Clustering algorithms Konstantinos Koutroumbas

Unit 5

- k-medoids clustering algorithms (PAM, CLARA, CLARANS) - Probabilistic CFO clustering algorithms (EM)

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

k-Medoids Algorithms

- Each cluster is represented by a vector selected among the elements of X (medoid).
- A cluster contains
- Its medoid
- All vectors in X that
o Are not used as medoids in other clusters
o Lie closer to its medoid than the medoids representing other clusters.

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

k-Medoids Algorithms

Let

- Θ be the set of medoids of all clusters,
- I_{Θ} the set of indices of the points in X that constitute Θ and
- $I_{X-\Theta}$ the set of indices of the points that are not medoids.

Obtaining the set of medoids Θ that best represents the data set, X is equivalent to minimizing the following cost function

$$
J(\Theta, U)=\sum_{i \in I_{X-\Theta}} \sum_{j \in I_{\Theta}} u_{i j} d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

with

$$
u_{i j}=\left\{\begin{array}{lc}
1, & \text { if } d\left(x_{i}, x_{j}\right)=\min _{q \in I_{\Theta}} d\left(x_{i}, x_{q}\right), \quad i=1, \ldots, N \\
0, & \text { otherwise }
\end{array}\right.
$$

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

k-Medoids Algorithms

Example 3:

(a) The five-point two-dimensional set stems from the discrete domain $D=\{1,2,3,4, \ldots\} \times\{1,2,3,4, \ldots\}$. Its medoid is the circled point and its mean is the " + " point, which does not belong to D.
(b) In the six-point two-dimensional set , the point $(9,2)$ can be considered as an outlier. While the outlier affects significantly the mean of the set, it does not affect its medoid.

(a)

(b)

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
Representing clusters with mean values vs representing clusters with medoids

Mean Values	Medoids
1. Suited only for continuous domains	1. Suited for either cont. or discrete domains
2. Algorithms using means are sensitive to outliers	2. Algorithms using medoids are less sensitive to outliers
3. The mean possess a clear geometrical and statistical meaning	3. The medoid has not a clear geometrical meaning
4. Algorithms using means are not computationally demanding	4. Algorithms using medoids are more computationally demanding

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
k-Medoids Algorithms
Algorithms to be considered

- PAM (Partitioning Around Medoids)
- CLARA (Clustering LARge Applications)
- CLARANS (디ustering Large Applications based on RANdomized Search)

The PAM algorithm

- The number of clusters m is required a priori.

Definitions-preliminaries

- Two sets of medoids Θ and Θ^{\prime}, each one consisting of m elements, are called neighbors if they share $m-1$ elements.
- A set Θ of medoids with m elements can have $m(N-m)$ neighbors.
- Let $\Theta_{i j}$ denote the neighbor of Θ that results if $\boldsymbol{x}_{j}, j \in I_{X-\Theta}$ replaces $\boldsymbol{x}_{i}, i \in I_{\Theta}$.
- Let $\Delta J_{i j}=J\left(\Theta_{i j}, U_{i j}\right)-J(\Theta, U)$.

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm

- Determination of Θ that best represents the data
- Generate a set Θ of m medoids, randomly selected out of X.
- (A) Determine the neighbor $\Theta_{q r}, q \in I_{\theta}, r \in I_{X-\Theta}$ among the $m(N-m)$ neighbors of Θ for which $\Delta J_{q r}=\min _{i \in I_{\Theta,}, j \in I_{X-\Theta}} \Delta J_{i j}$.
-If $\Delta J_{q r}<0$ then - 。 oReplace Θ by $\Theta_{q r}$

$$
\Delta J_{q r}<0 \Leftrightarrow J\left(\Theta_{q r}, U_{q r}\right)<J(\Theta, U)
$$ oGo to (A)

-End

- Assignment of points to clusters
- Assign each $\boldsymbol{x} \in I_{X-\Theta}$ to the cluster represented by the closest to \boldsymbol{x} medoid.

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm

 Computation of $\Delta J_{i j}$.It is defined as:

$$
\begin{aligned}
\Delta J_{i j}= & J\left(\Theta_{i j}, U_{i j}\right)-J(\Theta, U)=\sum_{s \in I_{X-\theta_{i j}}} \sum_{t \in I_{\theta}{ }_{i j}} u_{s t} d\left(\boldsymbol{x}_{s}, \boldsymbol{x}_{t}\right)-\sum_{s \in I_{X-\Theta}} \sum_{t \in I_{\Theta}} u_{s t} d\left(\boldsymbol{x}_{s}, \boldsymbol{x}_{t}\right) \\
& \equiv \sum_{h \in I_{X-\Theta}} C_{h i j}
\end{aligned}
$$

where $C_{h i j}$ is the difference in J, resulting from the (possible) assignment of the vector $\boldsymbol{x}_{h} \in X-\Theta$ from the cluster it currently belongs to another, as a consequence of the replacement of $\boldsymbol{x}_{i} \in \Theta$ by $\boldsymbol{x}_{j} \in X-\Theta$.

For the computation of $C_{h i j}$ associated with a specific each $x_{h} \in X-\Theta$ it is required

- The distance of x_{h} from its closest medoid in Θ
- The distance of x_{h} from its next to closest medoid in Θ.
- The distance of \boldsymbol{x}_{h} from the newly inserted medoid in $\Theta_{i j}$.

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The PAM algorithm (cont.) Computation of $C_{h i j}$:
\boldsymbol{x}_{h} belongs to the cluster represented by $\boldsymbol{x}_{i}\left(\boldsymbol{x}_{h 2} \Theta\right.$ denotes the second closest to \boldsymbol{x}_{h} representative) and $d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{j}\right) \geq d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h 2}\right.$. Then

$$
C_{h i j}=d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h 2}\right) _d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{i}\right) \geq 0
$$

$$
\begin{aligned}
& \text { Contribution of } \\
& \boldsymbol{x}_{h} \text { to } J\left(\Theta_{i j}, U_{i j}\right)
\end{aligned}
$$

20
\boldsymbol{x}_{h} belongs to the cluster represented by $\boldsymbol{x}_{i}\left(\boldsymbol{x}_{h 2} \Theta\right.$ denotes the second closest to \boldsymbol{x}_{h} representative) and $d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{j}\right) \leq d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h 2}\right.$. Then
$C_{h i j}=d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{j}\right)-d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{i}\right)(><) 0$

Contribution of
 x_{h} to $J\left(\Theta_{i j}, U_{i j}\right)$

$$
\begin{aligned}
& \text { Contribution of } \\
& \boldsymbol{x}_{h} \text { to } J(\Theta, U) \\
& \hline
\end{aligned}
$$

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The PAM algorithm (cont.) Computation of $C_{h i j}$ (cont.):
\boldsymbol{x}_{h} is not represented by \boldsymbol{x}_{i} ($\boldsymbol{x}_{h 1}$ denotes the closest to \boldsymbol{x}_{h} medoid) and $d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h 1} \leq d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{j}\right)\right.$. Then

\boldsymbol{x}_{h} is not represented by \boldsymbol{x}_{i} ($\boldsymbol{x}_{h 1}$ denotes the closest to \boldsymbol{x}_{h} medoid) and $d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h 1}\right)>d\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{j}\right)$. Then

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The PAM algorithm (cont.)
Remarks:

- Experimental results show the PAM works satisfactorily with small data sets.
- Its computational complexity is $O\left(m(N-m)^{2}\right)$. Unsuitable for large data sets.

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

The PAM algorithm (Example)

Data set: $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{6}\right\}$, with
$x_{1}=[0,3]^{T}, x_{2}=[1,3]^{T}, x_{3}=[2,3]^{T}, x_{4}=[0,0]^{T}, x_{5}=[1,0]^{T}, x_{1}=[2,0]^{T}$.
Set of medoids: $\Theta=\left\{x_{4}, x_{5}\right\}$
Computation of $J(\Theta, U)$ (Squared Euclidean distance is considered):

$$
\begin{aligned}
& \boldsymbol{x}_{1} \rightarrow d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{4}\right)=9<10=d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{5}\right) \rightarrow u_{14}=1, u_{15}=0 \\
& \boldsymbol{x}_{2} \rightarrow d\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{4}\right)=10>9=d\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{5}\right) \rightarrow u_{24}=0, u_{25}=1 \\
& \boldsymbol{x}_{3} \rightarrow d\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right)=13>10=d\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right) \rightarrow u_{34}=0, u_{35}=1 \\
& \boldsymbol{x}_{4} \rightarrow d\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{4}\right)=0<1=d\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right) \rightarrow u_{44}=1, u_{45}=0 \\
& \boldsymbol{x}_{5} \rightarrow d\left(\boldsymbol{x}_{5}, \boldsymbol{x}_{4}\right)=1>0=d\left(\boldsymbol{x}_{5}, \boldsymbol{x}_{5}\right) \rightarrow u_{54}=0, u_{55}=1 \\
& \boldsymbol{x}_{6} \rightarrow d\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{4}\right)=2>1=d\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{5}\right) \rightarrow u_{64}=0, u_{65}=1
\end{aligned}
$$

$J(\Theta, U)=$	$u_{14} d\left(x_{1}, x_{4}\right)+$	$u_{15} d\left(x_{1}, x_{5}\right)+$	$1 \cdot 9+$	$0 \cdot 10+$	29
	$u_{24} d\left(x_{1}, x_{4}\right)+$	$u_{25} d\left(x_{1}, x_{5}\right)+$	$0 \cdot 10+$	$1 \cdot 9+$	
	$u_{34} d\left(x_{1}, x_{4}\right)+$	$u_{35} d\left(x_{1}, x_{5}\right)+$	$0 \cdot 13+$	$1 \cdot 10+$	
	$u_{44} d\left(x_{1}, x_{4}\right)+$	$u_{45} d\left(x_{1}, x_{5}\right)+$	$1 \cdot 0+$	$0 \cdot 1+$	
	$u_{54} d\left(x_{1}, x_{4}\right)+$	$u_{55} d\left(x_{1}, x_{5}\right)+$	$0 \cdot 1+$	$1 \cdot 0+$	
	$u_{64} d\left(\boldsymbol{x}_{1}, x_{4}\right)+$	$u_{65} d\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{5}\right)$	$0 \cdot 2+$	$1 \cdot 1$	12

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}
$$

The PAM algorithm (Example)

Data set: $X=\left\{\boldsymbol{x}_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$, with
$\boldsymbol{x}_{1}=[0,3]^{T}, \boldsymbol{x}_{2}=[1,3]^{T}, \boldsymbol{x}_{3}=[2,3]^{T}, \boldsymbol{x}_{4}=[0,0]^{T}, \boldsymbol{x}_{5}=[1,0]^{T}, \boldsymbol{x}_{1}=[2,0]^{T}$.
Set of medoids: $\Theta=\left\{x_{4}, x_{5}\right\}$

It is $\Delta J_{42}=\min _{i \in I_{\Theta}, j \in I_{X-\Theta}} \Delta J_{i j}=-25<0$
Thus, according to PAM, Θ will be replaced by Θ_{42}.

$$
\begin{aligned}
& \Theta_{42}=\left\{x_{2}, x_{5}\right\} \\
& J\left(\Theta_{42}, U_{42}\right)=4 \\
& \Delta J_{42}=4-29=-25 \\
& \Theta_{43}=\left\{x_{3}, \boldsymbol{x}_{5}\right\} \\
& J\left(\Theta_{43}, U_{43}\right)=5 \\
& \Delta J_{43}=5-29=-24 \\
& \boldsymbol{x}_{4} \leftrightarrow x_{3} \\
& \boldsymbol{x}_{4} \leftrightarrow x_{1} \quad \begin{array}{l}
\Theta=\left\{\boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right\} \\
J(\Theta, U)=29
\end{array} \\
& \boldsymbol{x}_{5} \leftrightarrow \boldsymbol{x}_{6} \quad \boldsymbol{x}_{5} \leftrightarrow x_{3} \quad \ddot{\boldsymbol{x}_{5} \leftrightarrow x_{2}} \\
& \Theta_{41}=\left\{x_{1}, x_{5}\right\} \\
& J\left(\Theta_{41}, U_{41}\right)=5 \\
& \Delta J_{41}=5-29=-24 \\
& \begin{array}{c}
\Theta_{51}=\left\{\boldsymbol{x}_{4}, x_{1}\right\} \\
J\left(\Theta_{51}, U_{51}\right)=6 \\
\Delta J_{51}=6-29=-23
\end{array} \\
& \Theta_{46}=\left\{x_{6}, x_{5}\right\} \\
& J\left(\Theta_{46}, U_{46}\right)=29 \\
& \Delta J_{46}=29-29=0
\end{aligned}
$$

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The CLARA algorithm

- It is more suitable for large data sets.
- The strategy:
- Draw randomly a sample X^{\prime} of size N^{\prime} from the entire data set.
- Run the PAM algorithm to determine Θ^{\prime} that best represents X^{\prime}.
- Use Θ^{\prime} in the place of Θ to represent the entire data set X.
- The rationale:
- Assuming that X^{\prime} has been selected in a way representative of the statistical distribution of the data points in X, Θ^{\prime} is expected to be a good approximation of Θ, which would have been produced if PAM were run on the entire X.
- The algorithm:
- Draw s sample subsets of size N^{\prime} from X, denoted by $X_{1}^{\prime}, \ldots, X_{s}^{\prime}$ (typically $\left.s=5, N^{\prime}=40+2 m\right)$.
- Run PAM on each one of them and identify $\Theta^{\prime}, \ldots, \Theta_{s}^{\prime}$.
- Choose the set Θ_{j}^{\prime} that minimizes

$$
J(\Theta, U)=\sum_{i \in I_{X-\Theta^{\prime}}} \sum_{j \in I_{\Theta^{\prime}}} u_{i j} d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)

The CLARANS algorithm

- It is more suitable for large data sets.
- It follows the philosophy of PAM with the difference that only a randomly selected fraction $q(<m(N-m))$ of the neighbors of the current medoid set is considered.
- It performs several runs (s) starting from different initial choices for Θ.

The algorithm:

- For $i=1$ to s
o Initialize randomly Θ.
o (A) Select randomly q neighbors of Θ.
o For $j=1$ to q
* If the present neighbor of Θ is better than Θ (in terms of $J(\Theta, U)$) then
-- Set Θ equal to its neighbor
-- Go to (A)
* End If
o End For
o Set $\Theta^{i}=\Theta$
- End For
- Select the best Θ^{i} with respect to $J(\Theta, U)$.
- Based on Θ^{i}, assign each $\boldsymbol{x} \in X-\Theta$ to the cluster whose representative is closesţ to \boldsymbol{x}

CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
The CLARANS algorithm (cont.)

Remarks:

- CLARANS depends on q and s. Typically, $s=2$ and

$$
q=\max (0.125 m(N-m), 250)
$$

- As q approaches $m(N-m)$ CLARANS approaches PAM and the complexity increases.
- CLARANS can also be described in terms of graph theory concepts.
- CLARANS unravels better quality clusters than CLARA.
- In some cases, CLARA is significantly faster than CLARANS.
- CLARANS retains its quadratic computational nature and thus it is not appropriate for very large data sets.

Probability and statistics: a brief review

Random variable (RV): It models the output of an experiment.
RV types:
-Discrete
-continuous

Discrete random variables:
-A discrete $\mathbf{R V} x$ can take any value x from a finite or countably infinite set X.
-X: sample space or state space.
-Event: Any subset of X.
-Elementary or simple event: A single element subset of X.
-Example: Consider the die roll experiment $X=\{1,2,3,4,5,6\}$
\bullet Events: "Odd number", "number>3", "2", "5") Elementary events

Probability and statistics: a brief review

Discrete random variables (cont.):

- Notation: Probability of the event $x=x \in X: \quad P(x=x) \equiv P(x)$
- $P($ (.):A function called probability mass function (pmf) satisfying
$\checkmark P(x) \geq 0, \forall x \in X$
$\checkmark \sum_{x \in X} P(x)=1$

Probability and statistics: a brief review

Discrete random variables (cont.):
The case of more than one random variables: Definitions

Discrete RV	x	y
Sample space	$X=\left\{x_{1}, \ldots, x_{n x}\right\}$	$Y=\left\{y_{1}, \ldots, y_{n y}\right\}$

Joint probability: $P\left(x_{i}, y_{j}\right) \equiv P\left(x=x_{i}\right.$ AND $\left.y=y_{j}\right)$

- It corresponds to the case where x takes the value x_{i} AND y takes the value y_{j}, simultaneously.

Marginal probabilities: $P\left(x_{i}\right) \equiv P\left(x=x_{i}\right), P\left(y_{j}\right)=P\left(y=y_{j}\right)$
-This terminology is used only when more than one rvs are involved.

Conditional probability: $P\left(x_{i} \mid y_{j}\right) \equiv P\left(x=x_{i} \mid y=y_{j}\right)=P\left(x_{i}, y_{j}\right) / P\left(y_{j}\right)$
-It corresponds to the case where x takes the value x_{i} given that y takes the value y_{j}.

Probability and statistics: a brief review

Discrete random variables (cont.):
The case of more than one variables: Properties

Discrete RV

x

y

$$
\text { Sample space } \quad X=\left\{x_{1}, \ldots, x_{n x}\right\} \quad Y=\left\{y_{1}, \ldots, y_{n y}\right\}
$$

Sum rule: $P(x)=\sum_{y \in Y} P(x, y), \quad \forall x \in X$
Product rule: $P(x, y)=P(x \mid y) P(y)$

Statistical independence: $\quad P(x, y)=P(x) P(y)$
A consequence: $\quad P(x \mid y)=P(x) \quad P(y \mid x)=P(y)$
Bayes rule: $\quad P(y \mid x)=\frac{P(x \mid y) P(y)}{P(x)}$
or

$$
P(y \mid x)=\frac{P(x \mid y) P(y)}{\sum_{y \in Y} P(x \mid y) P(y)}
$$

It plays a key role in ML.

Probability and statistics: a brief review

Continuous random variables:
-A continuous RV x can take any value $x \in R$.
-Sample space or state space: R
-Events: $\{x \leq x\},\left\{x_{1}<x \leq x_{2}\right\},\{x \geq x\}$

-Cumulative distribution function (cdf): $F_{x}(x)=P(x \leq x)$
-It is $F_{x}(\infty)=P(x<\infty)=1$
-Probability of events in terms of cdf:

$$
\begin{aligned}
& >P(x \leq x)=F_{x}(x) \\
& >P\left(x_{1}<x \leq x_{2}\right)=P\left(x \leq x_{2}\right)-P\left(x \leq x_{1}\right)=F_{x}\left(x_{2}\right)-F_{x}\left(x_{1}\right) \\
& >P(x \geq x)==P(x \leq \infty)-P(x \leq x)=1-P(x \leq x)=1-F_{x}(x)
\end{aligned}
$$

Probability and statistics: a brief review

Continuous random variables (cont.):
-Assumption: $F_{x}(x)$ is continuous and differentiable.
-Probability density function (pdf):

$$
p_{\mathrm{x}}(x)=\frac{d F_{\mathrm{x}}(x)}{d x}
$$

-cdf in terms of pdf:

$$
F_{\mathrm{x}}(x)=\int_{-\infty}^{x} p_{\mathrm{x}}(z) d z
$$

-Probability of events in terms of pdf:

$$
\begin{aligned}
& >P(x \leq x)=F_{x}(x)=\int_{-\infty}^{x} p_{x}(z) d z \\
& >P\left(x_{1}<x \leq x_{2}\right)=P\left(x \leq x_{2}\right)-P\left(x \leq x_{1}\right)=F_{x}\left(x_{2}\right)-F_{x}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} p_{\mathrm{x}}(x) d x \\
& >P(x \geq x)==P(x \leq \infty)-P(x \leq x)=1-P(x \leq x)=1-F_{x}(x)=\int_{-\infty}^{x} p_{\mathrm{x}}(z) d z
\end{aligned}
$$

Probability and statistics: a brief review

Continuous random variables (cont.):

Probability and statistics: a brief review

Continuous random variables (cont.):
-Since $P(-\infty<x<+\infty)=1$ it is: $\int_{-\infty}^{+\infty} p_{x}(x) d x=1$

- It is $P(x<\mathrm{x} \leq x+\Delta x)=\int_{x}^{x+\Delta x} p_{\mathrm{x}}(z) d z \approx p_{\mathrm{x}}(x) \Delta x$

$$
\text { As } \Delta x \rightarrow 0, P(x<x<x+\Delta x)=P(x=x)=0 . \quad \begin{gathered}
\text { The probability of a continuous rv to } \\
\text { take a single value is zero. }
\end{gathered}
$$

The case of more than one variables:

Continuous RV	x	y
Sample space	R	R

NOTE: All rules stated for the probability mass function in the discrete case are stated for the pdf in the continuous case.

$$
\begin{array}{c|c}
\text { Product rule } \\
p(x, y)=p(x \mid y) p(y) & \begin{array}{l}
\text { We drop the name of } r v \\
\text { Srom the subscript of } p .
\end{array} \\
\text { Sum rule } \\
& p(x)=\int_{-\infty}^{+\infty} p(x, y) d y
\end{array}
$$

Probability and statistics: a brief review

Useful quantities related to (continuous) rvs:

For discrete rv's, the integrals become summations.
-Variance of a $\boldsymbol{r v} x: \sigma_{\mathrm{x}}^{2}=\int_{-\infty}^{+\infty}(x-\mathrm{E}[\mathrm{x}])^{2} p(x) d x=\mathrm{E}\left[(\mathrm{x}-\mathrm{E}(\mathrm{x}))^{2}\right]$
-Mean (expected) value of a function of an $\mathrm{rv} x: \mathrm{E}[f(\mathrm{x})]=\int_{-\infty}^{+\infty} f(x) p(x) d x$

- Mean of a function of two rv's $x, y: \mathrm{E}_{\mathrm{x}, \mathrm{y}}[f(\mathrm{x}, \mathrm{y})]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) p(x, y) d x d y$
-Conditional mean of an rv y given $x=x$:

$$
\mathrm{E}[\mathrm{y} \mid x]=\int_{-\infty}^{+\infty} y p(y \mid x) d y
$$

-It is $\mathrm{E}_{\mathrm{x}, \mathrm{y}}[f(\mathrm{x}, \mathrm{y})]=E_{\mathrm{x}}\left[E_{\mathrm{y} \mid \mathrm{x}}[f(\mathrm{x}, \mathrm{y})]\right]$
-Covariance between two rvs x and $y: \operatorname{cov}(\mathrm{x}, \mathrm{y})=\mathrm{E}[(\mathrm{x}-\mathrm{E}[\mathrm{x}])(\mathrm{y}-\mathrm{E}[\mathrm{y} D]$

- Correlation between two rv's x and $y: r_{\mathrm{xy}} \equiv \mathrm{E}(\mathrm{xy})=\operatorname{cov}(x, y)+\mathrm{E}[\mathrm{x}] \mathrm{E}[\mathrm{y}]$
- Correlation coefficient $r_{x y}=\frac{E[x-E[x])(y-E[y])]}{\sigma_{x} \sigma_{y}}$

Probability and statistics: a brief review

Random vectors

-A collection of rvs: $x=\left[x_{1}, x_{2}, \ldots x_{1}\right]^{\top}$
-Probability density function (pdf) of x : The joint pdf of $x_{1}, x_{2}, \ldots x_{l}$.

$$
\mathrm{p}(x)=\mathrm{p}\left(x_{1}, x_{2}, \ldots x_{l}\right)
$$

$$
\begin{aligned}
& \bullet \text { Covariance matrix of } x \text { : } \\
& \qquad \operatorname{cov}(\mathbf{x})=\mathrm{E}\left[(\mathbf{x}-\mathrm{E}[\mathbf{x}])(\mathbf{x}-\mathrm{E}[\mathbf{x}])^{\mathrm{T}}\right]=\left[\begin{array}{ccc}
\operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right) & \cdots & \operatorname{cov}\left(\mathrm{x}_{1}, \mathrm{x}_{l}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{cov}\left(\mathrm{x}_{l}, \mathrm{x}_{1}\right) & \cdots & \operatorname{cov}\left(\mathrm{x}_{l}, \mathrm{x}_{l}\right)
\end{array}\right] \\
& \text {-Correlation matrix of } x: \quad R_{\mathbf{x}}=\mathrm{E}\left[\mathbf{x x}^{\mathrm{T}}\right]=\left[\begin{array}{ccc}
\mathrm{E}\left(\mathrm{x}_{1} \mathrm{x}_{1}\right) & \cdots & \mathrm{E}\left(\mathrm{x}_{1} \mathrm{x}_{l}\right) \\
\vdots & \ddots & \vdots \\
\mathrm{E}\left(\mathrm{x}_{l} \mathrm{x}_{1}\right) & \cdots & \mathrm{E}\left(\mathrm{x}_{l} \mathrm{x}_{l}\right)
\end{array}\right]
\end{aligned}
$$

- It is $R_{\mathbf{x}} \equiv \mathrm{E}\left[\mathbf{x} \mathbf{x}^{\mathrm{T}}\right]=\operatorname{cov}(\mathbf{x})+\mathrm{E}[\mathbf{x}] \mathrm{E}\left[\mathbf{x}^{\mathrm{T}}\right]$

Exercise: Prove this identity

Probability and statistics: a brief review

Random vectors (cont.)

-Remark: Both R_{x} and $\operatorname{cov}(\boldsymbol{x})$ are symmetric and positive definite $l x l$ matrices.

Probability and statistics: a brief review

- One dim. normal (Gaussian) distribution $x \sim N\left(\mu, \sigma^{2}\right)$ or $N\left(x \mid \mu, \sigma^{2}\right)$:
-Sample space: R
- It is

$$
>p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\begin{aligned}
& \searrow[\mathrm{x}]=\mu \\
& >\sigma_{x}^{2}=\sigma^{2} .
\end{aligned}
$$

Probability and statistics: a brief review

- Multi dim. normal (Gaussian) distribution $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \Sigma)$ or $N(\boldsymbol{x} \mid \boldsymbol{\mu}, \Sigma)$:
-Sample space: R^{l}
- It is

$$
\begin{aligned}
& >p(\boldsymbol{x})=\frac{1}{(2 \pi)^{1 / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}\right) \\
& \searrow E[\mathbf{x}]=\boldsymbol{\mu} \\
& \operatorname{x\operatorname {cov}(\mathbf {x})=\Sigma }
\end{aligned}
$$

Probability and statistics: a brief review

${ }^{\bullet}$ Multi dim. normal (Gaussian) distribution $x \sim N(\mu, \Sigma)$ or $N(x \mid \mu, \Sigma)$:

Probability and statistics: a brief review

- Multi dim. normal (Gaussian) distribution $\boldsymbol{x} \sim N(\boldsymbol{\mu}, \Sigma)$ or $N(\boldsymbol{x} \mid \boldsymbol{\mu}, \Sigma)$:

Σ : diagonal with $\sigma_{1}{ }^{2} \ll \sigma_{2}{ }^{2}$

Probability and statistics: a brief review

(c)

$$
\Sigma=\left[\begin{array}{ll}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

$$
\text { (} \alpha) \sigma_{1}^{2}=\sigma_{2}^{2}=1, \sigma_{12}=0
$$

(β) $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=0.2, \sigma_{12}=0$
(γ) $\sigma_{1}^{2}=\sigma_{2}^{2}=2, \sigma_{12}=0$
($\delta) \sigma_{1}{ }^{2}=0.2, \sigma_{2}{ }^{2}=2, \sigma_{12}=0$
(ع) $\sigma_{1}{ }^{2}=2, \sigma_{2}{ }^{2}=0.2, \sigma_{12}=0$
($\sigma \tau$) $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}=1, \sigma_{12}=0.5$
(弓) $\sigma_{1}{ }^{2}=0.3, \sigma_{2}{ }^{2}=2, \sigma_{12}=0.5$
(n) $\sigma_{1}{ }^{2}=0.3, \sigma_{2}{ }^{2}=2, \sigma_{12}=-0.5$
(f)

(g)

(h)

Probability and statistics: a brief review

Continuous RV distributions (cont.)
-Other examples of multi-dimensional pdfs

Two-dim. pdfs

Probability and statistics: a brief review

Likelihood function

- Let $X=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$ a set of independent data vectors
- Let $p_{\theta}(\cdot)$ be a pdf belonging to a known parametric set of pdf functions of parameter vector θ.
- $p(\boldsymbol{x})=p_{\boldsymbol{\theta}}(\boldsymbol{x}) \equiv p(\boldsymbol{x} ; \boldsymbol{\theta})$.

Examples:

\Rightarrow If $p_{\boldsymbol{\theta}}(\boldsymbol{x})$ is normal distribution parameterized on the mean vector $\mu, \boldsymbol{\theta}$ will simply be μ.
\Rightarrow ff $p_{\boldsymbol{\theta}}(\boldsymbol{x})$ is normal distribution parameterized on both the mean vector μ and the cov. matrix $\Sigma, \boldsymbol{\theta}$ will contain the coordinates of both μ and Σ.

Likelihood function of $\boldsymbol{\theta}$ wrt $X: p(X ; \boldsymbol{\theta})=p\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} ; \boldsymbol{\theta}\right)=\prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right)$
Log-likelihood function of $\boldsymbol{\theta}$ wrt X :

$$
L(\boldsymbol{\theta})=\ln p(X ; \boldsymbol{\theta})=\ln p\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} ; \boldsymbol{\theta}\right)=\sum_{i=1}^{N} \ln p\left(\boldsymbol{x}_{i} ; \boldsymbol{\theta}\right)
$$

Probability and statistics: a brief review

Likelihood function

Example:

- $X=\{-2,-1,0,1,2\}$
-Consider the parametric set of normal distributions of unit variance, parameterized on μ.
-The likelihood of μ wrt X is

$$
\begin{aligned}
& p(X ; \mu)=p(-2,-1,0,1,2 ; \mu)= \\
& \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(-2-\mu)^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(-1-\mu)^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(0-\mu)^{2}}{2}\right) \\
& \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(1-\mu)^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(2-\mu)^{2}}{2}\right)
\end{aligned}
$$

Probability and statistics: a brief review

Likelihood function

Probabilistic CFO clustering algorithms

Maximum likelihood (ML) method:

Given a set of independent data vectors $Y=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\}$, estimate the parameter vector $\boldsymbol{\theta}$ as the maximum of the likelihood $(p(Y ; \boldsymbol{\theta})$) or the log-likelihood $(L(\theta))$ function.

Probabilistic CFO clustering algorithms

Maximum likelihood (ML) method:

Assuming that

- the chosen model $p(\boldsymbol{x} ; \boldsymbol{\theta})$ is correct and
- there exists a true parameter $\boldsymbol{\theta}_{o}$,
the ML estimator
(a) is asymptotically unbiased $\lim _{N \rightarrow \infty} E\left[\widehat{\boldsymbol{\theta}}_{M L}\right]=\boldsymbol{\theta}_{o}$
(b) is asymptotically consistent $\lim _{N \rightarrow \infty} \operatorname{Prob}\left\{\left\|\widehat{\boldsymbol{\theta}}_{M L}-\boldsymbol{\theta}_{o}\right\|\right\}=0$
(c) is asymptotically efficient (it achieves the Cramer-Rao lower bound)

The pdf of the ML estimator approaches the normal distribution with mean $\boldsymbol{\theta}_{o}$, as $N \rightarrow \infty$.

Maximum likelihood method

Example 1:

-Let Y be a set of N (independent from each other) data points, $x_{i}, i=1, \ldots, N$, generated by a normal distribution $p(\boldsymbol{x} ; \boldsymbol{\theta})$ of known covariance matrix and unknown mean.
-Determine the ML estimate of the mean $\boldsymbol{\mu}$ of $p(\boldsymbol{x} ; \boldsymbol{\theta})$, based on Y.
Solution:
-The unknown parameter vector in this case is the mean vector $\boldsymbol{\mu}$, i.e. $\boldsymbol{\theta} \equiv \boldsymbol{\mu}$. -It is

$$
\begin{aligned}
& p(\boldsymbol{x} ; \boldsymbol{\theta}) \equiv p(\boldsymbol{x} ; \boldsymbol{\mu})=\frac{1}{(2 \pi)^{l / 2}|\Sigma|^{1 / 2}} \cdot \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \Rightarrow \\
& \ln p(\boldsymbol{x} ; \boldsymbol{\mu})=\ln \frac{1}{(2 \pi)^{l / 2}|\Sigma|^{1 / 2}}-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})=C-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})
\end{aligned}
$$

Then

$$
L(\boldsymbol{\mu})=\sum_{i=1}^{N} \ln p\left(\boldsymbol{x}_{i} ; \boldsymbol{\mu}\right)=N C-\frac{1}{2} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)
$$

Maximum likelihood method

Example 1 (cont.):
Setting the gradient of $L(\boldsymbol{\mu})$ wrt $\boldsymbol{\mu}$ equal to $\mathbf{0}$ we have

$$
\begin{gathered}
\frac{\partial L(\boldsymbol{\mu})}{\partial \boldsymbol{\mu}}=\frac{\partial}{\partial \boldsymbol{\mu}}\left(N C-\frac{1}{2} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{T} \Sigma^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\right)=\mathbf{0} \Leftrightarrow \\
\sum_{i=1}^{N} \Sigma^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)=\mathbf{0} \Leftrightarrow \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)=\mathbf{0} \Leftrightarrow \sum_{i=1}^{N} \boldsymbol{x}_{i}-N \boldsymbol{\mu}=\mathbf{0} \\
\boldsymbol{\mu}_{M L}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}
\end{gathered}
$$

Remark: The ML estimate for the covariance matrix is

$$
\Sigma_{M L}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{T}
$$

Probabilistic CFO clustering algorithms

Mixture models - The Expectation - Maximization (EM) algorithm

Mixture model: A weighted sum of known parametric form pdfs.

$$
p(x)=\sum_{j=1}^{m} P_{j} p(x \mid j), \quad \sum_{j=1}^{m} P_{j}=1, \quad \int_{-\infty}^{+\infty} p(x \mid j)=1
$$

- Assume that $p(\boldsymbol{x})$ models the distribution of the data in X (each pdf models a cluster).
- The aim is to move each pdf so that to "cover" the area in the data space where the vectors of each cluster lie (mixture decomposition).

Probabilistic CFO clustering algorithms

-Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
-Move iteratively the distributions each one above a cluster, optimizing a criterion.

Probabilistic CFO clustering algorithms

-Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
-Move iteratively the distributions each one above a cluster, optimizing a criterion.

Probabilistic CFO clustering algorithms

-Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.
-Move iteratively the distributions each one above a cluster, optimizing a criterion.

Probabilistic CFO clustering algorithms

-Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.

- Move iteratively the distributions each one above a cluster, optimizing a criterion.

Probabilistic CFO clustering algorithms

-Adopt a parametric mixture of distributions, each one corresponding to a cluster (e.g., mixture of Gaussians), initialized randomly.

- Move iteratively the distributions each one above a cluster, optimizing a criterion.

Probabilistic CFO clustering algorithms

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be a set of data points.
Each vector belongs exclusively to a single cluster, with a certain probability.

Each cluster is modeled by a pdf $p(\boldsymbol{x} \mid j)$, parameterized by the vector $\boldsymbol{\theta}_{j}$. Let:
$\Theta=\left\{\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots, \boldsymbol{\theta}_{m}\right\}$
$P=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$, the set of a priori probabilities of the clusters.
$P(j \mid \boldsymbol{x}) \equiv P\left(j \mid \boldsymbol{x} ; \boldsymbol{\theta}_{j}\right)$ the (a posteriori) probability of cluster j, given \boldsymbol{x}.
$p(\boldsymbol{x} \mid j) \equiv p\left(\boldsymbol{x} \mid j ; \boldsymbol{\theta}_{j}\right)$ the pdf that models cluster j.
It is $p(\boldsymbol{x})=\sum_{j=1}^{m} p(\boldsymbol{x}, j)=\sum_{j=1}^{m} p(\boldsymbol{x} \mid j) P_{j}$
Bayes rule $P(j \mid \boldsymbol{x})=\frac{p(x, j)}{p(\boldsymbol{x})}=\frac{p(x \mid j) \boldsymbol{P}_{\boldsymbol{j}}}{p(\boldsymbol{x})}$

Probabilistic CFO clustering algorithms

It is

- $\sum_{j=1}^{m} P\left(j \mid x_{i}\right)=1, i=1, \ldots, N$
- $\sum_{j=1}^{m} P_{j}=1$.

Define the cost function

$$
\begin{aligned}
& \ln p(X ; \theta, P)=\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln p\left(\boldsymbol{x}_{i}, j ; \boldsymbol{\theta}_{j}\right) ; \\
& =\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(\bar{j} \mid \overline{\boldsymbol{x}_{i}}\right) \overline{\ln }\left(\bar{p}\left(\overline{\boldsymbol{x}}_{\boldsymbol{i}} \bar{j} \bar{j} ; \overline{\boldsymbol{\theta}}_{j}^{\prime}\right) P_{j}\right)
\end{aligned}
$$

When $\ln p(X ; \Theta, P)$ is maximized?
When large $P\left(j \mid \boldsymbol{x}_{i}\right)$'s are multiplied by large $\ln p\left(\boldsymbol{x}_{i}, j ; \boldsymbol{\theta}_{j}\right)$'s.

Probabilistic CFO clustering algorithms

For fixed $\theta_{j}{ }^{\prime}$ s: Use the Bayes rule $P(j \mid x)=\frac{p\left(x \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}}{p(x ; \boldsymbol{\theta})}$
For fixed $P(j \mid \boldsymbol{x})$'s: Solve the following maximization problem

$$
\begin{aligned}
\max _{\theta, P} & \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{\boldsymbol{i}} \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}\right) \\
& =\max _{\theta, P}\left[\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)\right)+\sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln P_{j}\right]
\end{aligned}
$$

Subject to the constraint $\sum_{j=1}^{m} P_{j}=1$.

Mixture models - Expectation-Maximization (EM) algorithm

For fixed $\boldsymbol{\theta}_{j}$'s: Use the Bayes rule $\underline{P(j \mid x)=\frac{p\left(x \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}}{p(x ; \theta)}}$
For fixed $P(j \mid \boldsymbol{x})$'s: Solve the following maximization problem

$$
\begin{gathered}
\max _{\theta, P} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right) P_{j}\right)= \\
\max _{\theta} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)\right)+\max _{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln P_{j} \\
=\max _{\theta} \sum_{j=1}^{m} \sum_{i=1}^{N} P\left(j \mid x_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)\right)+\max _{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{i}\right) \ln P_{j}
\end{gathered}
$$

Subject to the constraint $\sum_{j=1}^{m} P_{j}=1$.
The above maximization problem is equivalent to the following maximization sub-problems

$$
\begin{gathered}
-\boldsymbol{\theta}_{j}=\operatorname{argmax}_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)\right), j=1, \ldots, m \\
-P \equiv\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}=\operatorname{argmax}_{P} \sum_{i=1}^{N} \sum_{j=1}^{m} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \ln P_{j}, \text { s.t. } \sum_{j=1}^{m} P_{j}=1 \Leftrightarrow \\
P_{j}=\frac{1}{N} \sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right), j=1, \ldots, m
\end{gathered}
$$

Probabilistic CFO clustering algorithms

Generalized probabilistic Algorithmic Scheme (GPrAS)

- Choose $\boldsymbol{\theta}_{j}(0), P_{j}(0)$ as initial estimates for $\boldsymbol{\theta}_{j}, P_{j}$, respectively, $j=1, \ldots, m$
- $t=0$
- Repeat

$$
\begin{aligned}
& \text { For } i=1 \text { to } N \% \text { Expectation step } \\
& \text { o For } j=1 \text { to } m \\
& \qquad P\left(j \mid x_{i} ; \Theta^{(t)}, P^{(t)}\right)=\frac{p\left(x_{i} \mid j ; \theta_{j}{ }^{(t)}\right) P_{j}{ }^{(t)}}{\sum_{q=1}^{m} p\left(x_{i} \mid q ; \theta_{q}^{(t)}\right) P_{q}^{(t)}} \equiv \gamma_{j i}{ }^{(t)} \\
& \text { o End \{For-j\}} \\
& \text { - End \{For- } i\}
\end{aligned}
$$

$-t=t+1$

$$
\begin{aligned}
& \text { For } j=1 \text { to } m \text { \% Parameter updating - Maximization step } \\
& \text { o Set } \\
& \boldsymbol{\theta}_{j}^{(t)}=\operatorname{argmax}_{\boldsymbol{\theta}_{j}} \sum_{i=1}^{N} \gamma_{j i}^{(t-1)} \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\theta}_{j}\right)\right), j=1, \ldots, m \\
& P_{j}^{(t)}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{j i}^{(t-1)}, j=1, \ldots, m
\end{aligned}
$$

End $\{$ For- $j\}$

- Until a termination criterion is met.

Probabilistic CFO clustering algorithms

Remark: The above algorithm is an instance of the more general ExpectationMaximization (EM) framework.

GPrAS - The case of normal pdfs

Each cluster is modeled by a normal distribution

$$
p\left(\boldsymbol{x} \mid j ; \mu_{j}, \Sigma_{j}\right)=\frac{1}{(2 \pi)^{l}\left|\Sigma_{j}\right|^{1 / 2}} \exp \left(-\frac{\left(\boldsymbol{x}-\boldsymbol{\mu}_{j}\right)^{T} \Sigma_{j}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu}_{j}\right)}{2}\right), j=1, \ldots m
$$

In this case $\boldsymbol{\theta}_{j}=\left\{\boldsymbol{\mu}_{j}, \Sigma_{j}\right\}$.

$$
\left\{\boldsymbol{\mu}_{j}, \Sigma_{j}\right\}=\operatorname{argmax}_{\left\{\boldsymbol{\mu}_{j}, \Sigma_{j}\right\}} \sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid j ; \boldsymbol{\mu}_{j}, \Sigma_{j}\right)\right)
$$

Equating the gradient of the above function wrt $\boldsymbol{\mu}_{j}, \Sigma_{j}$ to $\mathbf{0}$ and O, respectively, we have

$$
\begin{gathered}
\boldsymbol{\mu}_{j}=\frac{\sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right) \boldsymbol{x}_{\boldsymbol{i}}}{\sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right)} \\
\Sigma_{j}=\frac{\sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}}{\sum_{i=1}^{N} P\left(j \mid \boldsymbol{x}_{\boldsymbol{i}}\right)}
\end{gathered}
$$

Probabilistic CFO clustering algorithms

GPrAS - The normal pdfs case

- Choose $\boldsymbol{\mu}_{j}(0), \Sigma_{j}(0), P_{j}(0)$ as initial estimates for $\boldsymbol{\mu}_{j}, \Sigma_{j}, P_{j}$, resp. $, j=1, \ldots, m$
- $t=0$
- Repeat
- For $i=1$ to N \% Expectation step
o For $j=1$ to m

$$
P\left(j \mid x_{i} ; \Theta^{(t)}, P^{(t)}\right)=\frac{p\left(x_{i} \mid j ; \theta_{j}^{(t)}\right) P_{j}^{(t)}}{\sum_{q=1}^{m} p\left(x_{i} \mid q ; \theta_{q}^{(t)}\right) P_{q}^{(t)}} \equiv \gamma_{j i}^{(t)}
$$

o End \{For-j\}
End \{For-i\}

$$
-t=t+1
$$

$$
\begin{aligned}
& \text { - For } j=1 \text { to } m \text { \% Parameter updating-Maximization step } \\
& \text { o Set } \\
& \boldsymbol{\mu}_{j}{ }^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)} \boldsymbol{x}_{\boldsymbol{i}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}}, \quad \sum_{j}{ }^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}} j=1, \ldots, m \\
& P_{j}{ }^{(t)}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}, j=1, \ldots, m
\end{aligned}
$$

- End \{For-j\}
- Until a termination criterion is met.

Probabilistic CFO clustering algorithms

GPrAS - The normal pdfs case

- Choose $\boldsymbol{\mu}_{j}(0), \Sigma_{j}(0), P_{j}(0)$ as initial estimates for $\boldsymbol{\mu}_{j}, \Sigma_{j}, P_{j}$, resp. $, j=1, \ldots, m$
- $t=0$
- Repeat

$$
\begin{aligned}
& - \text { For } i=1 \text { tn } N \% \text { Fxnertation sten } \\
& \qquad \begin{aligned}
& P\left(C_{j} \mid \boldsymbol{x} ; \Theta(t)\right) \\
&=\frac{\left|\Sigma_{j}(t)\right|^{-1 / 2} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\mu_{j}(t)\right)^{T} \Sigma_{j}^{-1}(t)\left(x-\mu_{j}(t)\right)\right) P_{j}(t)}{\sum_{k=1}^{m}\left|\Sigma_{k}(t)\right|^{-1 / 2} \exp \left(-\frac{1}{2}\left(\boldsymbol{x}-\mu_{k}(t)\right)^{T} \Sigma_{k}^{-1}(t)\left(\boldsymbol{x}-\mu_{k}(t)\right)\right) P_{k}(t)}
\end{aligned}
\end{aligned}
$$

o End \{For-j\}

- End \{For-i\}

$$
-t=t+1
$$

$$
\begin{aligned}
& \text { - For } j=1 \text { to } m \text { \% Parameter updating-Maximization step } \\
& \text { o Set } \\
& \boldsymbol{\mu}_{j}{ }^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)} \boldsymbol{x}_{\boldsymbol{i}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}, \quad \sum_{j}{ }^{(t)}=\frac{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\mu}_{\boldsymbol{j}}\right)^{\boldsymbol{T}}}{\sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}} j=1, \ldots, m} \begin{array}{c}
P_{j}{ }^{(t)}=\frac{1}{N} \sum_{i=1}^{N} \gamma_{j i}{ }^{(t-1)}, j=1, \ldots, m
\end{array}
\end{aligned}
$$

- End \{For-j\}
- Until a termination criterion is met.

Probabilistic CFO clustering algorithms

Remark:

- The above scheme is more computationally demanding since it requires the inversion of the m covariance matrices at each iteration step. Two ways to deal with this problem are:
$>$ The use of a single covariance matrix for all clusters.
$>$ The use of different diagonal covariance matrices.

Example: (a) Consider three two-dimensional normal distributions with mean values:

$$
\boldsymbol{\mu}_{1}=[1,1]^{T}, \boldsymbol{\mu}_{2}=[3.5,3.5]^{T}, \boldsymbol{\mu}_{3}=[6,1]^{T}
$$

and covariance matrices

$$
\Sigma_{1}=\left[\begin{array}{cc}
1 & -0.3 \\
-0.3 & 1
\end{array}\right], \quad \Sigma_{2}=\left[\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right], \quad \Sigma_{3}=\left[\begin{array}{cc}
1 & 0.7 \\
0.7 & 1
\end{array}\right],
$$

respectively.

A group of 100 vectors stem from each distribution. These form the data set X.

Probabilistic CFO clustering algorithms

(a) The data set

(b) Results of GMDAS

Confusion matrix:

	Cluster 1	Cluster 2	Cluster 3
$1^{\text {st }}$ distribution	99	0	1
$2^{\text {nd }}$ distribution	0	100	0
$3^{\text {rd }}$ distribution	3	4	93

The algorithm reveals accurately the underlying structure.

Probabilistic CFO clustering algorithms

(b) The same as (a) but now $\underline{\mu}_{1}=[1,1]^{T}, \underline{\mu}_{2}=[2,2]^{T}, \underline{\mu}_{3}=[3,1]^{T}$ (The clusters are closer).

(a)

The data set

(b)

Results of GMDAS
Confusion matrix:

	Cluster 1	Cluster 2	Cluster 3
$1^{\text {st }}$ distribution	85	4	11
$2^{\text {nd }}$ distribution	35	56	9
$3^{\text {rd }}$ distribution	26	0	74

Probabilistic CFO clustering algorithms

Example $x_{1}=[000]^{T}, x_{2}=[30]^{T}, x_{3}=\left[\begin{array}{lll}0 & 3\end{array}\right]^{T}, x_{4}=\left[\begin{array}{lll}12 & 12\end{array}\right]^{T}, x_{5}=\left[\begin{array}{lll}15 & 12\end{array}\right]^{T}, x_{6}=\left[\begin{array}{lll}12 & 15\end{array}\right]^{T}$
Initially:

$$
\begin{gathered}
\theta_{1}(0)=[0,5]^{\mathrm{T}} \\
\theta_{2}(0)=[0,6]^{\mathrm{T}} \\
\mathrm{P}_{1}(0)=0.1 \\
P_{2}(0)=0.9
\end{gathered}
$$

$$
p(\boldsymbol{x} \mid 1)=\frac{1}{2 \pi} \exp \left(-0.5 \cdot\left\|\boldsymbol{x}-\boldsymbol{\theta}_{1}\right\|^{2}\right), \quad P(1 \mid \boldsymbol{x})=\frac{p(\boldsymbol{x} \mid 1) P_{1}}{p(\boldsymbol{x})}
$$

$$
p(\boldsymbol{x} \mid 2)=\frac{1}{2 \pi} \exp \left(-0.5 \cdot\left\|\boldsymbol{x}-\boldsymbol{\theta}_{2}\right\|^{2}\right), \quad P(2 \mid \boldsymbol{x})=\frac{p(\boldsymbol{x} \mid 2) P_{2}}{p(\boldsymbol{x})}
$$

$$
p(x)=P_{1} p(\boldsymbol{x} \mid 1)+P_{2} p(\boldsymbol{x} \mid 2)=P_{1} \frac{1}{2 \pi} \exp \left(-0.5 \cdot\left\|\boldsymbol{x}-\boldsymbol{\theta}_{1}\right\|^{2}\right)+P_{2} \frac{1}{2 \pi} \exp \left(-0.5 \cdot\left\|\boldsymbol{x}-\boldsymbol{\theta}_{2}\right\|^{2}\right)
$$

$$
\ln p(X ; \Theta, P)=\sum_{i=1}^{N}\left[P\left(1 \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid 1 ; \boldsymbol{\theta}_{1}\right) P_{1}\right)+P\left(2 \mid \boldsymbol{x}_{i}\right) \ln \left(p\left(\boldsymbol{x}_{i} \mid 2 ; \boldsymbol{\theta}_{2}\right) P_{2}\right)\right]
$$

Probabilistic CFO clustering algorithms

Example $x_{1}=[00]^{T}, x_{2}=[30]^{T} x_{3}=\left[\begin{array}{lll}0 & 3\end{array}\right]^{T}, x_{4}=\left[\begin{array}{ll}12 & 12\end{array}\right]^{T}, x_{5}=\left[\begin{array}{lll}15 & 12\end{array}\right]^{T}, x_{6}=\left[\begin{array}{ll}12 & 15\end{array}\right]^{T}$

$1^{\text {st }}$ iteration:
A posteriori probs

| $\theta_{1}(1)=\left[\begin{array}{ll}1.1572 & 0.6906\end{array}\right]^{\mathrm{T}}$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(1 \mid x)$ | 0.9645 | 0.9645 | 0.5751 | 0.0002 | 0.0002 | 0.0000 | $x_{2}(1)=\left[\begin{array}{ll}11.1864 & 11.5207\end{array}\right]^{\mathrm{T}}$ |
| $P(2 \mid x)$ | 0.0355 | 0.0355 | 0.4249 | 0.9998 | 0.9998 | 1.0000 | $P_{1}(1)=0.4174$ |
| $P_{2}(1)=0.5826{ }^{59}$ | | | | | | | |

Probabilistic CFO clustering algorithms

Example $x_{1}=[00]^{T}, x_{2}=[30]^{T} x_{3}=\left[\begin{array}{lll}0 & 3\end{array}\right]^{T}, x_{4}=\left[\begin{array}{lll}12 & 12\end{array}\right]^{T}, x_{5}=\left[\begin{array}{lll}15 & 12\end{array}\right]^{T}, x_{6}=\left[\begin{array}{ll}12 & 15\end{array}\right]^{T}$

$2^{\text {nd }}$ iteration: A posteriori probs

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$\theta_{1}(2)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ $\boldsymbol{\theta}_{2}(2)=\left[\begin{array}{ll}13 & 13\end{array}\right]^{\mathrm{T}}$ $P(1 \mid x)$ 1.0000
	1.0000	1.0000	0.0000	0.0000	0.0000	$P_{1}(2)=0.5$	
$P(2 \mid x)$	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	$P_{2}(2)=0.5$

Probabilistic CFO clustering algorithms

Example $\boldsymbol{x}_{1}=[00]^{T}, x_{2}=[30]^{T} x_{3}=[03]^{T}, x_{4}=[1212]^{T}, x_{5}=[1512]^{T}, x_{6}=[1215]^{T}$

$3^{\text {rd }}$ iteration:
A posteriori probs

| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | $\boldsymbol{\theta}_{1}(3)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$
 $\boldsymbol{\theta}_{2}(3)=\left[\begin{array}{ll}13 & 13\end{array}\right]^{\mathrm{T}}$
 $P(1 \mid x)$ 1.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | $1.0000 \quad 1.0000$

