Clustering algorithms

Konstantinos Koutroumbas

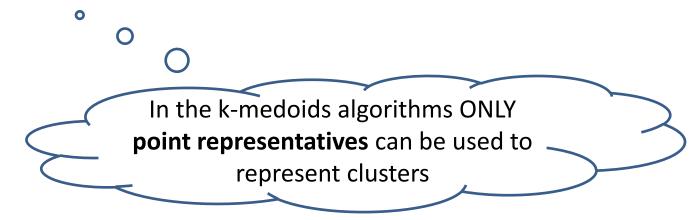
Unit 5

- k-medoids clustering algorithms (PAM, CLARA, CLARANS)
- Probabilistic CFO clustering algorithms (EM)

Generalized Hard Algorithmic Scheme (GHAS)

<u>k-Medoids Algorithms</u>

- Each cluster is represented by a vector selected among the elements of X (medoid).
- A cluster contains
 - Its medoid
 - All vectors in X that
 - o Are not used as medoids in other clusters
 - o Lie closer to its medoid than the medoids representing other clusters.



Generalized Hard Algorithmic Scheme (GHAS)
k-Medoids Algorithms

Let

- Θ be the set of medoids of all clusters,
- I_{Θ} the set of indices of the points in X that constitute Θ and
- $I_{X-\Theta}$ the set of indices of the points that are not medoids.

Obtaining the set of medoids Θ that best represents the data set, X is equivalent to minimizing the following cost function

$$J(\Theta, U) = \sum_{i \in I_{X-\Theta}} \sum_{j \in I_{\Theta}} u_{ij} d(\mathbf{x}_i, \mathbf{x}_j)$$

with

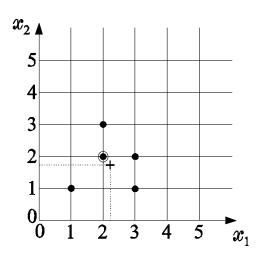
$$u_{ij} = \begin{cases} 1, & \text{if } d(x_i, x_j) = \min_{q \in I_{\Theta}} d(x_i, x_q) \\ 0, & \text{otherwise} \end{cases}, \qquad i = 1, \dots, N$$

Generalized Hard Algorithmic Scheme (GHAS)

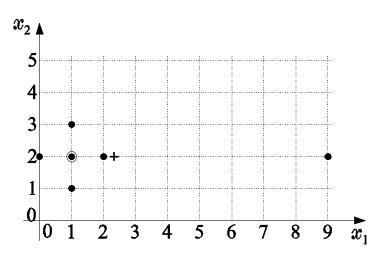
k-Medoids Algorithms

Example 3:

- (a) The five-point two-dimensional set stems from the discrete domain $D = \{1,2,3,4,...\} \times \{1,2,3,4,...\}$. Its medoid is the circled point and its mean is the "+" point, which does not belong to D.
- (b) In the six-point two-dimensional set, the point (9,2) can be considered as an outlier. While the outlier affects significantly the mean of the set, it does not affect its medoid.



(a)



(b)

4

Generalized Hard Algorithmic Scheme (GHAS)

Representing clusters with mean values vs representing clusters with

medoids

Mean Values	Medoids
1. Suited only for continuous domains	1. Suited for either cont. or discrete domains
2. Algorithms using means are sensitive to outliers	2. Algorithms using medoids are less sensitive to outliers
3. The mean possess a clear geometrical and statistical meaning	3. The medoid has not a clear geometrical meaning
4. Algorithms using means are not computationally demanding	4. Algorithms using medoids are more computationally demanding

Generalized Hard Algorithmic Scheme (GHAS)

<u>k-Medoids Algorithms</u>

Algorithms to be considered

- PAM (Partitioning Around Medoids)
- CLARA (Clustering LARge Applications)
- CLARANS (Clustering Large Applications based on RANdomized Search)

The PAM algorithm

• The number of clusters m is **required** a *priori*.

Definitions-preliminaries

- Two <u>sets</u> of medoids Θ and Θ' , each one consisting of m elements, are called neighbors if they share m-1 elements.
- A set Θ of medoids with m elements can have m(N-m) neighbors.
- Let Θ_{ij} denote the neighbor of Θ that results if x_j , $j \in I_{X-\Theta}$ replaces x_i , $i \in I_{\Theta}$.
- Let $\Delta J_{ii} = J(\Theta_{ii}, U_{ii}) J(\Theta, U)$.

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm

- ullet Determination of $oldsymbol{arOmega}$ that best represents the data
 - Generate a set Θ of m medoids, randomly selected out of X.
 - (A) Determine the neighbor Θ_{qr} , $q \in I_{\Theta}$, $r \in I_{X-\Theta}$ among the m(N-m) neighbors of Θ for which $\Delta J_{qr} = min_{i \in I_{\Theta}, j \in I_{X-\Theta}} \Delta J_{ij}$.
 - $\text{If } \Delta J_{qr} < 0 \text{ then } \bullet \bullet \\ \text{oReplace } \Theta \text{ by } \Theta_{qr} \\ \text{oGo to (A)}$
 - -End
- Assignment of points to clusters
 - Assign each $x \in I_{X-\Theta}$ to the cluster represented by the closest to x medoid.

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm

Computation of ΔJ_{ij} .

It is defined as:

$$\Delta J_{ij} = J(\Theta_{ij}, U_{ij}) - J(\Theta, U) = \sum_{s \in I_{X-\Theta_{ij}}} \sum_{t \in I_{\Theta_{ij}}} u_{st} d(\mathbf{x}_s, \mathbf{x}_t) - \sum_{s \in I_{X-\Theta}} \sum_{t \in I_{\Theta}} u_{st} d(\mathbf{x}_s, \mathbf{x}_t)$$

$$\equiv \sum_{h \in I_{X-\Theta}} C_{hij}$$

where C_{hij} is the <u>difference in J, resulting from the (possible) assignment of the vector $x_h \in X - \Theta$ from the cluster it currently belongs to another, as a consequence of the replacement of $x_i \in \Theta$ by $x_i \in X - \Theta$.</u>

For the computation of C_{hij} associated with a specific each $x_h \in X - \Theta$ it is required

- The distance of x_h from its closest medoid in Θ
- The distance of x_h from its next to closest medoid in Θ .
- The distance of x_h from the newly inserted medoid in Θ_{ij} .

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm (cont.)

Computation of C_{hij} :

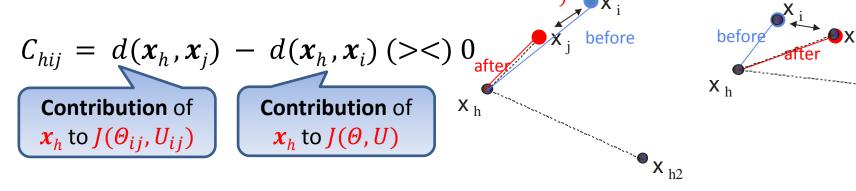
 x_h belongs to the cluster represented by x_i (x_{h2} Θ denotes the second closest to x_h representative) and $d(x_h, x_j) \ge d(x_h, x_{h2})$. Then

$$C_{hij} = d(\boldsymbol{x}_h, \boldsymbol{x}_{h2}) - d(\boldsymbol{x}_h, \boldsymbol{x}_i) \ge 0$$

$$\begin{array}{c} \textbf{Contribution of} \\ \boldsymbol{x}_h \text{ to } J(\boldsymbol{\theta}_{ij}, \boldsymbol{U}_{ij}) \end{array}$$

$$\begin{array}{c} \textbf{Contribution of} \\ \boldsymbol{x}_h \text{ to } J(\boldsymbol{\theta}, \boldsymbol{U}) \end{array}$$

 x_h belongs to the cluster represented by x_i (x_{h2} Θ denotes the second closest to x_h representative) and $d(x_h, x_j) \le d(x_h, x_{h2})$. Then

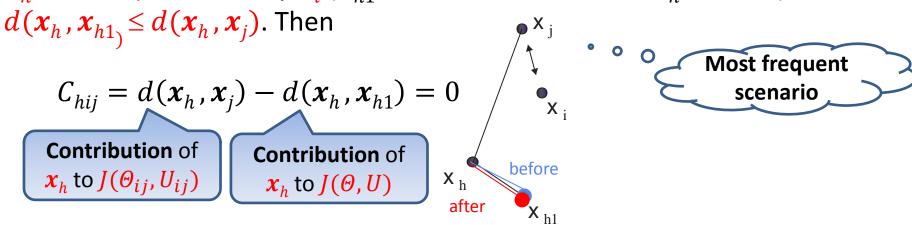


Generalized Hard Algorithmic Scheme (GHAS)

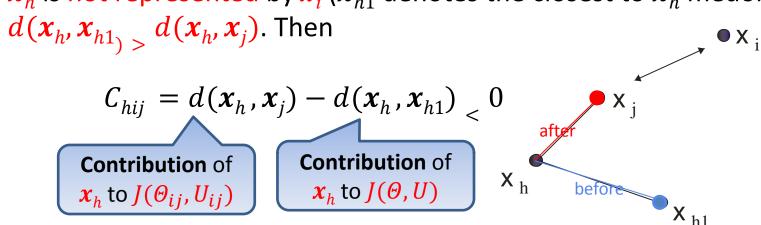
The PAM algorithm (cont.)

Computation of C_{hii} (cont.):

 x_h is not represented by x_i (x_{h1} denotes the closest to x_h medoid) and



 x_h is not represented by x_i (x_{h1} denotes the closest to x_h medoid) and



Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm (cont.)

Remarks:

- Experimental results show the PAM works satisfactorily with small data sets.
- Its computational complexity is $O(m(N-m)^2)$. Unsuitable for large data sets.

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm (Example)

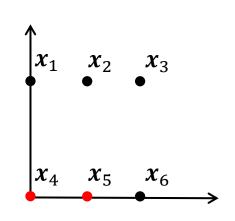
Data set:
$$X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$
, with $x_1 = [0,3]^T$, $x_2 = [1,3]^T$, $x_3 = [2,3]^T$, $x_4 = [0,0]^T$, $x_5 = [1,0]^T$, $x_1 = [2,0]^T$.

Set of medoids: $\Theta = \{x_4, x_5\}$

Computation of $\underline{I(\Theta, U)}$ (Squared Euclidean distance is considered):

$$x_1 oup d(x_1, x_4) = 9 < 10 = d(x_1, x_5) oup u_{14} = 1, u_{15} = 0$$

 $x_2 oup d(x_2, x_4) = 10 > 9 = d(x_2, x_5) oup u_{24} = 0, u_{25} = 1$
 $x_3 oup d(x_3, x_4) = 13 > 10 = d(x_3, x_5) oup u_{34} = 0, u_{35} = 1$
 $x_4 oup d(x_4, x_4) = 0 < 1 = d(x_4, x_5) oup u_{44} = 1, u_{45} = 0$
 $x_5 oup d(x_5, x_4) = 1 > 0 = d(x_5, x_5) oup u_{54} = 0, u_{55} = 1$
 $x_6 oup d(x_6, x_4) = 2 > 1 = d(x_6, x_5) oup u_{64} = 0, u_{65} = 1$



Generalized Hard Algorithmic Scheme (GHAS)

 $x_4 \leftrightarrow x_1$

 $x_5 \leftrightarrow x_6$

The PAM algorithm (Example)

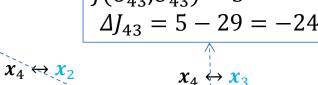
Data set: $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$, with

$$x_1 = [0,3]^T$$
, $x_2 = [1,3]^T$, $x_3 = [2,3]^T$, $x_4 = [0,0]^T$, $x_5 = [1,0]^T$, $x_1 = [2,0]^T$.

Set of medoids: $\Theta = \{x_4, x_5\}$

$$\Theta_{42} = \{x_2, x_5\}$$
 $J(\Theta_{42}, U_{42}) = 4$
 $\Delta J_{42} = 4 - 29 = -25$

$$\Theta_{43} = \{x_3, x_5\}$$
 $J(\Theta_{43}, U_{43}) = 5$
 $\Delta J_{43} = 5 - 29 = -24$



$$\Theta_{41} = \{x_1, x_5\}$$

$$J(\Theta_{41}, U_{41}) = 5$$

$$\Delta J_{41} = 5 - 29 = -24$$

 $\Theta_{56} = \{\boldsymbol{x}_4, \boldsymbol{x}_6\}$

 $\Delta J_{56} = 29 - 29 = 0$

 $J(\Theta_{56}, U_{56}) = 29$

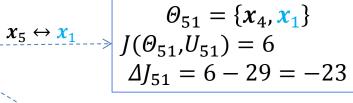
$$\Theta = \{x_4, x_5\}$$

$$J(\Theta, U) = \mathbf{29}$$

 $x_4 \leftrightarrow x_3$

$$J(\Theta,U) = \mathbf{29}$$

 $x_5 \leftrightarrow x_3$



 \boldsymbol{x}_2

 x_5 x_6

 $\Theta_{46} = \{x_6, x_5\}$

 $\Delta I_{46} = 29 - 29 = 0$

 $J(\Theta_{46}, U_{46}) = 29$

$$\Theta_{53} = \{x_4, x_3\}$$
 $J(\Theta_{53}, U_{53}) = 5$

$$\Delta J_{53} = 5 - 29 = -24$$

 $x_4 \leftrightarrow x_6$

 $x_5 \leftrightarrow x_2$

$$\Theta_{52} = \{x_4, x_2\}$$

$$J(\Theta_{52}, U_{52}) = 5$$

$$\Delta J_{52} = 5 - 29 = -24$$

It is
$$\Delta J_{42} = min_{i \in I_{\Theta_i}} j \in I_{X-\Theta} \Delta J_{ij} = -25 < 0$$

Thus, according to **PAM**, Θ will be **replaced** by Θ_{42} .

Generalized Hard Algorithmic Scheme (GHAS)

The CLARA algorithm

- It is more suitable for large data sets.
- The strategy:
 - **Draw** randomly a sample X' of size N' from the entire data set.
 - Run the PAM algorithm to determine Θ' that best represents X'.
 - Use Θ' in the place of Θ to represent the entire data set X.
- The rationale:
 - Assuming that X' has been selected in a way representative of the statistical distribution of the data points in X, Θ' is expected to be a good approximation of Θ , which would have been produced if PAM were run on the entire X.
- The algorithm:
 - Draw s sample subsets of size N' from X, denoted by $X'_1, ..., X'_s$ (typically s = 5, N' = 40 + 2m).
 - Run PAM on each one of them and identify $\Theta'_1, \dots, \Theta'_{\varsigma}$.

- Choose the set
$$\Theta'_j$$
 that minimizes
$$J(\Theta, U) = \sum_{i \in I_{X-\Theta'}} \sum_{j \in I_{\Theta'}} u_{ij} d(\mathbf{x}_i, \mathbf{x}_j)$$

based on the entire data set X.

Generalized Hard Algorithmic Scheme (GHAS)

The CLARANS algorithm

- It is more suitable for large data sets.
- It follows the philosophy of PAM with the difference that only a randomly selected fraction q(< m(N-m)) of the neighbors of the current medoid set is considered.
- It performs several runs (s) starting from different initial choices for Θ .

The algorithm:

```
- For i=1 to s o Initialize randomly \Theta.

o (A) Select randomly q neighbors of \Theta.

o For j=1 to q

* If the present neighbor of \Theta is better than \Theta (in terms of J(\Theta,U)) then -- Set \Theta equal to its neighbor -- Go to (A)

* End If o End For o Set \Theta^i = \Theta
```

- End For
- **Select** the best Θ^i with respect to $J(\Theta, U)$.
- Based on Θ^i , assign each $\mathbf{x} \in X \Theta$ to the cluster whose representative is closest to \mathbf{x}

Generalized Hard Algorithmic Scheme (GHAS)

The CLARANS algorithm (cont.)

Remarks:

- CLARANS depends on q and s. Typically, s=2 and $q=\max(0.125m(N-m),250)$
- As q approaches m(N-m) CLARANS approaches PAM and the complexity increases.
- CLARANS can also be described in terms of graph theory concepts.
- CLARANS unravels better quality clusters than CLARA.
- In some cases, CLARA is significantly faster than CLARANS.
- CLARANS retains its quadratic computational nature and thus it is not appropriate for very large data sets.

Random variable (RV): It models the output of an experiment.

RV types:

- Discrete
- continuous

Discrete random variables:

- •A discrete RV x can take any value x from a finite or countably infinite set X.
- •X: sample space or state space.
- •Event: Any subset of X.
- •Elementary or simple event: A single element subset of X.
- •Example: Consider the die roll experiment. X={1,2,3,4,5,6}
- •Events: "Odd number", "number>3",("2", "5")

Elementary events

Discrete random variables (cont.):

- •Notation: Probability of the event $x=x\in X$: $P(x=x)\equiv P(x)$
- •P(.):A function called probability mass function (pmf) satisfying

$$\checkmark$$
 $P(x) \ge 0, \forall x \in X$

$$\checkmark \sum_{x \in X} P(x) = 1$$

Discrete random variables (cont.):

The case of more than one random variables: Definitions

Discrete RV	X	у
Sample space	$X=\{x_1,\ldots,x_{nx}\}$	$Y=\{y_1,\ldots,y_{ny}\}$

Joint probability: $P(x_i, y_i) \equiv P(x=x_i \text{ AND } y=y_i)$

•It corresponds to the case where x takes the value x_i AND y takes the value y_i , simultaneously.

Marginal probabilities: $P(x_i) \equiv P(x=x_i)$, $P(y_j) = P(y=y_j)$

•This terminology is used only when more than one rvs are involved.

Conditional probability: $P(x_i | y_j) \equiv P(x = x_i | y = y_j) = P(x_i, y_j) / P(y_j)$

•It corresponds to the case where x takes the value x_i given that y takes the value y_i .

Discrete random variables (cont.):

The case of more than one variables: Properties

Discrete RV	X	y
Sample space	$X = \{x_1, \dots, x_{nx}\}$	$\mathbf{Y} = \{y_1, \dots, y_{ny}\}$

Sum rule: $P(x) = \sum_{y \in Y} P(x, y), \quad \forall x \in X$

Product rule: P(x, y) = P(x | y)P(y)

Statistical independence: P(x, y) = P(x)P(y)

A consequence: P(x | y) = P(x) P(y | x) = P(y)

Bayes rule: $P(y|x) = \frac{P(x|y)P(y)}{P(x)}$

or $P(y \mid x) = \frac{P(x \mid y)P(y)}{\sum_{y \in Y} P(x \mid y)P(y)}$

It plays a key role in ML.

Continuous random variables:

- •A continuous RV x can take any value $x \in R$.
- •Sample space or state space: R
- •Events: $\{x \le x\}$, $\{x_1 < x \le x_2\}$, $\{x \ge x\}$

Corresponds to the probability mass function from the discrete case.

- •Cumulative distribution function (cdf): $F_x(x) = P(x \le x)$
- •It is $F_x(\infty) = P(x < \infty) = 1$

It assigns "mass" to events.

•Probability of events in terms of cdf:

$$P(x \le x) = F_{x}(x)$$

$$P(x_{1} < x \le x_{2}) = P(x \le x_{2}) - P(x \le x_{1}) = F_{x}(x_{2}) - F_{x}(x_{1})$$

$$P(x \ge x) = P(x \le x_{2}) - P(x \le x_{1}) = 1 - P(x \le x_{2}) = 1 - F_{x}(x)$$

Continuous random variables (cont.):

•Assumption: $F_x(x)$ is continuous and differentiable.

•Probability density function (pdf):

$$p_{x}(x) = \frac{dF_{x}(x)}{dx}$$

It assigns "mass" to values.

•cdf in terms of pdf:

$$F_{\mathbf{x}}(x) = \int_{-\infty}^{x} p_{\mathbf{x}}(z) dz$$

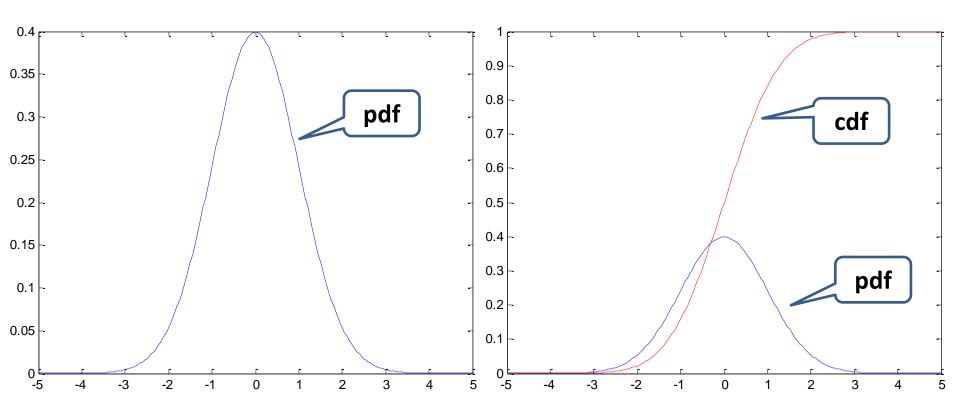
•Probability of events in terms of pdf:

$$P(x \le x) = F_x(x) = \int_{-\infty}^x p_x(z) dz$$

$$P(x_1 < x \le x_2) = P(x \le x_2) - P(x \le x_1) = F_x(x_2) - F_x(x_1) = \int_{x_1}^{x_2} p_x(x) dx$$

$$P(x \ge x) = P(x \le \infty) - P(x \le x) = 1 - P(x \le x) = 1 - F_x(x) = \int_{-\infty}^{x} p_x(z) dz$$

Continuous random variables (cont.):



Continuous random variables (cont.):

•Since
$$P(-\infty < x < +\infty) = 1$$
 it is:
$$\int_{-\infty}^{+\infty} p_x(x) dx = 1$$

•It is
$$P(x < x \le x + \Delta x) = \int_{x}^{x + \Delta x} p_x(z) dz \approx p_x(x) \Delta x$$

As
$$\Delta x \rightarrow 0$$
, $P(x < x < x + \Delta x) = P(x = x) = 0$.

The probability of a continuous rv to take a single value is zero.

The case of more than one variables:

Continuous RV	X	у
Sample space	R	R

NOTE: All rules stated for the probability mass function in the discrete case are stated for the pdf in the continuous case.

Product rule

$$p(x, y) = p(x | y)p(y)$$

We drop the name of rv from the subscript of
$$p$$
.

Sum rule
$$p(x) = \int_{-\infty}^{+\infty} p(x, y) dy$$

Useful quantities related to (continuous) rvs:

•Mean (expected) value of a rv x: $E[x] = \int_{-\infty}^{+\infty} xp(x)dx$

$$E[x] = \int_{-\infty}^{+\infty} xp(x) dx$$

For discrete rv's, the integrals become summations.

- •Variance of a rv x: $\sigma_x^2 = \int_{-\infty}^{+\infty} (x E[x])^2 p(x) dx = E[(x E(x))^2]$
- •Mean (expected) value of a function of an rv x : $E[f(x)] = \int_{-\infty}^{+\infty} f(x)p(x)dx$
- •Mean of a function of two rv's x, y: $E_{x,y}[f(x,y)] = \int_{-\infty}^{+\infty} f(x,y)p(x,y)dxdy$
- •Conditional mean of an rv y given x = x:

$$E[y \mid x] = \int_{-\infty}^{+\infty} y p(y \mid x) dy$$

- •It is $E_{x,y}[f(x, y)] = E_x[E_{y|x}[f(x, y)]]$
- •Covariance between two rvs x and y: cov(x, y) = E[(x E[x])(y E[y])]
- Correlation between two rv's x and y: $r_{xy} = E(xy) = cov(x, y) + E[x]E[y]$
- Correlation coefficient $r_{xy} = \frac{E[x-E[x])(y-E[y])}{\sigma_x\sigma_y}$

Random vectors

- •A collection of rvs: $\mathbf{x} = [x_1, x_2, ... x_l]^T$
- •Probability density function (pdf) of x: The joint pdf of $x_1, x_2, ... x_l$. $p(x) = p(x_1, x_2, ...x_l)$

•Covariance matrix of
$$\mathbf{x}$$
:
$$cov(\mathbf{x}) = E[(\mathbf{x} - E[\mathbf{x}])(\mathbf{x} - E[\mathbf{x}])^{\mathrm{T}}] = \begin{bmatrix} cov(\mathbf{x}_1, \mathbf{x}_1) & \cdots & cov(\mathbf{x}_1, \mathbf{x}_l) \\ \vdots & \ddots & \vdots \\ cov(\mathbf{x}_l, \mathbf{x}_1) & \cdots & cov(\mathbf{x}_l, \mathbf{x}_l) \end{bmatrix}$$

•Correlation matrix of
$$\mathbf{x}$$
: $R_{\mathbf{x}} = \mathbf{E}[\mathbf{x}\mathbf{x}^{\mathrm{T}}] = \begin{bmatrix} \mathbf{E}(\mathbf{x}_{1}\mathbf{x}_{1}) & \cdots & \mathbf{E}(\mathbf{x}_{1}\mathbf{x}_{l}) \\ \vdots & \ddots & \vdots \\ \mathbf{E}(\mathbf{x}_{l}\mathbf{x}_{1}) & \cdots & \mathbf{E}(\mathbf{x}_{l}\mathbf{x}_{l}) \end{bmatrix}$

•It is
$$R_{\mathbf{x}} \equiv E[\mathbf{x}\mathbf{x}^{\mathrm{T}}] = \text{cov}(\mathbf{x}) + E[\mathbf{x}]E[\mathbf{x}^{\mathrm{T}}]$$
 Exercise: Prove this identity

Random vectors (cont.)

Exercise: Prove these statements

•Remark: Both R_x and cov(x) are symmetric and positive definite lxl matrices.

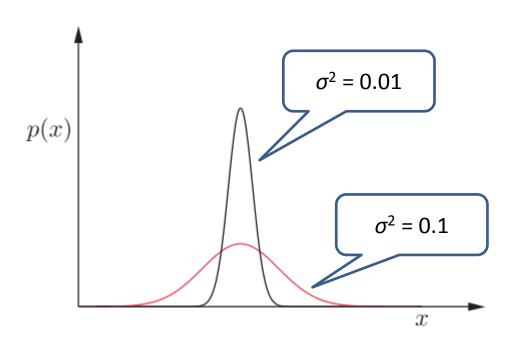
A square matrix A is symmetric iff $A^T=A$. A square matrix
A is positive
definite iff $z^TAz>0$, $\forall z \in \mathbb{R}^l$.

•One dim. normal (Gaussian) distribution $x \sim N(\mu, \sigma^2)$ or $N(x \mid \mu, \sigma^2)$:

- ■Sample space: *R*
- It is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$\mathbf{E}[\mathbf{x}] = \mu$$
$$\mathbf{\sigma}_{\mathbf{x}}^2 = \sigma^2.$$



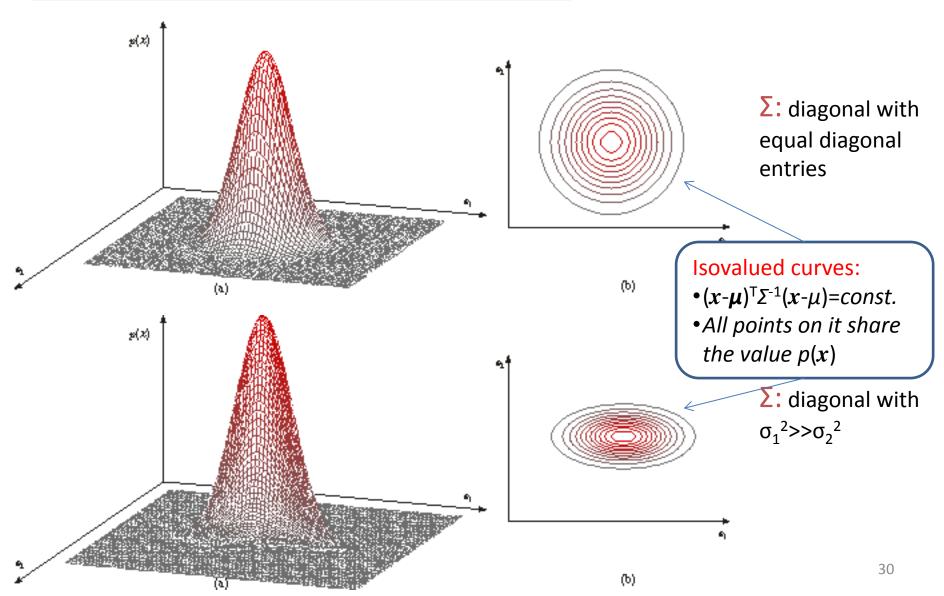
• Multi dim. normal (Gaussian) distribution $x \sim N(\mu, \Sigma)$ or $N(x \mid \mu, \Sigma)$:

- ■Sample space: *R*^l
- ■It is

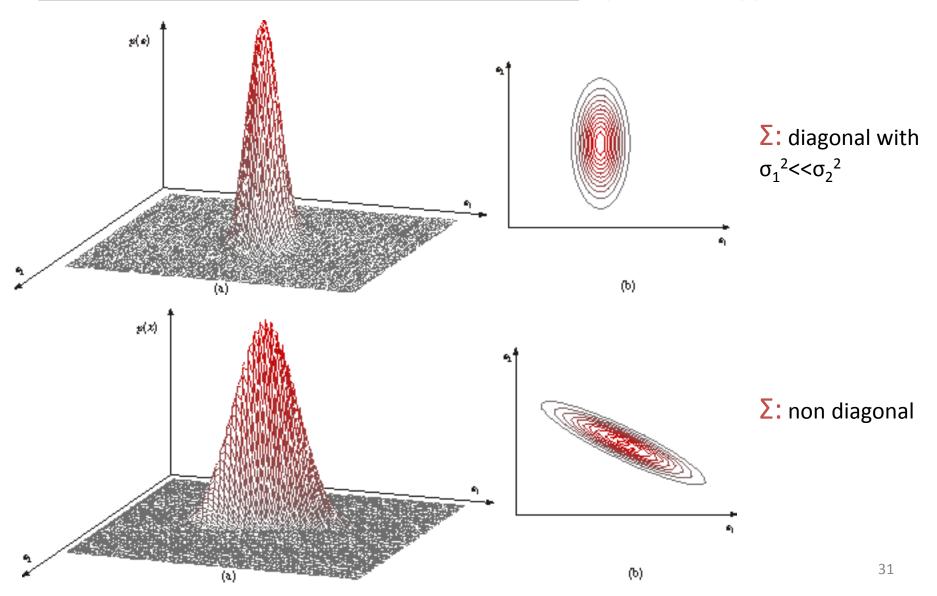
$$p(x) = \frac{1}{(2\pi)^{l/2} |\Sigma|^{1/2}} \exp(-\frac{(x-\mu)^{\mathrm{T}} \Sigma^{-1} (x-\mu)}{2})$$

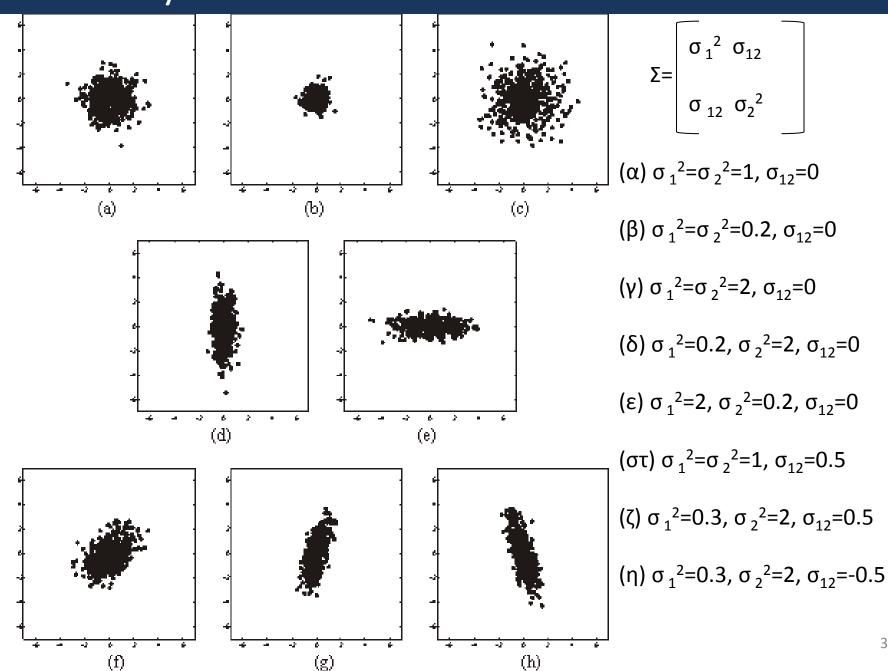
$$E[x]=\mu$$
 $E(x) = Σ$.

•Multi dim. normal (Gaussian) distribution $x \sim N(\mu, \Sigma)$ or $N(x \mid \mu, \Sigma)$:



•Multi dim. normal (Gaussian) distribution $x \sim N(\mu, \Sigma)$ or $N(x \mid \mu, \Sigma)$:

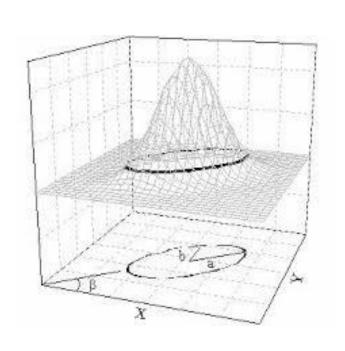




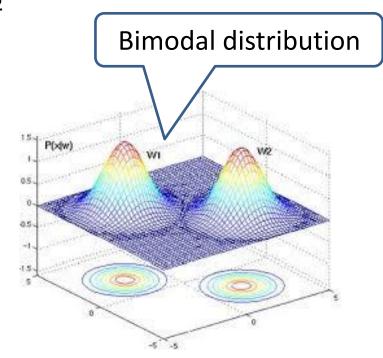
32

Continuous RV distributions (cont.)

Other examples of multi-dimensional pdfs



Two-dim. pdfs



Likelihood function

- Let $X = \{x_1, x_2, ..., x_N\}$ a set of independent data vectors
- Let $p_{\theta}(\cdot)$ be a pdf belonging to a known parametric set of pdf functions of parameter vector $\boldsymbol{\theta}$.
- $p(\mathbf{x}) = p_{\theta}(\mathbf{x}) \equiv p(\mathbf{x}; \boldsymbol{\theta}).$

Examples:

- $ightharpoonup \operatorname{If} p_{\theta}(x)$ is normal distribution parameterized on the mean vector μ , θ will simply be μ .
- $ightharpoonup \operatorname{fl} p_{\theta}(x)$ is normal distribution parameterized on both the mean vector μ and the cov. matrix Σ , θ will contain the coordinates of both μ and Σ .

Likelihood function of
$$\boldsymbol{\theta}$$
 wrt \boldsymbol{X} : $p(X;\boldsymbol{\theta}) = p(\boldsymbol{x}_1,...,\boldsymbol{x}_N;\boldsymbol{\theta}) = \prod_{i=1}^N p(\boldsymbol{x}_i;\boldsymbol{\theta})$

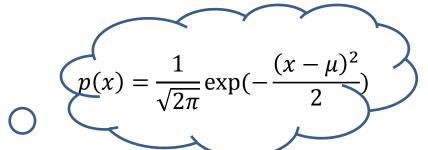
Log-likelihood function of θ wrt X:

$$L(\boldsymbol{\theta}) = \ln p(X; \boldsymbol{\theta}) = \ln p(\boldsymbol{x}_1, \dots, \boldsymbol{x}_N; \boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i; \boldsymbol{\theta})$$

Likelihood function

Example:

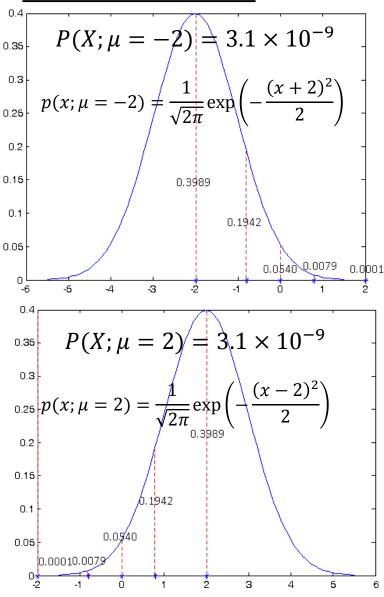
 $\bullet X = \{-2, -1, 0, 1, 2\}$

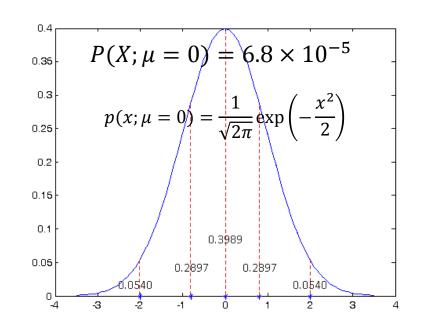


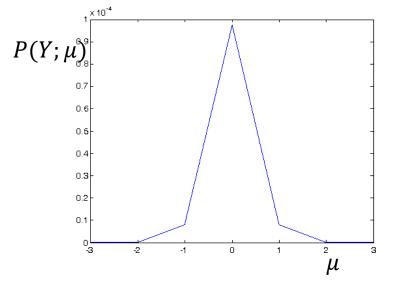
- •Consider the parametric set of normal distributions of unit variance, parameterized on μ .
- •The likelihood of μ wrt X is

$$p(X; \mu) = p(-2, -1, 0, 1, 2; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(-2-\mu)^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(-1-\mu)^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(0-\mu)^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(1-\mu)^2}{2}\right) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(2-\mu)^2}{2}\right)$$

Likelihood function





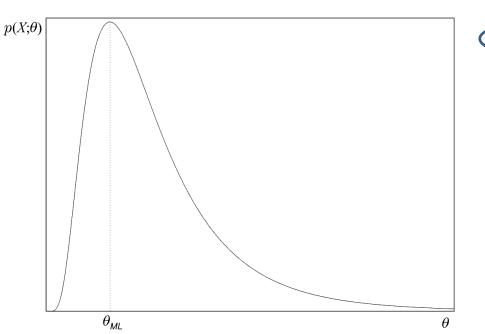


Maximum likelihood (ML) method:

Given a set of independent data vectors $Y = \{x_1, x_2, ..., x_N\}$, estimate the parameter vector θ as the maximum of the likelihood $(p(Y; \theta))$ or the log-likelihood $(L(\theta))$ function.

$$\widehat{\boldsymbol{\theta}}_{ML} = argmax_{\boldsymbol{\theta}} \ p(Y; \boldsymbol{\theta}) \longrightarrow$$

$$\widehat{\boldsymbol{\theta}}_{ML} = argmax_{\boldsymbol{\theta}} \ p(Y; \boldsymbol{\theta}) \rightarrow \widehat{\boldsymbol{\theta}}_{ML} : \frac{\partial L(\boldsymbol{\theta})}{\boldsymbol{\circ} \partial \boldsymbol{\theta}} = \sum_{\kappa=1}^{N} \frac{1}{p(\boldsymbol{x}_{k}; \boldsymbol{\theta})} \frac{\partial p(\boldsymbol{x}_{k}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$



Since In(·) is an increasing function, $p(Y; \theta)$ and $L(\theta)$ share the same maxima.

Maximum likelihood (ML) method:

Assuming that

- the chosen model $p(x; \theta)$ is correct and
- there exists a true parameter θ_o ,

the ML estimator

- (a) is asymptotically unbiased $lim_{N\to\infty}E[\widehat{\boldsymbol{\theta}}_{ML}]=\boldsymbol{\theta}_o$
- (b) is asymptotically consistent $\lim_{N\to\infty} Prob\{\|\widehat{\boldsymbol{\theta}}_{ML} \boldsymbol{\theta}_o\|\} = 0$
- (c) is asymptotically efficient (it achieves the Cramer-Rao lower bound)

The **pdf** of the ML estimator approaches the normal distribution with mean θ_0 , as $N \rightarrow \infty$.

Maximum likelihood method

Example 1:

- -Let Y be a set of N (independent from each other) data points, \mathbf{x}_i , $i=1,\ldots,N$, generated by a normal distribution $p(\mathbf{x}; \boldsymbol{\theta})$ of known covariance matrix and unknown mean.
- -Determine the ML estimate of the mean μ of $p(x; \theta)$, based on Y.

Solution:

- -The unknown parameter vector in this case is the mean vector μ , i.e. $\theta \equiv \mu$.
- -It is

$$p(\mathbf{x}; \boldsymbol{\theta}) \equiv p(\mathbf{x}; \boldsymbol{\mu}) = \frac{1}{(2\pi)^{l/2} |\Sigma|^{1/2}} \cdot exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right) \Longrightarrow$$

$$\ln p(\mathbf{x}; \boldsymbol{\mu}) = \ln \frac{1}{(2\pi)^{l/2} |\Sigma|^{1/2}} - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) = C - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

Then

$$L(\boldsymbol{\mu}) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i; \boldsymbol{\mu}) = NC - \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})$$

Maximum likelihood method

Example 1 (cont.):

Setting the gradient of $L(\mu)$ wrt μ equal to 0 we have

$$\frac{\partial L(\boldsymbol{\mu})}{\partial \boldsymbol{\mu}} = \frac{\partial}{\partial \boldsymbol{\mu}} \left(NC - \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}) \right) = \mathbf{0} \iff$$

$$\sum_{i=1}^{N} \Sigma^{-1}(x_i - \mu) = \mathbf{0} \Leftrightarrow \sum_{i=1}^{N} (x_i - \mu) = \mathbf{0} \Leftrightarrow \sum_{i=1}^{N} x_i - N\mu = \mathbf{0}$$

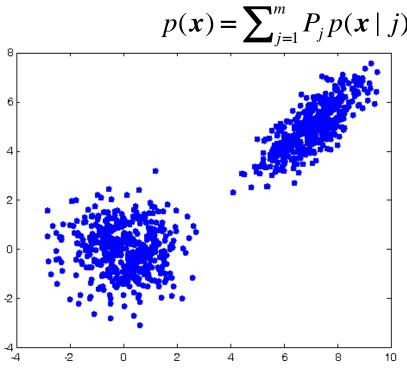
$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Remark: The ML estimate for the covariance matrix is

$$\Sigma_{ML} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^T$$

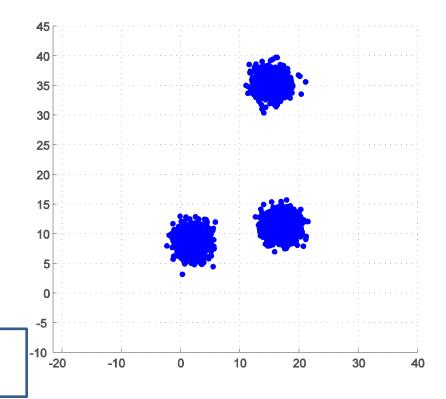
Mixture models - The Expectation - Maximization (EM) algorithm

Mixture model: A weighted sum of known parametric form pdfs.



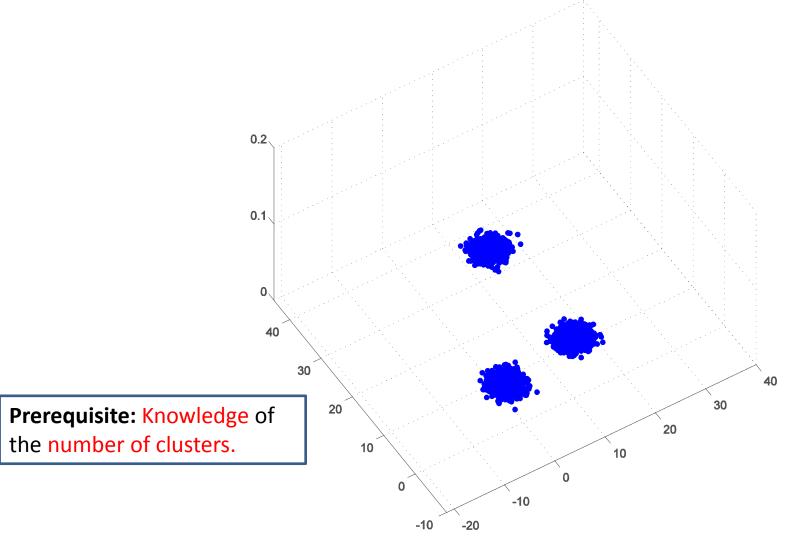
$$p(x) = \sum_{j=1}^{m} P_j p(x \mid j), \quad \sum_{j=1}^{m} P_j = 1, \quad \int_{-\infty}^{+\infty} p(x \mid j) = 1$$

- Assume that p(x) models the distribution of the data in X (each pdf models a cluster).
- The aim is to move each pdf so that to "cover" the area in the data space where the vectors of each cluster lie (mixture decomposition).

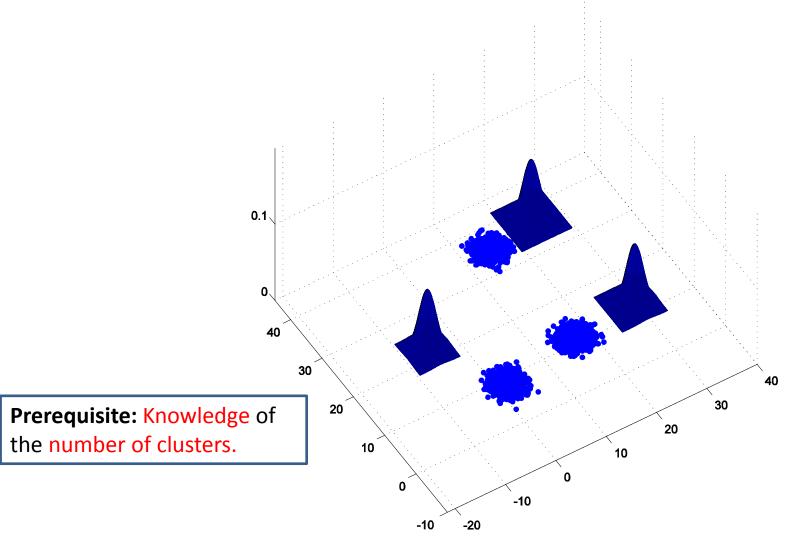


Prerequisite: Knowledge of the number of clusters.

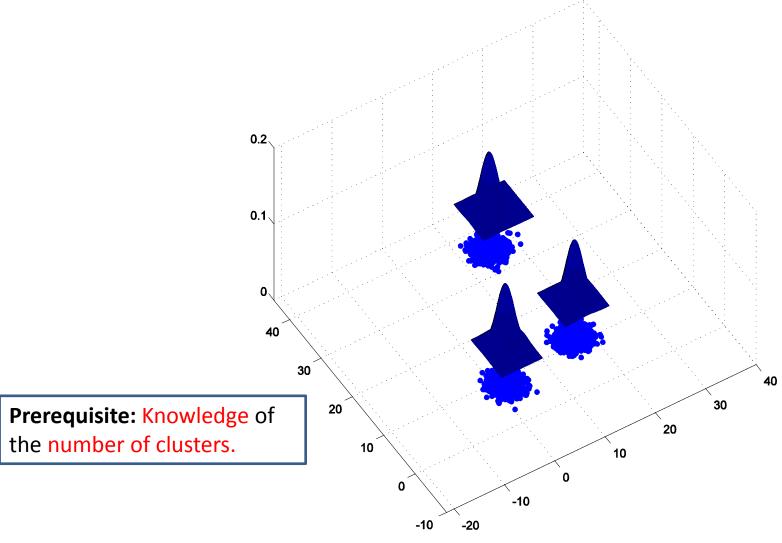
- •Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
- •Move iteratively the distributions each one above a cluster, optimizing a criterion.



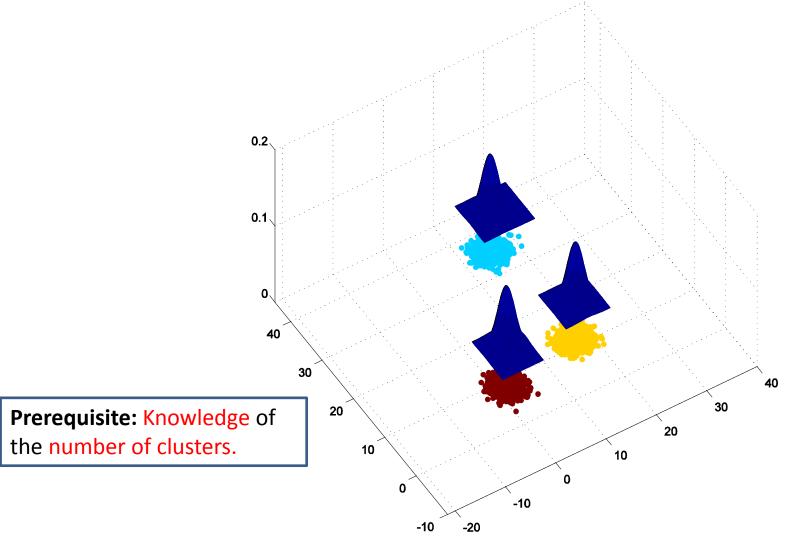
- •Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
- •Move iteratively the distributions each one above a cluster, optimizing a criterion.



- •Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
- •Move iteratively the distributions each one above a cluster, optimizing a criterion.



- •Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
- •Move iteratively the distributions each one above a cluster, optimizing a criterion.



- •Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
- •Move iteratively the distributions each one above a cluster, optimizing a criterion.

Let $X = \{x_1, x_2, ..., x_N\}$ be a set of data points.

Each vector belongs exclusively to a single cluster, with a certain probability.

Each cluster is **modeled** by a pdf p(x|j), parameterized by the vector θ_j . Let:

$$\mathbf{\Theta} = \{\mathbf{\theta}_1, \mathbf{\theta}_2, \dots, \mathbf{\theta}_m\}$$

 $P = \{P_1, P_2, \dots, P_m\}$, the set of a priori probabilities of the clusters.

 $P(j|x) \equiv P(j|x;\theta_j)$ the (a posteriori) probability of cluster j, given x.

 $p(x|j) \equiv p(x|j; \theta_i)$ the pdf that models cluster j.

It is
$$p(x) = \sum_{j=1}^{m} p(x,j) = \sum_{j=1}^{m} p(x|j) P_j$$

Bayes rule
$$P(j|x) = \frac{p(x,j)}{p(x)} = \frac{p(x|j)P_j}{p(x)}$$

It is

•
$$\sum_{j=1}^{m} P(j|x_i) = 1$$
, $i = 1, ..., N$

$$\bullet \sum_{j=1}^m P_j = 1.$$

ML:
$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln(p(\boldsymbol{x}_i; \boldsymbol{\theta}))$$

Define the cost function

$$\ln p(X; \Theta, P) = \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln p(\mathbf{x}_i, j; \boldsymbol{\theta}_j)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_i) \ln(p(\bar{\mathbf{x}}_i|j; \boldsymbol{\theta}_j) P_j)$$

When $\ln p(X; \Theta, P)$ is **maximized**?

When large $P(j|x_i)$'s are multiplied by large $\ln p(x_i, j; \theta_i)$'s.

For fixed
$$\theta_j$$
's: Use the Bayes rule $P(j|x) = \frac{p(x|j;\theta_j)P_j}{p(x;\theta)}$

For **fixed** P(j|x)'s: Solve the following maximization problem

$$\max_{\theta,P} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j})$$

$$= \max_{\theta,P} \left[\sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})) + \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln P_{j} \right]$$

Subject to the constraint $\sum_{j=1}^{m} P_j = 1$.

Mixture models – Expectation-Maximization (EM) algorithm

For <u>fixed θ_j 's:</u> Use the Bayes rule $\underline{P(j|x)} = \frac{p(x|j;\theta_j)P_j}{p(x;\theta)}$

For fixed P(j|x)'s: Solve the following maximization problem

$$max_{\Theta,P} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})P_{j}) =$$

$$max_{\Theta} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})) + max_{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln P_{j}$$

$$= max_{\Theta} \sum_{j=1}^{m} \sum_{i=1}^{N} P(j|\mathbf{x}_{i}) \ln(p(\mathbf{x}_{i}|j;\boldsymbol{\theta}_{j})) + max_{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\mathbf{x}_{i}) \ln P_{j}$$

Subject to the constraint $\sum_{j=1}^{m} P_j = 1$.

The above maximization problem is equivalent to the following maximization sub-problems

$$-\boldsymbol{\theta}_{j} = argmax_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{N} P(j|\boldsymbol{x}_{i}) \ln \left(p(\boldsymbol{x}_{i}|j;\boldsymbol{\theta}_{j}) \right), \boldsymbol{j} = 1, ..., m$$

$$-P \equiv \{P_{1}, P_{2}, ..., P_{m}\} = argmax_{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P(j|\boldsymbol{x}_{i}) \ln P_{j}, \boldsymbol{s.t.} \sum_{j=1}^{m} P_{j} = 1 \iff$$

$$P_{j} = \frac{1}{N} \sum_{i=1}^{N} P(j|\mathbf{x_{i}}), j = 1, ..., m$$

Generalized probabilistic Algorithmic Scheme (GPrAS)

- Choose $\theta_j(0)$, $P_j(0)$ as initial estimates for θ_j , P_j , respectively, j=1,...,m
- *t*=0
- Repeat

```
- For i=1 to N % Expectation step o For j=1 to m P(j|\boldsymbol{x}_i;\boldsymbol{\Theta}^{(t)},P^{(t)}) = \frac{p(x_i|j;\theta_j^{(t)})P_j^{(t)}}{\sum_{q=1}^m p(x_i|q;\theta_q^{(t)})P_q^{(t)}} \equiv \gamma_{ji}^{(t)} o End {For-i}
```

-t=t+1

- For
$$j=1$$
 to m % Parameter updating – Maximization step o Set
$$\boldsymbol{\theta}_j^{(t)} = argmax_{\boldsymbol{\theta}_j} \sum\nolimits_{i=1}^N \gamma_{ji}^{(t-1)} \ln \left(p(\boldsymbol{x}_i \big| j; \boldsymbol{\theta}_j) \right), j=1, \dots, m$$

$$P_j^{(t)} = \frac{1}{N} \sum\nolimits_{i=1}^N \gamma_{ji}^{(t-1)}, j=1, \dots, m$$
 - End {For- j }

Until a termination criterion is met.

Remark: The above algorithm is an instance of the more general Expectation-Maximization (EM) framework.

GPrAS – The case of normal pdfs

Each cluster is modeled by a normal distribution

$$p(\mathbf{x}|j;\mu_{j},\Sigma_{j}) = \frac{1}{(2\pi)^{l}|\Sigma_{j}|^{1/2}} \exp\left(-\frac{(\mathbf{x}-\mu_{j})^{T}\Sigma_{j}^{-1}(\mathbf{x}-\mu_{j})}{2}\right), j = 1, ... m$$

In this case $\theta_j = \{\mu_j, \Sigma_j\}$.

$$\{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\} = argmax_{\{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\}} \sum_{i=1}^{N} P(j|\boldsymbol{x}_{i}) \ln \left(p(\boldsymbol{x}_{i}|j; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}) \right)$$

Equating the gradient of the above function wrt μ_j , Σ_j to ${\bf 0}$ and ${\bf 0}$, respectively, we have

$$\mu_j = \frac{\sum_{i=1}^N P(j|\mathbf{x_i})\mathbf{x_i}}{\sum_{i=1}^N P(j|\mathbf{x_i})}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{N} P(j|x_{i})(x_{i} - \mu_{j})(x_{i} - \mu_{j})^{T}}{\sum_{i=1}^{N} P(j|x_{i})}$$

<u>GPrAS – The normal pdfs case</u>

- Choose $\mu_j(0)$, $\Sigma_j(0)$, $P_j(0)$ as initial estimates for μ_j , Σ_j , P_j , resp., j=1,...,m
- *t*=0
- Repeat

```
- For i=1 to N % Expectation step o For j=1 to m P(j|\boldsymbol{x}_i;\boldsymbol{\Theta}^{(t)},P^{(t)}) = \frac{p(x_i|j;\boldsymbol{\theta}_j^{(t)})P_j^{(t)}}{\sum_{q=1}^m p(x_i|q;\boldsymbol{\theta}_q^{(t)})P_q^{(t)}} \equiv \gamma_{ji}^{(t)} o End {For-i}
```

-t=t+1

$$\begin{array}{l} - \operatorname{For} j = 1 \ \operatorname{to} \ m \ \% \ \textit{Parameter updating} - \textit{Maximization step} \\ \operatorname{o} \operatorname{Set} \\ \boldsymbol{\mu}_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}}, \qquad \Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}\right)^{T}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}} \ j = 1, \dots, m \\ P_{j}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ji}^{(t-1)}, j = 1, \dots, m \\ - \operatorname{End} \left\{ \operatorname{For-} j \right\} \end{array}$$

Until a termination criterion is met.

<u>GPrAS – The normal pdfs case</u>

- Choose $\mu_j(0)$, $\Sigma_j(0)$, $P_j(0)$ as initial estimates for μ_j , Σ_j , P_j , resp., j=1,...,m
- *t*=0
- Repeat

```
- \text{ For } i = 1 \text{ to } N \text{ % Fxnectation sten} \\ P(C_j | \mathbf{x}; \Theta(t)) \\ = \frac{|\Sigma_j(t)|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_j(t))^T \Sigma_j^{-1}(t)(\mathbf{x} - \mu_j(t))\right) P_j(t)}{\sum_{k=1}^{m} |\Sigma_k(t)|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_k(t))^T \Sigma_k^{-1}(t)(\mathbf{x} - \mu_k(t))\right) P_k(t)} \\ \text{o End {For-} i} \\ - \text{ End {For-} i}
```

-t=t+1

$$\begin{array}{l} - \operatorname{For} j = 1 \ \operatorname{to} \ m \ \% \ \textit{Parameter updating} - \textit{Maximization step} \\ \operatorname{o} \operatorname{Set} \\ \boldsymbol{\mu}_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} \boldsymbol{x}_{i}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}}, \qquad \boldsymbol{\Sigma}_{j}^{(t)} = \frac{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)} (\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}_{j}\right)^{T}}{\sum_{i=1}^{N} \gamma_{ji}^{(t-1)}} \ j = 1, \dots, m \\ P_{j}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ji}^{(t-1)}, j = 1, \dots, m \\ - \operatorname{End} \left\{ \operatorname{For-} j \right\} \end{array}$$

Until a termination criterion is met.

Remark:

- The above scheme is more computationally demanding since it requires the inversion of the m covariance matrices at each iteration step. Two ways to deal with this problem are:
 - > The use of a single covariance matrix for all clusters.
 - > The use of different diagonal covariance matrices.

Example: (a) Consider three two-dimensional normal distributions with mean values:

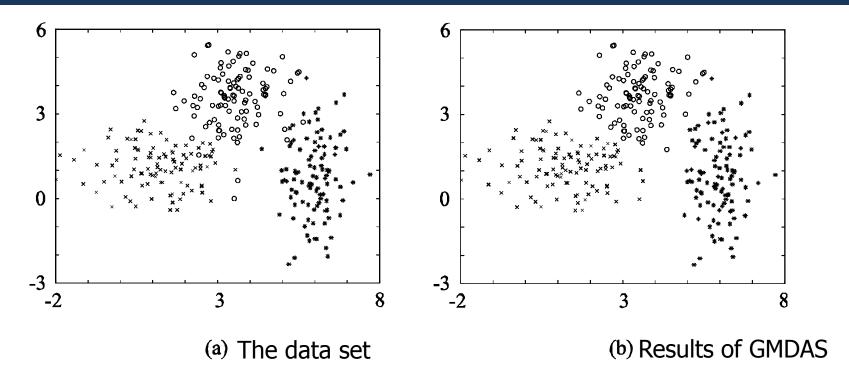
$$\mu_1 = [1, 1]^T, \mu_2 = [3.5, 3.5]^T, \mu_3 = [6, 1]^T$$

and covariance matrices

$$\Sigma_1 = \begin{bmatrix} 1 & -0.3 \\ -0.3 & 1 \end{bmatrix}, \quad \Sigma_2 = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}, \quad \Sigma_3 = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix},$$

respectively.

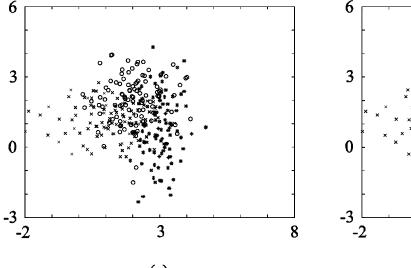
A group of 100 vectors stem from each distribution. These form the data set X.



Confusion matrix:

	Cluster 1	Cluster 2	Cluster 3
1 st distribution	99	0	1
2 nd distribution	0	100	0
3 rd distribution	3	4	93

(b) The same as (a) but now $\underline{\mu}_1 = [1, 1]^T$, $\underline{\mu}_2 = [2, 2]^T$, $\underline{\mu}_3 = [3, 1]^T$ (The clusters are



The data set

Confusion matrix:

	Cluster 1	Cluster 2	Cluster 3
1 st distribution	85	4	11
2 nd distribution	35	56	9
3 rd distribution	26	0	74

Example
$$x_1 = [0\ 0]^T, x_2 = [3\ 0]^T, x_3 = [0\ 3]^T, x_4 = [12\ 12]^T, x_5 = [15\ 12]^T, x_6 = [12\ 15]^T$$

Initially:
$$\theta_1(0) = [0, 5]^T$$

$$\theta_2(0) = [0, 6]^T$$

$$P_1(0) = 0.1$$

$$P_2(0) = 0.9$$

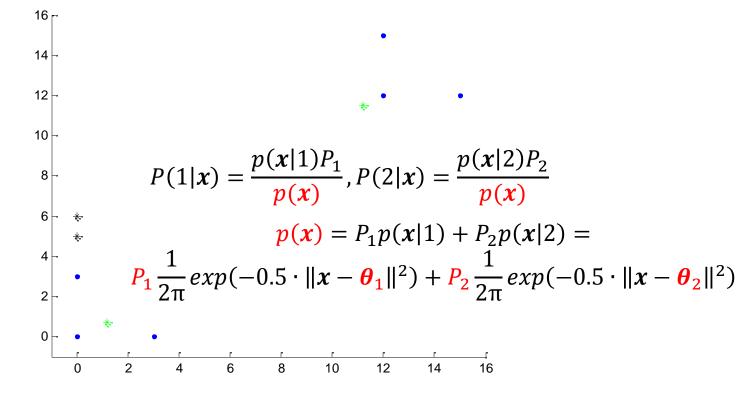
$$\theta_1 = \frac{1}{2\pi} exp(-0.5 \cdot ||x - \theta_1||^2), \qquad P(1|x) = \frac{p(x|1)P_1}{p(x)}$$

$$p(x|2) = \frac{1}{2\pi} exp(-0.5 \cdot ||x - \theta_2||^2), \qquad P(2|x) = \frac{p(x|2)P_2}{p(x)}$$

$$p(x) = P_1p(x|1) + P_2p(x|2) = P_1\frac{1}{2\pi} exp(-0.5 \cdot ||x - \theta_2||^2)$$

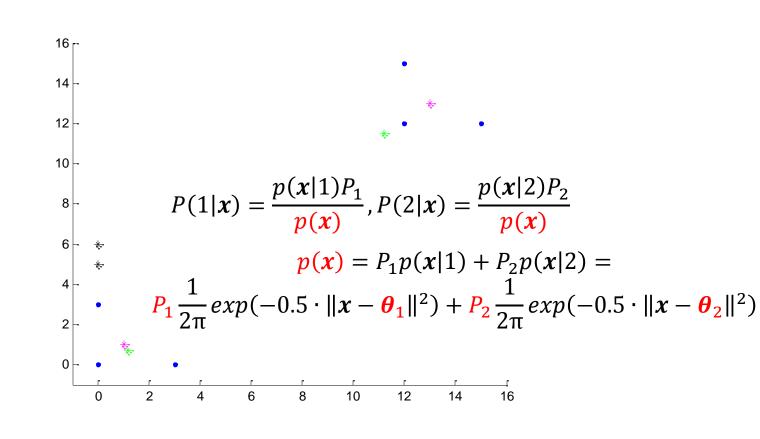
$$\ln p(X; \theta, P) = \sum_{i=1}^{N} [P(1|x_i) \ln(p(x_i|1; \theta_1)P_1) + P(2|x_i) \ln(p(x_i|2; \theta_2)P_2)]$$
58

Example
$$x_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T, x_2 = \begin{bmatrix} 3 & 0 \end{bmatrix}^T x_3 = \begin{bmatrix} 0 & 3 \end{bmatrix}^T, x_4 = \begin{bmatrix} 12 & 12 \end{bmatrix}^T, x_5 = \begin{bmatrix} 15 & 12 \end{bmatrix}^T, x_6 = \begin{bmatrix} 12 & 15 \end{bmatrix}^T$$



1 st itera A poste	tion: riori prob	S	0 2	4 6	8			,
	x_1	x_2	x_3	x_4	x_5	x_6	$\theta_1(1) = [1.1572 0.6906]^T$ $\theta_2(1) = [11.1864 11.5207]$	T
P(1 x)	0.9645	0.9645	0.5751	0.0002	0.0002	0.0000	$P_1(1) = [11.1664 \ 11.5207]$ $P_1(1) = 0.4174$	
P(2 x)	0.0355	0.0355	0.4249	0.9998	0.9998	1.0000	_ 1 1	

Example
$$x_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T, x_2 = \begin{bmatrix} 3 & 0 \end{bmatrix}^T x_3 = \begin{bmatrix} 0 & 3 \end{bmatrix}^T, x_4 = \begin{bmatrix} 12 & 12 \end{bmatrix}^T, x_5 = \begin{bmatrix} 15 & 12 \end{bmatrix}^T, x_6 = \begin{bmatrix} 12 & 15 \end{bmatrix}^T$$

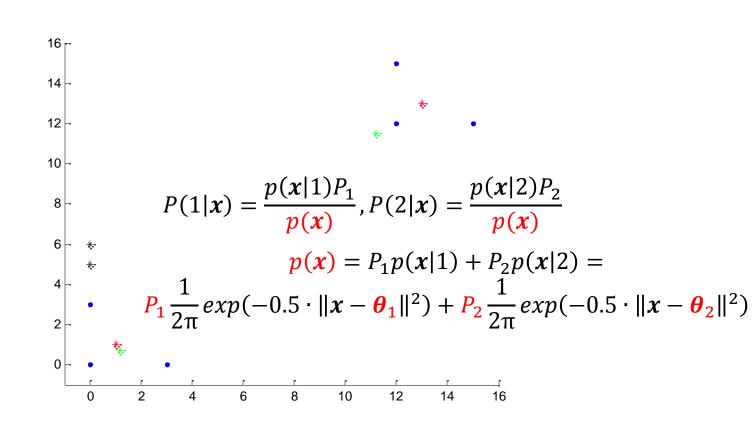


2nd iteration:

A posteriori probs

	x_1	x_2	x_3	x_4	x_5	x_6	$\theta_1(2) = [1 \ 1]^T$ $\theta_2(2) = [13 \ 13]^T$	
P(1 x)	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	$P_1(2) = [13 \ 15]$	
P(2 x)	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	$P_2(2) = 0.5$	60

Example
$$x_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T, x_2 = \begin{bmatrix} 3 & 0 \end{bmatrix}^T x_3 = \begin{bmatrix} 0 & 3 \end{bmatrix}^T, x_4 = \begin{bmatrix} 12 & 12 \end{bmatrix}^T, x_5 = \begin{bmatrix} 15 & 12 \end{bmatrix}^T, x_6 = \begin{bmatrix} 12 & 15 \end{bmatrix}^T$$



3rd iteration:

A posteriori probs

A posteriori probs							0 (2) [4 4]T	
	x_1	x_2	x_3	x_4	x_5	x_6	$\theta_1(3) = [1 \ 1]^T$ $\theta_2(3) = [13 \ 13]^T$	
P(1 x)	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	$P_1(3) = 0.5$	
P(2 x)	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	$P_2(3) = 0.5$	61