𝐶,  contributes to the definition of ℘ 𝒙, 𝐶 . 
 In this case 
 
Hyperspherical clusters: 
• Such clusters occur e.g., in computer vision applications. 
• In this case, a hypersphere is a better representative of such clusters 
• Equation of a hypersphere 𝑄: 

𝒙 − 𝒄 𝑇 𝒙 − 𝒄 = 𝑟2 
where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑙]

𝑇 , 𝒄 = [𝑐1, 𝑐2, … , 𝑐𝑙]
𝑇 is the center of 𝑄 and 𝑟 is its 

radius. 
 
• Distance of a point 𝒙 from 𝑄: 𝑑 𝒙, 𝑄 = 𝑚𝑖𝑛𝒛∈𝑄𝑑(𝒙, 𝒛) 

 
• For Euclidean distance between two points, 𝑑 𝒙, 𝑄  has 
a geometric insight. 
 
• However, other non-geometric alternatives have also been proposed. 

℘ 𝒙, 𝐶 = ℘ 𝒙, 𝑟𝐶  



Proximity functions between two sets 

15 

Remark: Having in mind that a cluster is actually a set C, a proximity function 
between two sets actually quantifies the resemblance/relation between two 
clusters. 
Let 𝑋 = {𝒙1, … , 𝒙𝑁} and 𝐷𝑖 , 𝐷𝑗 ⊂ 𝑋 with 𝑛𝑖 = |𝐷𝑖|, 𝑛𝑗 = |𝐷𝑗|. 

Definitions of ℘ 𝐷𝑖 , 𝐷𝑗 : 

(a) All points of each set contribute to the definition of ℘ 𝐷𝑖 , 𝐷𝑗 . 

 
- Max proximity function 

℘𝑠𝑠
𝑚𝑎𝑥 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑎𝑥𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

℘(𝒙, 𝒚) 

 
- Min proximity function 

℘𝑠𝑠
𝑚𝑖𝑛 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑖𝑛𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

℘(𝒙, 𝒚) 

 
 
- Average proximity function 

℘𝑠𝑠
𝑎𝑣𝑔 𝐷𝑖 , 𝐷𝑗 =

1

𝑛𝑖𝑛𝑗
  ℘(𝒙, 𝒚)

𝑦∈𝐷𝑗𝑥∈𝐷𝑖

 

𝑑𝑠𝑠
𝑚𝑎𝑥 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑎𝑥𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

𝑑(𝒙, 𝒚) 

𝑠𝑠𝑠
𝑚𝑎𝑥 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑎𝑥𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

𝑠(𝒙, 𝒚) 

𝑑𝑠𝑠
𝑚𝑖𝑛 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑖𝑛𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

𝑑(𝒙, 𝒚) 

𝑠𝑠𝑠
𝑚𝑖𝑛 𝐷𝑖 , 𝐷𝑗 = 𝑚𝑖𝑛𝑥∈𝐷𝑖,𝒚∈𝐷𝑗

𝑠(𝒙, 𝒚) 

𝑑𝑠𝑠
𝑎𝑣𝑔 𝐷𝑖 , 𝐷𝑗 =

1

𝑛𝑖𝑛𝑗
  𝑑(𝒙, 𝒚)

𝒚∈𝐷𝑗𝑥∈𝐷𝑖

 

𝑠𝑠𝑠
𝑎𝑣𝑔 𝐷𝑖 , 𝐷𝑗 =

1

𝑛𝑖𝑛𝑗
  𝑠(𝒙, 𝒚)

𝒚∈𝐷𝑗𝑥∈𝐷𝑖
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Definitions of ℘ 𝐷𝑖 , 𝐷𝑗  (cont.): 

(b) Each set 𝐷𝑖 is represented by a point representative 𝒎𝑖. 
- Mean proximity function 

℘𝑠𝑠
𝑚𝑒𝑎𝑛

𝐷𝑖 , 𝐷𝑗 = ℘(𝒎𝑖 ,𝒎𝑗) 

 
 
 

- ℘𝑠𝑠
𝑒 𝐷𝑖 , 𝐷𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
℘(𝒎𝑖 ,𝒎𝑗) 

 
 
 
 
 
 
 
NOTE: Proximity functions between a vector 𝒙 and a set 𝐶 may be derived 
from the above functions if we set 𝐷𝑖 = {𝒙}. 

𝑛𝑖 = |𝐷𝑖|  

𝑛𝑗 = 𝐷𝑗   

𝑑𝑠𝑠
𝑚𝑒𝑎𝑛 𝐷𝑖 , 𝐷𝑗 = 𝑑 𝒎𝑖 ,𝒎𝑗  

𝑠𝑠𝑠
𝑚𝑒𝑎𝑛 𝐷𝑖 , 𝐷𝑗 = 𝑠(𝒎𝑖 ,𝒎𝑗) 

𝑑𝑠𝑠
𝑒 𝐷𝑖 , 𝐷𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖 +𝑛𝑗
𝑑(𝒎𝑖 , 𝒎𝑗) 

𝑠𝑠𝑠
𝑒 𝐷𝑖 , 𝐷𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖 +𝑛𝑗
𝑠(𝒎𝑖 ,𝒎𝑗) 
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In the sequel we consider the cases: 
 

(A) Real-valued vectors – dissimilarity measures (DMs) 
 

(B) Real-valued vectors – similarity measures (SMs) 
 

(C) Discrete-valued vectors – similarity-dissimilarity measures  
 
(D) Mixed-valued vectors – dissimilarity and similarity measures  
 
 
NOTE: Some of the measures below may seem “weird”. However, they have 
been tailored for certain types of applications.  

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 
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(A) Real-valued vectors – dissimilarity measures (DMs) 
 
• Weighted 𝑙𝑝 metric DMs 

𝑑𝑝 𝒙, 𝒚 =  𝑤𝑖|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑙

𝑖=1

1
𝑝 

 

Interesting instances are obtained for: 

𝑝 = 1  𝑑1 𝒙, 𝒚 =  𝑤𝑖
𝑙
𝑖=1 |𝑥𝑖 − 𝑦𝑖|  (𝑙1 or Manhattan  or city block dist.) 

 

𝑝 = 2  𝑑2 𝒙, 𝒚 =  𝑤𝑖(𝑥𝑖 − 𝑦𝑖)
2𝑙

𝑖=1   (𝑙2 or Euclidean distance) 

 
𝑝 = ∞  𝑑∞ 𝒙, 𝒚 = 𝑚𝑎𝑥𝑖=1,…,𝑙𝑤𝑖 𝑥𝑖 − 𝑦𝑖  (𝑙∞ or maximum distance) 
 
NOTES: 
 For 𝑤𝑖 = 1, we obtain the unweighted versions of the 𝑙𝑝 metrics.  

 
 It holds: 𝑑∞ 𝒙, 𝒚 ≤ 𝑑2 𝒙, 𝒚 ≤ 𝑑1 𝒙, 𝒚  

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 
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(A) Real-valued vectors – dissimilarity measures (DMs) 
 
• Mahalanobis distance 

𝑑 𝒙, 𝒚 = (𝒙 − 𝒚)𝑇𝐵(𝒙 − 𝒚) 
 
B is symmetric, positive definite matrix 

 
• Other measures 

− 𝑑𝐺 𝒙, 𝒚 = −𝑙𝑜𝑔10 1 −
1

𝑙
 

|𝑥𝑖 − 𝑦𝑖|

|𝑏𝑖 − 𝑎𝑖|

𝑙

𝑖=1
 

 
where bi and ai are the maximum and the minimum values of the i-th 
feature, among the vectors of X (dependence on the current data set) 
 

− 𝑑𝑄 𝒙, 𝒚 =
1

𝑙
 

𝑥𝑖 − 𝑦𝑖

𝑥𝑖 + 𝑦𝑖

2𝑙

𝑖=1
 

 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 

•Features may take  positive 
and/or negative values 

•Normalization per feature: 

0 ≤
|𝑥𝑖−𝑦𝑖|

|𝑏𝑖−𝑎𝑖|
≤ 1 

•Features may take only  
non-negative values 

•Normalization per feature: 

0 ≤
|𝑥𝑖−𝑦𝑖|

𝑥𝑖+𝑦𝑖
≤ 1 
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(B) Real-valued vectors –similarity measures (SMs) 
 
• Inner product 

𝑠𝑖𝑛𝑛𝑒𝑟 𝒙, 𝒚 = 𝒙𝑻𝒚 =  𝑥𝑖𝑦𝑖

𝑙

𝑖=1
 

 
 
 
 
 
 
 

• Cosine similarity measure 

𝑠𝑐𝑜𝑠𝑖𝑛𝑒 𝒙, 𝒚 =
𝒙𝑻𝒚

||𝒙|| ∙ ||𝒚||
 

 

where 𝒙 = 𝒙𝑻𝒙 =  𝑥𝑖
2𝑙

𝑖=1  and 𝒚 = 𝒚𝑻𝒚 =  𝑦𝑖
2𝑙

𝑖=1 . 

 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 

- It is usually used either (i) for non-negative valued 

vectors or (ii) for normalized vectors, i.e., 𝒙 = 𝜌. 

- Concerning (ii), in order to comply with the non-
negativity requirement in the definition of the 
similarity measure, we may consider the similarity 
measure 𝑠𝑖𝑛𝑛𝑒𝑟 𝒙, 𝒚 + 𝜌2 
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(B) Real-valued vectors –similarity measures (SMs) 
 
• Pearson’s correlation coefficient 

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝒙, 𝒚 =
𝒙𝒅

𝑻𝒚𝒅

||𝒙𝒅|| ∙ ||𝒚𝒅||
∈ [−1,1] 

 
where 𝒙𝑑 = [𝑥1 − 𝑥 , … , 𝑥𝑙 − 𝑥 ]𝑇, 𝒚𝑑 = [𝑦1 − 𝑦 ,… , 𝑦𝑙 − 𝑦 ]𝑇with  

𝑥 =
1

𝑙
 𝑥𝑖

𝑙
𝑖=1  and 𝑦 =

1

𝑙
 𝑦𝑖

𝑙
𝑖=1 , respectively. 

 
A related dissimilarity measure: 
 

𝐷 𝒙, 𝒚 =
1 − 𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝒙, 𝒚

2
∈ [0,1] 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 

It measures the 
correlation 

(covariance) 
between 𝒙, 𝒚  
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(B) Real-valued vectors –similarity measures (SMs) 
 
• Tanimoto distance 

𝑠𝑇 𝒙, 𝒚 =
𝒙𝑻𝒚

||𝒙||𝟐 + ||𝒚||𝟐 − 𝒙𝑻𝒚
 

Algebraic manipulations give 

𝑠𝑇 𝒙, 𝒚 =
1

1 +
𝒙 − 𝒚 𝑻(𝒙 − 𝒚)

𝒙𝑻𝒚

 

 
NOTE: 𝑠𝑇 𝒙, 𝒚  is inversely proportional to the Euclidean distance and 
proportional to the inner product. 
 

• Other measure: 
 

𝑠𝐶 𝒙, 𝒚 = 1 −
𝒙 − 𝒚 𝑻(𝒙 − 𝒚)

𝒙 + ||𝒚||
∈ [0,1] 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 

The larger the 
agreement between 
𝒙, 𝒚, the larger the 

𝑠𝑇 𝒙, 𝒚 . 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Let 𝐹𝑖 be the discrete set of values the 𝑖-th feature (nominal/categorical 
attribute) can take  
and 𝑛𝑖 be its cardinality, 𝑖 = 1,… , 𝑙. 
 
Consider two l-dimensional vectors 

𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑘 , … , 𝑥𝑙]
𝑇∈ 𝐹1x𝐹2x… x𝐹𝑘x… x𝐹𝑙  

𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑘 , … , 𝑦𝑙]
𝑇∈ 𝐹1x𝐹2x…x𝐹𝑘x…x𝐹𝑙  

  
The similarity measure 𝑠(𝒙, 𝒚) is defined as  

𝑠 𝒙, 𝒚 =  𝑤𝑘𝑠𝑘(𝑥𝑘 , 𝑦𝑘)
𝑙

𝑘=1
 

 
where 𝑠𝑘(𝑥𝑘 , 𝑦𝑘) is the feature similarity measure between the values 𝑥𝑘 , 𝑦𝑘 
of the 𝑘-th feature. 
 
Thus, in order to define 𝑠 𝒙, 𝒚 , we need to define 𝑠𝑘(𝑥𝑘 , 𝑦𝑘).  

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Example: Let l=3 and  

𝐹1 = 𝑎, 𝑏, 𝑐  
𝐹2 = 1,2,3,4  
𝐹3 = {𝐴, 𝐵, 𝐶} 

Consider the vectors: 
𝒙 = [𝑥1, 𝑥2, 𝑥3]

𝑇= [𝑎, 2, 𝐴]𝑇 
𝒚 = [𝑦1, 𝑦2, 𝑦3]

𝑇= [𝑎, 3, 𝐵]𝑇 
 
That is, 𝑥1 = 𝑎, 𝑦1 = 𝑎, 

𝑥2 = 2, 𝑦2 = 3, 
𝑥3 = 𝐴, 𝑦3 = 𝐵. 

 
Thus  𝑠1 𝑥1, 𝑦1 = 𝑠1 𝑎, 𝑎  

𝑠2 𝑥2, 𝑦2 = 𝑠2 2, 3  
𝑠3 𝑥3, 𝑦3 = 𝑠3 𝐴, 𝐵  

and 
𝑠 𝒙, 𝒚 = 𝑤1 ∙ 𝑠1 𝑎, 𝑎 + 𝑤2 ∙ 𝑠2 2, 3 + 𝑤3 ∙ 𝑠3 𝐴, 𝐵  

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Let Fi be the discrete set of values the i-th (nominal/categorical) feature can 
take  
and ni be its cardinality, i=1,…,l. 
 
 
 
Recall that, in order to define 𝑠 𝒙, 𝒚 , we need to define 𝑠𝑘(𝑥𝑘 , 𝑦𝑘).  
 
Each 𝑠𝑘(∙,∙) is completely defined by the associated similarity matrix. 
 
If 𝐹𝑘 = 1,2,… , 𝑞 , the similarity matrix associated with the 𝑘-th feature is 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 

𝒚 = [𝑦1, … , 𝑦𝑙]
𝑇 

𝑠 𝒙, 𝒚 =  𝑤𝑘𝑠𝑘(𝑥𝑘 , 𝑦𝑘)
𝑙

𝑘=1
 

𝟏 𝟐 .  .  . 𝒒 

1 𝑠𝑘(1,1) 𝑠𝑘(1,2) .   .   . 𝑠𝑘(1, 𝑞) 

2 𝑠𝑘(2,1) 𝑠𝑘(2,2) .   .   . 𝑠𝑘(2, 𝑞) 

.   .   . .   .   . .   .   . ⋱ .   .   . 

𝑞 𝑠𝑘(𝑞, 1) 𝑠𝑘(𝑞, 2) .   .   . 𝑠𝑘(𝑞, 𝑞) 

NOTE: (a) The similarity matrix is 
completely defined if all of its entries 
are defined. 
(b) Such a similarity matrix is 
associated with a similarity measure 
for a single discrete-valued feature. 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
There are plenty of similarity measures for single discrete-valued features. 
Defining such a similarity measure filling the entries of the similarity matrix. 
The entries filling may be carried out by utilizing: 
• Simply 0 and 1 entries 
• The size of the data set 𝑁 
• The number of attributes 𝑛 involved in the current problem 
• The cardinality of 𝐹𝑞, 𝑛𝑞. 

• The number of times, 𝑓𝑘(𝑗), the 𝑗-th symbol is encountered as 𝑘-th feature 
in the data set 

• The frequency of occurrence of the 𝑗-th symbol as 𝑘-th feature in the data 

set, defined as  𝑝 𝑘 𝑗 = 𝑓𝑘(𝑗) 𝑁 , or, in some cases, 𝑝𝑘
2 𝑗 =

𝑓𝑘(𝑗)(𝑓𝑘 𝑗 −1)

𝑁(𝑁−1)
 

𝟏 𝟐 .  .  . 𝒒 

1 𝑠𝑘(1,1) 𝑠𝑘(1,2) .   .   . 𝑠𝑘(1, 𝑞) 

2 𝑠𝑘(2,1) 𝑠𝑘(2,2) .   .   . 𝑠𝑘(2, 𝑞) 

.   .   . .   .   . .   .   . ⋱ .   .   . 

𝑞 𝑠𝑘(𝑞, 1) 𝑠𝑘(𝑞, 2) .   .   . 𝑠𝑘(𝑞, 𝑞) 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
These similarity measures can be categorized in terms of: 
 
 The way they fill the entries of the similarity matrix 

I. Fill the diagonal entries only 
II. Fill the non-diagonal entries only 
III. Fill both diagonal and non-diagonal entries 

 
 The arguments they use to define the measure (information theoretic, 

probabilistic etc). 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Indicative measures from category I: Fill the diagonal entries only. 
• Overlap measure 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 =  
1, 𝑖𝑓 𝑥𝑘 = 𝑦𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   𝑤𝑘 =

1

𝑙
 

 
 
 
• Goodall3 measure 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 =  
1 − 𝑝𝑘

2(𝑥𝑘), 𝑖𝑓 𝑥𝑘 = 𝑦𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   𝑤𝑘 =

1

𝑙
 

 
 
 
Comment: It assigns a high similarity if the matching values are infrequent 

regardless of the frequencies of the other values. 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ {0,1} 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ [0,1 −
2

𝑁(𝑁 − 1)
] 

𝑠 𝒙, 𝒚 =  𝑤𝑘𝑠𝑘(𝑥𝑘 , 𝑦𝑘)
𝑙

𝑘=1
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Indicative measures from category II: Fill the non-diagonal entries only. 
• Eskin measure 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 =  
1, 𝑖𝑓 𝑥𝑘 = 𝑦𝑘

𝑛𝑘
2

𝑛𝑘
2+2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   𝑤𝑘 =

1

𝑙
 

Comments: 
- It gives more weight to mismatches for attributes that take many values. 
- It has been used for record-based network intrusion detection data. 

 
• Inverse Occurrence Frequency (IOF) measure 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 =  
1, 𝑖𝑓 𝑥𝑘 = 𝑦𝑘
1

1+𝑙𝑜𝑔𝑓𝑘(𝑥𝑘)∙𝑙𝑜𝑔𝑓𝑘(𝑦𝑘)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,   𝑤𝑘 =
1

𝑙
 

Comments: 
- It assigns lower similarity to mismatches on more frequent values.. 
-  It is related to the concept of inverse document frequency which comes 

from information retrieval, where it is used to signify the relative number 
of documents that contain a specific word. 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ [
2

3
, 1] 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ [
1

1 + (𝑙𝑜𝑔
𝑁
2)2

, 1] 
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Indicative measures from category III: Fill both diagonal & non-diagonal entries 
• Lin measure 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 =  
2 ∙ 𝑙𝑜𝑔𝑝 𝑘(𝑥𝑘), 𝑖𝑓 𝑥𝑘 = 𝑦𝑘

2 ∙ log (𝑝 𝑘 𝑥𝑘 + 𝑝 𝑘 𝑦𝑘 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   

𝑤𝑘 =
1

 (log 𝑝 𝑖 𝑥𝑖 +𝑙𝑜𝑔𝑝 𝑖 𝑦𝑖 )𝑙
𝑖=1

 

 
 
 
Comments: 
It gives  
- higher weight to matches on frequent values, and  
- lower weight to mismatches on infrequent values. 
It has been used in word similarity procedure. 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ [−2𝑙𝑜𝑔𝑁, 0] for match 

𝑠𝑘 𝑥𝑘 , 𝑦𝑘 ∈ [−2𝑙𝑜𝑔
𝑁

2
, 0] for mismatch 

(*) S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data: A 
Comparative Evaluation,” in Proc. SDM, pp. 243-254, 2008.  
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(C) Discrete-valued vectors – similarity & dissimilarity measures (SMs-DMs) 
Feat. 1 Feat. 2 Feat. 3 

𝒙1 a 1 A 

𝒙2 b 4 B 

𝒙3 a 3 B 

𝒙4 c 2 A 

𝒙5 a 2 A 

𝒙6 a 2 B 

𝒙7 b 1 B 

𝒙8 c 1 A 

𝒙9 b 1 A 

𝒙10 a 3 B 

𝒙11 a 4 A 

𝒙12 b 4 C 

𝒙13 b 3 A 

𝒙14 c 2 A 

𝒙15 a 2 C 

Exercise 1: Consider the data set X given in the 
adjacent table. 
Determine the similarity between the vectors  
𝒙 = [𝑎, 2, 𝐴]𝑇 and  
𝒚 = [𝑎, 3, 𝐵]𝑇 utilizing 
 
(a) The overlap measure 
(b) The Goodall3 measure 
(c) The Eskin measure 
(d) The IOF measure 
(e) The Lin measure. 

 
Exercise 2: Define corresponding dissimilarity 
measures for the above defined similarity 
measures. 


