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The ROCK (RObust Clustering using linKs) algorithm 
 It is best suited for nominal (categorical) features. 
 
 Some preliminaries 

• Two points 𝒙, 𝒚𝑋 are considered neighbors if 𝑠(𝒙, 𝒚)  𝜃, where 𝑠(. ) is 
a similarity function and 𝜃 a user-defined similarity threshold between 
two vectors (0 ≤ 𝑠(𝒙, 𝒚) ≤ 1 and, consequently, 0 ≤ 𝜃 ≤ 1 ). 

•  𝑙𝑖𝑛𝑘(𝒙, 𝒚) is the number of common neighbors between x and y. 
 
 
 
 

 Assumption: There exists a function 𝑓(𝜃) (< 1) such that: 

“Each point assigned to a cluster 𝐶𝑖  has approximately 𝑛𝑖
𝑓(𝜃) neighbors in 

𝐶𝑖  (𝑛𝑖 is the number of points in 𝐶𝑖) ” 
 
It can be proved that the expected total number of links among all pairs   

in 𝐶𝑖  is 𝑛𝑖
1+2𝑓(𝜃). 

In the graph whose vertices correspond to data points and 
edges connect neighboring points, 𝑙𝑖𝑛𝑘(𝒙, 𝒚) is the number 

of distinct paths of length 2 that connect 𝒙, 𝒚.  

𝑙𝑖𝑛𝑘 𝐶𝑖 =   𝑙𝑖𝑛𝑘(𝒙, 𝒚)

𝒚∈𝐶𝑖𝒙∈𝐶𝑖

 



The ROCK (RObust Clustering using linKs) algorithm 
 ROCK is a special case of GAS where 

•The closeness between two clusters is defined as 
 
 

𝑔 𝐶𝑖 , 𝐶𝑗 =
𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗

𝑛𝑖 + 𝑛𝑗
1+2𝑓 𝜃

− 𝑛𝑖
1+2𝑓 𝜃 − 𝑛𝑗

1+2𝑓 𝜃
 

 
      The denominator is the expected total number of links between the two  
       clusters. 
       The larger the 𝑔(∙), the more similar the clusters 𝐶𝑖  and 𝐶𝑗  are . 

 
The stopping criterion is:  

•the number of clusters becomes equal to a predefined number 𝑚 or  

• 𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗 = 0 for every pair in a clustering 𝑡. 

 
Time complexity for ROCK: Similar to CURE for large 𝑁. 
Prohibitive for very large data sets. 
Solution: Adoption of random sampling techniques. 

𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗 =   𝑙𝑖𝑛𝑘(𝒙, 𝒚)

𝒚∈𝐶𝑗𝒙∈𝐶𝑖

 



The ROCK (RObust Clustering using linKs) algorithm 
 ROCK utilizing Random Sampling 

•Identification of clusters 
Select a subset 𝑋´ of 𝑋 via random sampling 
Run the original ROCK algorithm on 𝑋´ 

•Assignment of points to clusters 
For each cluster 𝐶𝑖  select a set 𝐿𝑖  of 𝑛𝐿𝑖  points 

For each 𝒛𝑋 − 𝑋´ 
oCompute 𝑡𝑖 = 𝑁𝑖/(𝑛𝐿𝑖 + 1)𝑓(𝜃), where 𝑁𝑖 is the no of neighbors of 𝒛 in 𝐿𝑖. 

oAssign 𝒛 to the cluster with the maximum 𝑡𝑖 . 
 

Remarks: 
•A choice for 𝑓(𝜃) is 𝑓(𝜃) = (1 − 𝜃)/(1 + 𝜃), with (𝜃 < 1). 

 
• 𝑓(𝜃) depends on the data set and the type of clusters we are interested in. 

 
•The hypothesis about the existence of 𝑓(𝜃) is very strong. It may lead to poor 

results if the data do not satisfy it. 
 

• It can be used for discrete-valued data sets. 



The ROCK (RObust Clustering using linKs) algorithm 
An application: 
•Grouping the customers of supermarket according to their purchases. 
•Each customer (entity) is represented by the set of goods he/she buys 
(categorical data representation). 
•The similarity between two customers may be quantified via the Jaccard 
coefficient  

 
 
 

•For example, assuming that 𝑇1 = 𝐴, 𝐵, 𝐶 , 𝑇2 = 𝐴, 𝐵, 𝐷 , 𝑇3 = 𝐴, 𝐵, 𝐷, 𝐸  
are the sets corresponding to three customers, it is  

𝐽 𝑇1, 𝑇1 = 3
3 = 1, 𝐽 𝑇1, 𝑇2 = 2

4 = 0.5, 𝐽 𝑇1, 𝑇3 = 2
5 = 0.4,

 𝐽 𝑇2, 𝑇3 = 3
4 = 0.75 

Choosing 𝜃 = 0.45, 𝑇1 and 𝑇2 are neighbors, 𝑇2 and 𝑇3 are neighbors but 

𝑇1 and 𝑇3 are not neighbors. However, 𝑇1 and 𝑇3 share a common neighbor. 
 
•For this application, a good choice for 𝑓(𝜃) is 𝑓(𝜃) = (1 − 𝜃)/(1 + 𝜃), with 
(𝜃 < 1). 

For two finite sets 𝑇𝑖and 𝑇𝑗, the 

Jaccard coefficient is defined as 

𝐽 𝑇𝑖 , 𝑇𝑗 =
𝑇𝑖∩𝑇𝑗

𝑇𝑖∪𝑇𝑗
 



The ROCK (RObust Clustering using linKs) algorithm 

𝑔 𝐶𝑖 , 𝐶𝑗 =
𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗

𝑛𝑖 + 𝑛𝑗
1+2𝑓 𝜃

− 𝑛𝑖
1+2𝑓 𝜃 − 𝑛𝑗

1+2𝑓 𝜃
 

Example: Consider a three-cluster clustering 𝐶1, 𝐶2, 𝐶3 , where the number 
of points in each one of them is 𝑛1 = 500, 𝑛2 = 500 and 𝑛3 = 100,  
respectively.  
 

Define 𝑓(𝜃) as 𝑓 𝜃 =
1−𝜃

1+𝜃
, with 𝜃 =

1

3
.  

Let 𝑙𝑖𝑛𝑘 𝐶1, 𝐶2 = 100 and 𝑙𝑖𝑛𝑘 𝐶1, 𝐶3 = 100. 
Compute 𝑔(𝐶1, 𝐶2) and 𝑔(𝐶1, 𝐶3) and draw your conclusions 

Answer: It is 1 + 2𝑓 𝜃 = 1 + 2
1−𝜃

1+𝜃
= 1 + 2

1−
1

3

1+
1

3

= 2, 

(𝑛1 + 𝑛2)
1+2𝑓(𝜃)−𝑛1

1+2𝑓 𝜃 −𝑛2
1+2𝑓 𝜃 = 500 + 500 2 − 5002 − 5002

= 500000 

(𝑛1 + 𝑛3)
1+2𝑓(𝜃)−𝑛1

1+2𝑓 𝜃 −𝑛3
1+2𝑓 𝜃 = 500 + 100 2 − 5002 − 1002

= 100000 

Then 𝑔 𝐶1, 𝐶2 =
100

500000
= 0.0002 and 𝑔 𝐶1, 𝐶3 =

100

100000
= 0.001 

Thus, among the clusters that have the same degree of similarity with 𝐶1  wrt 
the 𝑙𝑖𝑛𝑘(. ) criterion, according to the normalized link criterion (𝑔(∙)) 𝐶1 is 
more similar with the smallest cluster (𝐶3), and not with the  equally sized  𝐶3. 



The Chameleon algorithm 
 This algorithm is not based on a “static” modeling of clusters like CURE 

(where each cluster is represented by the same number of 
representatives) and ROCK (where constraints are posed through the 
function 𝑓(𝜃)). 

 It enjoys both divisive and agglomerative features. 
 
 Some preliminaries: 

Let 𝐺 = (𝑉, 𝐸) be a graph where: 
• each vertex of 𝑉 corresponds to a data point in 𝑋. 
• 𝐸 is a set of edges connecting pairs of vertices in 𝑉. Each edge is 

weighted by the similarity of the corresponding points. 
 
• Edge cut set: Let 𝐶 be a set of points corresponding to a subset of 𝑉. 
 Assume that 𝐶 is partitioned into two nonempty sets 𝐶𝑖  and 𝐶𝑗.  
 The subset 𝐸′𝑖𝑗 of the edges of E that connect points of 𝐶𝑖  with points  

 of 𝐶𝑗 is called edge cut set. 



The Chameleon algorithm 
• Minimum cut set: Let 𝐶 be a set of points corresponding to a subset of 𝑉. 

Let |𝐸´𝑖𝑗| be the sum of weights of the edges in 𝐸´𝑖𝑗.  

      If 𝐸´𝑖𝑗 = 𝑚𝑖𝑛 𝐶𝑢,𝐶𝑣 𝐸𝑢𝑣 , then (𝐶𝑖  , 𝐶𝑗) is the minimum cut set of 𝐶     

      (𝐶𝑖𝐶𝑗 = 𝐶). 

  
• Minimum cut bisector: If 𝐶𝑖, 𝐶𝑗 are constrained to be of approximate   

  equal size, the minimum cut set (over all possible partitions of  
  approximately equal size) is known as the minimum cut bisector. 

Example: The graph in the following figure consists of 5 the vertices and the 
edges shown, each one weighted by the similarity of the points that 
correspond to the vertices it connects. The minimum cut set and the 
minimum cut bisector are shown. 



The Chameleon algorithm 
Measuring the similarity between clusters 

Relative interconnectivity: 
Let 𝐸𝑖𝑗 be the set of edges connecting points in 𝐶𝑖  with points in 𝐶𝑗. 

Let 𝐸𝑖  be the set of edges corresponding to the minimum cut bisector of 𝐶𝑖. 
Let |𝐸𝑖|, |𝐸𝑖𝑗| be the sum of the weights of the edges of 𝐸𝑖, 𝐸𝑖𝑗, respectively. 

Absolute interconnectivity between 𝐶𝑖, 𝐶𝑗 = |𝐸𝑖𝑗| 

Internal interconnectivity of 𝐶𝑖  = |𝐸𝑖| 
Relative interconnectivity between 𝐶𝑖, 𝐶𝑗:  

𝑅𝐼𝑖𝑗 =
|𝐸𝑖𝑗|

𝐸𝑖 + |𝐸𝑗|
2

 

Relative closeness: 
Let 𝑆𝑖𝑗 be the average weight of the edges in 𝐸𝑖𝑗  . 

Let 𝑆𝑖 be the average weight of the edges in 𝐸𝑖  . 
Relative closeness between 𝐶𝑖  and 𝐶𝑗: 

𝑅𝐶𝑖𝑗 =
𝑆𝑖𝑗

𝑛𝑖
𝑛𝑖 + 𝑛𝑗

𝑆𝑖 +
𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑆𝑗

 
𝑛𝑖, 𝑛𝑗: Number of 

points in 𝐶𝑖, 𝐶𝑗, resp. 



The Chameleon algorithm 
The Chameleon algorithm 
Preliminary phase 
Create a 𝑘-nearest neighbor graph 𝐺 = (𝑉, 𝐸) such that: 
• Each vertex of 𝑉 corresponds to a data point. 
• The edge between two vertices 𝑣𝑖 and 𝑣𝑗 is added to 𝐸 if 𝑣𝑖 is one of the 

𝑘-nearest neighbors of 𝑣𝑗 or vise versa. 

• Each connected component of the resulting graph is associated with a 
cluster. Let  be the clustering consisting of these clusters. 

Divisive phase 
Set 0 =  

𝑡 = 0  

Repeat 
• 𝑡 = 𝑡 + 1 

• Select the largest cluster 𝐶 in 𝑡−1. 

• Referring to 𝐸, partition 𝐶 into two sets so that: 
the sum of the weights of the edge cut set between the resulting  
  clusters is minimized. 
each cluster contains at least 25% of the vertices of 𝐶. 

Until each cluster in 𝑡 contains fewer than 𝑞 points. 



The Chameleon algorithm 
The Chameleon algorithm (cont) 
Agglomerative phase 
Set ′0 = 𝑡  

𝑡 = 0  
Repeat 

• 𝑡 = 𝑡 + 1 
•Merge 𝐶𝑖, 𝐶𝑗 in ′𝑡−1 to a single cluster if  
   𝑅𝐼𝑖𝑗𝑇𝑅𝐼 and 𝑅𝐶𝑖𝑗𝑇𝑅𝐶     (A) 
 (if more than one 𝐶𝑗 satisfy the conditions for a given 𝐶𝑖, the 𝐶𝑗 with the   
  highest |𝐸𝑖𝑗| is selected). 

Until (A) does not hold for any pair of clusters in ′𝑡−1. 
Return ′𝑡−1 

 
ΝΟΤΕ: The internal structure of two clusters to be merged is of significant 
importance. The more similar the elements within each cluster the higher 
“their resistance” in merging with another cluster. 



The Chameleon algorithm 
Remarks: 

• Condition (A) can be replaced by 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑎𝑥 𝐶𝑢,𝐶𝑣 𝑅𝐼𝑢𝑣 ∙ 𝑅𝐶𝑢𝑣
𝑎  

 
• Chameleon is not very sensitive to the choice of the user-defined 

parameters 𝑘 (typically it is selected between 5 and 20), 𝑞 (typically 
chosen in the range 1% to 5% of the total number of data points), 𝑇𝑅𝐼, 
𝑇𝑅𝐶  and/or 𝑎. 
 

• Chameleon is well suited for large data sets (more accurate estimation of 

𝐸𝑖𝑗 , 𝐸𝑖 , 𝑆𝑖𝑗, 𝑆𝑖) 

 
• For large 𝑁, the worst-case time complexity of the algorithm is 

𝑂(𝑁(log 𝑁2 +𝑚)), where 𝑚 is the number of clusters formed by the 
divisive phase. 



The Chameleon algorithm 
Example: For the clusters shown in 
the figure we have:  

|𝐸1| = 0.48, |𝐸2| = 0.48,  

|𝐸3| = 1.45, |𝐸4| = 1.45,  

|𝑆1| = 0.48, |𝑆2| = 0.48,  

|𝑆3| = 0.725, |𝑆4| = 0.725,  

|𝐸12| = 0.4, |𝐸34| = 0.6,  

|𝑆12| = 0.4, |𝑆34| = 0.6. 

Thus,  

𝑅𝐼12 = 0.833, 𝑅𝐼34 = 0.414 

𝑅𝐶12 = 0.833, 𝑅𝐶34 = 0.828 

In conclusion: Both 𝑅𝐼 and 𝑅𝐶 favor 
the merging 𝐶1 and 𝐶2 against the 
merging of 𝐶3 and 𝐶4. 

Note that the single-link algorithm 
would merge 𝐶3 and 𝐶4 instead of 
𝐶1 and 𝐶2. 

The values in the figure 
stand for  similarities. 

All edge weights which 
are not denoted explicitly 

are equal to 0.9. 



Other clustering algorithms 
 The following types of algorithms will be considered: 

 
 Graph theory based clustering algorithms. 
 Competitive learning algorithms. 
 Valley seeking clustering algorithms. 
 Cost optimization clustering algorithms based on: 

• Branch and bound approach. 
• Simulated annealing methodology. 
• Deterministic annealing. 
• Genetic algorithms. 

 Density-based clustering algorithms. 
 Clustering algorithms for high dimensional data sets. 



Graph theory based clustering algorithms 
In principle, such algorithms  are capable of detecting clusters of various 
shapes, at least when they are well separated. 
    
In the sequel we discuss algorithms that are based on: 

 
 The Minimum Spanning Tree (MST). 

 
 Regions of influence. 

 
 Directed trees. 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms 
Preliminaries: Let  
 𝐺 be the complete graph, each node of which corresponds to a point of 

the data set 𝑋. 
 

 𝑒 = (𝒙𝑖 , 𝒙𝑗) denote an edge of 𝐺 connecting 𝒙𝑖 and 𝒙𝑗. 
 

 𝑤𝑒𝑑(𝒙𝑖 , 𝒙𝑗) denote the weight of the edge 𝑒. 
 
Definitions: 
 Two edges 𝑒1 and 𝑒2 are 𝑘 steps away from each other if the minimum 

path that connects a vertex of 𝑒1 and a vertex of 𝑒2 contains 𝑘 − 1 edges. 
 

 A Spanning Tree of 𝐺 is a connected graph that: 
• Contains all the vertices of the graph. 
• Has no loops. 

 
 The weight of a Spanning Tree is the sum of weights of its edges. 

 
 A Minimum Spanning Tree (MST) of 𝐺 is a spanning tree with minimum 

weight (when all 𝑤𝑒’s are different from each other, the MST is unique). 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Sketch of the algorithm: 
Determine the MST of 𝐺. 

 
 Remove the edges that are “unusually” large compared with their 
neighboring edges (inconsistent edges). 

 
 Identify as clusters the connected components of the MST, after the 
removal of the inconsistent edges. 
 
Identification of inconsistent edges. 
For a given edge 𝑒 of the MST of 𝐺:  
 
 Consider all the edges (except e) that lie 𝑘 steps away (at the most) from 𝑒. 

 
 Determine the mean 𝑚𝑒  and the standard deviation 𝜎𝑒 of their weights. 

 
 If 𝑤𝑒 lies more than 𝑞 (typically 𝑞 = 2) standard deviations 𝜎𝑒 away from 

𝑚𝑒, then: 
• 𝑒 is characterized as inconsistent. 

 Else 
• 𝑒 is characterized as consistent. 

 End  if 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Example:  
 For the MST in the figure and for 𝑘 = 2 and 𝑞 = 3 we have: 
 For 𝑒0: 𝑤𝑒0 = 17, 𝑚𝑒0 = 2.3, 𝜎𝑒0

 

= 0.95. 𝑤𝑒0  lies 15.5 standard 

deviations 𝜎𝑒0  away from 𝑚𝑒0, hence it is inconsistent.  

 
 For 𝑒11: 𝑤𝑒11 = 3, 𝑚𝑒11 = 2.5, 𝜎𝑒11 = 2.12. 𝑤𝑒11  lies 0.24 standard 

deviations 𝜎𝑒11  away from 𝑚𝑒11, hence  it is consistent. 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph and cut the “unusually large” edges. 
•The remaining sub-graphs correspond to the clusters. 

Prerequisite: Definition of 
a threshold for identifying 
“large” edges. 

Minimum Spanning Tree  
(MST) graph-based algorithm 
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Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Remarks: 
 
 The algorithm depends on the choices of 𝑘 and 𝑞. 

 
 The algorithm is insensitive to the order of consideration of the data 

points. 
 

 No initial conditions are required, no convergence issues are arised. 
 

 The algorithm works well for many cases where the clusters are well 
separated. 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Remarks: 
 A problem may occur when a “large” edge 𝑒 has another “large” edge as 

its neighbor. In this case, 𝑒 is likely not to be characterized as inconsistent 
and the algorithm may fail to unravel the underlying clustering structure 
correctly. 

Example: The vectors of the regions 𝑅1 and 𝑅2 
will probably be assigned to the same cluster. 



Graph theory based clustering algorithms 
Algorithms based on Regions of Influence (ROI) 
Definition: The region of influence of two distinct vectors 𝒙𝑖 , 𝒙𝑗 ∈ 𝑋 is defined 

as: 
 𝑅(𝒙𝑖 , 𝒙𝑗) = 𝒙:  𝑐𝑜𝑛𝑑(𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗), 𝑑(𝒙𝑖 , 𝒙𝑗)), 𝒙𝑖 ≠ 𝒙𝑗  

 
where 𝑐𝑜𝑛𝑑(𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗), 𝑑(𝒙𝑖 , 𝒙𝑗)) may be defined as: 
 
a)  𝑑2(𝒙, 𝒙𝑖) + 𝑑2(𝒙, 𝒙𝑗) < 𝑑2(𝒙𝑖 , 𝒙𝑗),  

b)  max 𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} <  𝑑(𝒙𝑖 , 𝒙𝑗) , 

c)  𝑑2(𝒙, 𝒙𝑖) + 𝑑2(𝒙, 𝒙𝑗) < 𝑑2(𝒙𝑖 , 𝒙𝑗)  𝑂𝑅 𝜎 min {𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)}  <  𝑑(𝒙𝑖 , 𝒙𝑗) , 

d)  max 𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} < 𝑑(𝒙𝑖 , 𝒙𝑗)  𝑂𝑅 𝜎 min {𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} <  𝑑(𝒙𝑖 , 𝒙𝑗)  

 
where 𝜎 affects the size of the ROI defined by 𝒙𝑖, 𝒙𝑗 and is called relative edge 

consistency. 
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Algorithms based on Regions of Influence (cont) 
Algorithm based on ROI 

 For 𝑖 = 1 to 𝑁 

• For 𝑗 = 𝑖 + 1 to 𝑁 

 Determine the region of influence 𝑅(𝒙𝑖 , 𝒙𝑗) 

 If 𝑅(𝒙𝑖 , 𝒙𝑗) ∩ 𝑋 − 𝒙𝑖 , 𝒙𝑗 = ∅ then 
o Add the edge connecting 𝒙𝑖 , 𝒙𝑗. 

End if 
• End For 

 End For 
Determine the connected components of the resulted graph and identify 
them as clusters. 

In words: 
 The edge 𝒙𝑖 , 𝒙𝑗  is added to the graph if no other 𝒙𝑞 ∈ 𝑋 lies in 𝑅 𝒙𝑖 , 𝒙𝑗 . 

 
 Since for 𝒙𝑖 and 𝒙𝑗 close to each other it is likely that 𝑅(𝒙𝑖 , 𝒙𝑗) contains no 

other vectors in 𝑋, it is expected that close to each other points will be 
assigned to the same cluster. 
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Algorithms based on Regions of Influence (cont) 
Remarks: 
• The algorithm is insensitive to the order in which the pairs are considered. 

 
• In order to exclude (possible) edges connecting distant points, one could 

use a procedure like the one described previously for removing “unusually 
large” edges. 
 

• In the choices of cond in (c) and (d), σ must be chosen a priori. 
 

• For the resulting graphs:  
 if the choice (a) is used for 𝑐𝑜𝑛𝑑, they are called relative neighborhood 

graphs (RNGs) 
 if the choice (b) is used for 𝑐𝑜𝑛𝑑 , they are called Gabriel graphs (GGs) 
 

• Experimental results  show that better clusterings are produced when (c) 
and (d) conditions are used in the place of 𝑐𝑜𝑛𝑑, instead of (a) and (b). 
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Algorithms based on Directed Trees 
 
Definitions: 
 A directed graph is a graph whose edges are directed. 

 
 A set of edges 𝑒𝑖1 , … , 𝑒𝑖𝑞 constitute a directed path from a vertex 𝐴 to a 

vertex 𝐵, if,  
• 𝐴 is the initial vertex of 𝑒𝑖1   

• 𝐵 is the final vertex of 𝑒𝑖𝑞 

• The destination vertex of the edge 𝑒𝑖𝑗, 𝑗 =  1, … , 𝑞 − 1, is the 

departure vertex of the edge𝑒𝑖𝑗+1. 

(In figure (a) the sequence 𝑒1, 𝑒2, 𝑒3 constitute a directed path 
connecting the vertices 𝐴 and 𝐵). 
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Algorithms based on Directed Trees (cont) 
 
 A directed tree is a directed graph with a specific node 𝐴, known as root, 

such that, 
• From every node 𝐵 ≠ 𝐴 of the tree departs exactly one edge. 
• No edge departs from 𝐴. 
• No circles are encountered (see figure (b) in the previous slide). 

 
 The neighborhood of a point 𝒙𝑖𝑋 is defined as 

 
   𝜌𝑖(𝜃) = 𝒙𝑗 ∈ 𝑋: 𝑑 𝒙𝑖 , 𝒙𝑗 ≤ 𝜃, 𝒙𝑖 ≠ 𝒙𝑗  
 
where 𝜃 determines the neighborhood size. 

 
 Also let 

• 𝑛𝑖 = |𝜌𝑖(𝜃)| be the number of points of 𝑋 lying within 𝜌𝑖(𝜃) 
• 𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 

 
Main philosophy of the algorithm 
Identify the directed trees in a graph whose vertices are points of 𝑋, so  that 
each directed tree corresponds to a cluster. 
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Algorithms based on Directed Trees (cont.) 
Clustering Algorithm based on Directed Trees 
 Set 𝜃 to a specific value. 
 Determine 𝑛𝑖, 𝑖 = 1,… ,𝑁. 
 Compute 𝑔𝑖𝑗, 𝑖, 𝑗 = 1,… ,𝑁, 𝑖 ≠ 𝑗. 

 For 𝑖 = 1 to 𝑁 

• If 𝑛𝑖 = 0 then 
 𝒙𝑖 is the root of a new directed tree. 

• Else 
 Determine 𝒙𝑟 such that 𝑔𝑖𝑟 = 𝑚𝑎𝑥𝑥𝑗∈𝜌𝑖 𝜃 𝑔𝑖𝑗  

 If 𝑔𝑖𝑟 < 0 then 
o 𝒙𝑖 is the root of a new directed tree. 

 Else if 𝑔𝑖𝑟 > 0 then 
o 𝒙𝑟 is the parent of 𝒙𝑖 (there exists a directed edge from 𝒙𝑖 to 𝒙𝑟). 

𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 
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Algorithms based on Directed Trees (cont.) 
Clustering Algorithm based on Directed Trees 

 Else if 𝑔𝑖𝑟 = 0 then 

o Define 𝑇𝑖 = 𝒙𝑗: 𝒙𝑗 ∈ 𝜌𝑖 𝜃 , 𝑔𝑖𝑗 = 0 . 

o Eliminate all the elements 𝒙𝑗 ∈ 𝑇𝑖, for which there exists a directed 

path from 𝒙𝑗 to 𝒙𝑖. 

o If the resulting Ti is empty then 
     * 𝒙𝑖 is the root of a new directed tree 
o Else 
      * The parent  of 𝒙𝑖 is 𝒙𝑞 such that 𝑑(𝒙𝑖 , 𝒙𝑞) = 𝑚𝑖𝑛𝒙𝑠∈𝑇𝑖𝑑(𝒙𝑖 , 𝒙𝑠). 

o End if 
 End if 

• End if 
 End for 
 Identify as clusters the directed trees formed above. 
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Algorithms based on Directed Trees (cont.) 
Remarks: 
• The root 𝒙𝑖 of a directed tree is the point in 𝜌𝑖 𝜃  with the most dense 

neighborhood. 
• The branch that handles the case 𝑔𝑖𝑟 = 0 ensures that no circles occur. 
• The algorithm is sensitive to the order of consideration of the data points. 
• For proper choice of 𝜃 and large 𝑁, this scheme behaves as a mode-

seeking algorithm (see below). 
 

Example: In the figure below, the size of the edge of the grid is 1 and 𝜃 = 1.1.   
                  The above algorithm gives the directed trees shown in the figure. 

𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 



Competitive learning clustering algorithms 
The main idea 
 Employ a set of representatives 𝒘𝑗 (in the sequel we consider only point 

representatives). 
 Move them to regions of the vector space that are “dense” in vectors of 𝑋. 

 
Comments 
 In general, representatives are updated each time a new vector 𝒙 ∈ 𝑋 is 

presented to the algorithm (pattern mode algorithms). 
 These algorithms do not necessarily stem from the optimization of a cost 

function. 
 

The strategy 
 For a given vector 𝒙 

• All representatives compete to each other 
• The winner (representative that lies closest to 𝒙) moves towards 𝒙. 
• The losers (the rest of the representatives) either remain unchanged or 

they move towards 𝒙 but at a much slower rate. 
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Generalized Competitive Learning Scheme (GCLS) 
𝑡 = 0  
𝑚 = 𝑚𝑖𝑛𝑖𝑡 (initial number of representatives) 
(A) Initialize any other necessary parameters (depending on the specific 

algorithm). 
Repeat 
 𝑡 = 𝑡 + 1 
 Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
 (B) Determine the winning representative 𝒘𝑗. 
 (C) If ((𝒙 is not “similar” to 𝒘𝑗(𝑡 − 1)) 𝑂𝑅 (other condition)) 𝐴𝑁𝐷 (𝑚 < 𝑚𝑚𝑎𝑥) then 

 𝑚 = 𝑚 + 1 
 𝒘𝑚 = 𝒙 

 Else 
 (D) Parameter updating 

𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂ℎ 𝒙,𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 + 𝜂′ℎ 𝒙,𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 End 
(E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
Assign each 𝒙 ∈ 𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 

maximum allowable 
number of clusters 

maximum allowable 
number of iterations 



Competitive learning clustering algorithms 
Remarks: 

• ℎ 𝒙,𝒘𝑞  is an appropriately defined function (see below). 

 
• 𝜂 and 𝜂′ are the learning rates controlling the updating of the winner and 

the losers, respectively (𝜂′ may differ from looser to looser). 
 

• A threshold of similarity 𝛩 (carefully chosen) controls the similarity 
between 𝒙 and its closest representative 𝒘𝑗.  

If 𝑑(𝒙,𝒘𝑗) > 𝛩, for some distance measure, 𝒙 and 𝒘𝑗 are considered as 

dissimilar. 
 

• A termination criterion may be the small variation of 𝑾 = 𝒘1
𝑇 , … ,𝒘𝑚

𝑇 𝑇 
for at least 𝑁 iterations (𝑁 is the cardinality of 𝑋), i.e., for any pair of 𝑡1, 𝑡2, 
with 𝑝 − 1 ∙ 𝑁 ≤ 𝑡1, 𝑡2 ≤ 𝑝 ∙ 𝑁, 𝑝 ∈ 𝑍, to hold ||𝑾(𝑡1) −𝑾(𝑡2)|| < 𝜀. 
 

• With appropriate choices of (A), (B), (C) and (D), most competitive learning 
algorithms may be viewed as special cases of GCLS. 
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Basic Competitive Learning Algorithm 
Here the number of representatives 𝑚 is constant.  
The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

  𝑑(𝒙,𝒘𝑗(𝑡 − 1)) = 𝑚𝑖𝑛𝑘=1,…,𝑚𝑑(𝒙,𝒘𝑘(𝑡 − 1)) (*). 

• (D) Parameter updating 

𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 Assign each 𝒙𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 

------------------ 
(*) 𝑑(∙) may be any distance (e.g., Euclidean dist., Itakura-Saito distortion). 
Also, similarity measures may be used (in this case min is replaced by max). 

𝜂 ∈ (0,1) 
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Basic Competitive Learning Algorithm (cont.) 
 
Remarks: 
• In this scheme losers remain unchanged. The winner, after the updating, 

lies in the line segment formed by 𝒘𝑗 (𝑡 − 1) and 𝒙. 
 
 
 
 

• A priori knowledge of the number of clusters 𝑚 is required. 
 

• If a representative is initialized far away from the regions where the points 
of 𝑋 lie, it will never win. 

     Possible solution: Initialize all representatives using vectors of 𝑋. 
 
• Versions of the algorithm with variable learning rate have also been 

studied. Specifically, 𝜂𝑡 → 0, as 𝑡 → ∞, but not too fast(*) 

-------------------- 
(*)  𝜂𝑡

∞
𝑡=1 = ∞ and  𝜂𝑡

2∞
𝑡=1 < ∞ (stochastic algorithms) 

𝒘𝑗 𝑡 = 𝒘𝑗 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑗 𝑡 − 1  

⟺ 𝒘𝑗 𝑡 = 1 − 𝜂 𝒘𝑗 𝑡 − 1 + 𝜂𝒙 

𝒘𝑗(𝑡 − 1) 

𝒙 𝒘𝑗(𝑡) 
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Leaky Learning Algorithm 
The same with the Basic Competitive Learning Algorithm except part (D), the 
updating equation of the representatives, which becomes 
 

𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂𝑤ℎ 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 + 𝜂𝑙ℎ 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
where 𝜂𝑤 and 𝜂𝑙 are the learning rates in (0, 1) and 𝜂𝑤 ≫ 𝜂𝑙. 
 
Remarks: 
• All representatives move towards 𝒙 but the losers move at a much slower 

rate than the winner does. 
• The algorithm does not suffer from the problem of poor initialization of 

the representatives (why?). 
• An algorithm in the same spirit is the “neural-gas” algorithm, where 𝜂𝑙 

varies from loser to loser and decays as the corresponding representatives 
lie away from 𝒙. This algorithm results from the optimization of a cost 
function. 

𝒘𝑗(𝑡 − 1) 

𝒙 
𝒘𝑗(𝑡) 

𝒘𝑞(𝑡 − 1) 
𝒘𝑞(𝑡) 
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Conscientious Competitive Learning Algorithms 
Main Idea: Discourage a representative 𝒘𝑞  from winning if it has won many 
times in the past. Do this by assigning a “conscience” to each representative. 
A simple implementation 
 Equip each representative 𝒘𝑞, 𝑞 = 1,… ,𝑚, with a counter 𝑓𝑞 that counts 

the times that 𝒘𝑞  wins. 
 At part (A) (initialization stage) of GCLS set 𝑓𝑞 = 1, 𝑞 = 1,… ,𝑚. 
 Define the distance 𝑑∗ 𝒙,𝒘𝑞  as 

   𝑑∗ 𝒙,𝒘𝑞 = 𝑑 𝒙,𝒘𝑞 𝑓𝑞. 
(the distance is penalized to discourage representatives that have won 
many times) 
 

 Part (B) becomes 
• The representative 𝒘𝑗 is the winner on 𝒙 if 

   𝑑∗ 𝒙,𝒘𝑗 = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑
∗ 𝒙,𝒘𝑞  

• Set 𝑓𝑗  (𝑡) = 𝑓𝑗(𝑡 − 1) + 1  
 

 Parts (C) and (D) are the same as in the Basic Competitive Learning 
Algorithm 

 Also 𝑚 = 𝑚𝑖𝑛𝑖𝑡 = 𝑚𝑚𝑎𝑥  
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Conscientious Competitive Learning Algorithms 
The algorithm 
 Set 𝑓𝑞 = 1, 𝑞 = 1,… ,𝑚 

 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙𝑋 to the algorithm. 

• (B) Compute 𝑑∗ 𝒙,𝒘𝑞(𝑡 − 1) = 𝑑 𝒙,𝒘𝑞(𝑡 − 1) 𝑓𝑞 , 𝑞 = 1,… ,𝑚. 

    Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

   𝑑∗ 𝒙,𝒘𝑗(𝑡 − 1) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑
∗ 𝒙,𝒘𝑞(𝑡 − 1) . 

          Set 𝑓𝑗  (𝑡) = 𝑓𝑗(𝑡 − 1) + 1 

• (D) Parameter updating 

𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 Assign each 𝒙 ∈ 𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 


