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CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
k-Medoids Algorithms

* Each cluster is represented by a vector selected among the elements of X
(medoid).

A cluster contains
— |ts medoid
— All vectors in X that
o Are not used as medoids in other clusters

o Lie closer to its medoid than the medoids representing other clusters.
(o]
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O

In the k-medoids algorithms ONLY
point representatives can be used to
represent clusters

S




CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
k-Medoids Algorithms

Let

* @ be the set of medoids of all clusters,

* |, the set of indices of the points in X that constitute & and
* |, the set of indices of the points that are not medoids.

Obtaining the set of medoids @ that best represents the data set, X is
equivalent to minimizing the following cost function

J(0,U) = Z Zuijd(xi»xj)

I€ElIx_@ JEIp

with

I {1, Lf d(xi,xj) = minqeled(xi,xq) P=1 N
l] 3 ) ) "un
0, otherwise



CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
k-Medoids Algorithms
Example 3:
(a) The five-point two-dimensional set stems from the discrete domain
D =1{1,2,3,4,..}x{1,2,3,4,...}. Its medoid is the circled point and its mean is
the “+” point, which does not belong to D.

(b) In the six-point two-dimensional set, the point (9,2) can be considered
as an outlier. While the outlier affects significantly the mean of the set, it does
not affect its medoid.
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CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS)
Representing clusters with mean values vs representing clusters with

medoids

Mean Values Medoids
1. Suited only for 1. Suited for either
continuous domains cont. or discrete
domains

2. Algorithms using 2. Algorithms using
means are sensitive medoids are less

to outliers sensitive to outliers
3. The mean 3. The medoid has not a
possess a clear clear geometrical
geometrical and meaning

statistical meaning

4. Algorithms using | 4. Algorithms using
means are not medoids are more
computationally computationally
demanding demanding




CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

k-Medoids Algorithms

Algorithms to be considered

* PAM (Partitioning Around Medoids)

* CLARA (Clustering LARge Applications)

* CLARANS (Clustering Large Applications based on RANdomized Search)

The PAM algorithm
e The number of clusters m is required a priori.

Definitions-preliminaries
e Two sets of medoids ® and @°, each one consisting of m elements, are called
neighbors if they share m — 1 elements.

e A set © of medoids with m elements can have m(N — m) neighbors.

* Let O;; denote the neighbor of O that results if x;, jelx_o replaces x;, i€l,.

6

eletd],, =J(0,,U;,) — J(O,U).



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm
* Determination of © that best represents the data
— Generate a set ® of m medoids, randomly selected out of X.
— (A) Determine the neighbor 0., qely, rely_o among the m(N — m)
neighbors of @ for which A] . = MiNiery jery_ @A]U

—IfAJ,, < Othen - o o —
A 0 0,,U,) < @ U
oRepIace @) by @qr éqr < @l( qr) ]( ) ;

oGo to (A)
—End

* Assignment of points to clusters
— Assign each xely_g to the cluster represented by the closest to x
medoid.



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm
Computation of 4f;;.
It is defined as:

41 =1O,U) =IO, = > > ugd(xex) = ) ) ugd(¥sx)

SElx_ tel SEly_p tel
0, €lo, x-o0 t€lg
= E Chij

hEIX_@

where Cp;; is the difference in J, resulting from the (possible) assignment of the

vector x, € X — O from the cluster it currently belongs to another, as a
consequence of the replacement of x,€0 by x,.eX — 0.

For the computation of (},;; associated with a specific each x,€X — @ it s
required

* The distance of x, from its closest medoid in @

* The distance of x;, from its next to closest medoid in 0.

* The distance of x;, from the newly inserted medoid in 0;;. :



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm (cont.)
Computation of C;;:
x;, belongs to the cluster represented by x; (x,, © denotes the second closest

to x, representative) and d(x,, x,)>d(x,, Xh2, Then
® X

Chl] — d(xh, xhz) _ﬁ(\xh, xl)ZO ’IV/‘

Contribution of Contribution of )
xhto](Oij,Uij) xhtO](@,U)

Chij = d(xkh’xj) o %in) (><) Oaft
Contribution of Contribution of Xp o -
x, to0 J (05, Uyj) x, to J(0,U)




CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm (cont.)

Computation of Cy; (cont.):

x, is not represented by x; (x,, denotes the closest to x, medoid) and
d(xh,xhl) <d(xy,x;). Then X

X "°o Most frequent
Chij = d(xh,xj) —d(x,,x,,) =0 ° scenario

before

Contribution of Contribution of
x, to J (O}, Uij) x, t0J(0,U) X

after

X h1

x, is not represented by X; (x,, denotes the closest to x, medoid) and
d(x,, Xn1y o d(xp, x;). Then °x.

Crij = d(xp, x;) —d(x,, %) _ 0 X

Contribution of
h befo

Contribution of
x,t0](0,U)

x;, to J(0;;, U;})

10



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm (cont.)
Remarks:
* Experimental results show the PAM works satisfactorily with small data sets.

* Its computational complexity is O (m(N — m)?). Unsuitable for large data
sets.

11



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm (Example)

Data set: X = {x,X,, X3, X4, X5, X¢}, With
x; = [0,3]7, x, = [1,3], x5 = [2,3]%, x, = [0,0]7, x5 = [1,0]7, x; = [2,0]".
Set of medoids: O = {x,, x5}

Computation of /(©, U) (Squared Euclidean distance is considered): A
x; > dx,x,) =9<10=d(xy,x5) D Uy = Luis =0 X1 Xz X3
X, > d(x,,x,) =10>9 =d(x,,x5) = Uys = 0,uyc =1
x3 > d(x3,x,) =13 >10=d(x3,x5) — U3y = 0,u3c =1
Xy, — d(x4,x,) =0<1=d(x4,x5) > Uss = 1, Uy =0
Xs = d(xg,x,) =1>0=d(x5,x5) > Ugy =0, Uz =1

Uad(Xq,x4) +  uysd(xq,x5) + 1-94+4 0-10+
u24d(x1; x4) + u25d(x1, x5) + 0-10 + 1-9 4+

](@’ U) —  U3ad(Xg,x4) +  uszsd(xg,x5)+ — 0-13+ 1-10+ _— 29

U44d(x1, x4) + u45d(x1, x5) + 1-0+ 0-1+
U d(X,X4) +  uUsed(xq, x5) + 0-1+ 1-0+
Upsd(X1,X4) +  Ugsd(Xq, X5) 0-2+ 1-1 .



CFO hard clustering algorithms

Generalized Hard Algorithmic Scheme (GHAS

The PAM algorithm (Example)

Data set: X = {x,X,, X3, X4, X5, X¢}, With

x; = [0,3]7, x, = [1,3]%, x5 = [2,3]7, x, = [0,0]7, xs = [1,0]7, x; = [2,0]".

Set of medoids: O = {x,, x5}

Oy, = {xz,xs}

J(043,Uy,) = 4
Ay = 4—29 = —25

041 = {xl,x5}

J(O41,Us1) =5
A]41 - 5 - 29 = _24

A
X4 X2 Xy € X3 X4 X4
XX O ={x4xs} | xs0x
J(O,U) =29
X5 X, X © X5 x\5*<—\>\x2

Ose = {X4, X5}

J(Os6,Us6) = 29
Asg =29 —29 = 0

Itis AJ,, = miniEI@,jEIX_@A]ij -

043 = {x3, x5}

J(043,Us3) =5
AJ43 =5—29=-24

\V4

Os3 = {x4, X3}

J(Os3,Us3) =5
Az = 5 — 29 = —24

—25<0

Thus, according to PAM, O will be replaced by @,-.

Xy Xs
¢ Py

X6
> >

Ous = {x6, x5}

J(O46,Use) = 29
A6 =29—-29=0

Os1 = {x4, X1}

> J(0s51,Us1) = 6

AJs; = 6 —29 = —23

Os, = {x4, x5}

J(Os2,Us;) =5
Ay = 5— 29 = —24

13




CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The CLARA algorithm
* [t is more suitable for large data sets.
* The strategy:

— Draw randomly a sample X' of size N’ from the entire data set.

— Run the PAM algorithm to determine @' that best represents X".

— Use @' in the place of @ to represent the entire data set X.

* The rationale:

— Assuming that X” has been selected in a way representative of the
statistical distribution of the data pointsin X, @’ is expected to be a good
approximation of ®, which would have been produced if PAM were run
on the entire X.

* The algorithm:

— Draw S sample subsets of size N’ from X, denoted by X', ..., X', (typically

= 5 N = 40+ 2m).

— Run PAM on each one of them and identify ', ..., 0"..

— Choose the set 0 that minimizes

o=y D, i)

based on the entire data set X.

14



CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The CLARANS algorithm
* |t is more suitable for large data sets.
* |t follows the philosophy of PAM with the difference that only a randomly selected
fraction g(< m(N — m)) of the neighbors of the current medoid set is considered.
* It performs several runs (s) starting from different initial choices for 6.
The algorithm:
—Fori=1tos
o Initialize randomly ©.
o (A) Select randomly g neighbors of .
oForj=1togq
* If the present neighbor of @ is better than @ (in terms of J(®, U)) then
-- Set @ equal to its neighbor
-- Go to (A)
*End If
o End For
o0Set O =0
— End For
— Select the best O with respect to J (0, U).
— Based on 0}, assign each xeX — 0 to the cluster whose representative is closest to x




CFO hard clustering algorithms
Generalized Hard Algorithmic Scheme (GHAS

The CLARANS algorithm (cont.)

Remarks:

* CLARANS depends on g and s. Typically, s = 2 and

q = max(0.125m(N —m), 250)

* As ( approaches m(N — m) CLARANS approaches PAM and the complexity
increases.

* CLARANS can also be described in terms of graph theory concepts.

* CLARANS unravels better quality clusters than CLARA.

* [n some cases, CLARA is significantly faster than CLARANS.

* CLARANS retains its quadratic computational nature and thus it is not
appropriate for very large data sets.

16



Probability and statistics: a brief review

Random variable (RV): It models the output of an experiment.

RV types:
*Discrete
econtinuous

Discrete random variables:
*A discrete RV x can take any value X from a finite or countably infinite set X.

*X: sample space or state space.
*Event: Any subset of X.

*Elementary or simple event: A single element subset of X.

*Example: Consider the die roll exper={1,2,3,4,5,6}
*Events: “Odd number”, “number>3” @ ?lt ]
¢ ¢ Elementary events
17




Probability and statistics: a brief review

Discrete random variables (cont.):
*Notation: Probability of the event x=xeX: P(x=X) = P(X)

*P(.):A function called probability mass function (pmf) satisfying
v P(X) 20, VX eX

v ZXEX P(X) =1

18



Probability and statistics: a brief review

Discrete random variables (cont.):
The case of more than one random variables: Definitions

Discrete RV X y
Sample space X={X{, ... X0} Y={y1,.. .Yyt

Joint probability: P(x;, yj) = P(x=x; AND y=yj)
*It corresponds to the case where x takes the value x; AND y takes the value
Y;, simultaneously.

Marginal probabilities: P(X;) = P(x=X), P(yj) = P(y:yj)
*This terminology is used only when more than one rvs are involved.

Conditional probability: P(X; | yj) = P(x=X; | y:yj) = P(xi,yj) / P(yj)
*It corresponds to the case where x takes the value X, given that y takes the
value y;.

19



Probability and statistics: a brief review

Discrete random variables (cont.):
The case of more than one variables: Properties

Discrete RV X y
Sample space X={X15« s Xy} Y={yy,.. .,yny}
Sum rule: P(X) = ZYEY P(x,y), Vxe X

Product rule: P(X,y) = P(x]| y)P(y)
Statistical independence: P(X,Yy)=P(X)P(y)

A consequence: P(x]y)=P(x) P(y|x)=P(y)

Bayes rule: P(y|X)= P(x]y)P(y) p
P(x) It plays a key role in ML.
o P(x| Y)P(y)

P(y|x)=
V=S Bxy)P) .



Probability and statistics: a brief review

Continuous random variables:
*A continuous RV x can take any value x eR.

*Sample space or state space: R

Corresponds to the
probability mass function

*Events: {x <X}, {X;<x <X,}, {x 2x} from the discrete case.

o O

*Cumulative distribution functio% (cdf): F,(X)=P(x <X)

*lt is F,(o0)=P(x <c0)=1 mmass" to events. ]

*Probability of events in terms of cdf:
»PP(x <X) = F,(X)
PP(X <X <X,) = P(x <X,) — P(x <X;) = F (X,) - F,(X)
PP(x2X) ==P(x < o0) = P(x <X) =1-P(x<X) =1- F(X)

21



Probability and statistics: a brief review

Continuous random variables (cont.):
*Assumption: F (X) is continuous and differentiable.

*Probability density function (pdf): It assigns “mass” to values ]
dF, (%) '
Py (X) = q
X

ecdf in terms of pdf:

F0)=[" p,(2)dz
*Probability of events in terms of pdf:
Px<x)=F(x) =] _p,(2)dz
BP(X,<X <X,) = P(X <X,) — P(X <X,) = F,(X,) - F.(X,) = j o, (x)dx

P(x2x) == Plx < o)~ Px <X) = 1 - Plx<x) = 1- F,(x) = [ p, (2)dz

22



Probability and statistics: a brief review

Continuous random variables (cont.):

0.4;

L T T T T T T =
0.35 - 4 09r /
/
0.8 - /
0.3~ /
0.7- / cdf
0.25- T 0.6~ //
0.2 - 05 /
0.15 - | 04r
0.3
0.1~
0.2
0.05|- 1 01l
ok : ot I
5 4 4 5 5 4 5

23



Probability and statistics: a brief review

Continuous random variables (cont.):
+00

*Since P(-co<x<+o0 )=1 it is: I p, (x)dx=1

. X+AX
ltis P(x< X< x+Ax)=J' p, (z)dz = p, (X)AX

X
! The probability of a continuous rv to
As AX—0, P(x<x<x+AX )=P(x=Xx)=0. take a single value is zero. }

The case of more than one variables:

Continuous RV X y
Sample space R R

NOTE: All rules stated for the probability mass function in the discrete case
are stated for the pdf in the continuous case.

Product rule Sum rule
We drop the name of rv

p(x, y) = p(x | y) p(y) from the subscript of p. p(X) = _“j:p(X, y)dy

24




Probability and statistics: a brief review
Useful quantities related to (continuous) rvs: [

integrals become

For discrete rv’s, the}
summations.

*Mean (expected) value of a rv x: [E[X]= fooxp(x)dx

-Variance of a rv x ig” = j_*:(x— E[x])2 p(x)dx = E[(x — E(x))*]

*Mean (expected) value of a function of anrvx: E[T(X)]= f:f (X) p(x)dx
*Mean of a function of two rv’s x, y: E.[f(Xy)]= f:f:f (X, y) p(x, y)dxdy
Conditional mean of anrvy givenx=x:  E[y|X]= f:yp(y | X)dy

‘itis E, [T(X Y)=E/J[E; [Tyl

*Covariance between two rvs x and y: cov(X, ¥) = E[(Xx— E[X])(y — E[y]]

- Correlation between two rv’s x and y: y = EQ) = cov(X, y) + E[X]E[y]

E[x—E[x])(y—E[y])]
OxOy

* Correlation coefficient Ty =



Probability and statistics: a brief review

Random vectors

*A collection of rvs: x=[x;,x,,...x]"

*Probability density function (pdf) of x : The joint pdf of x,,x,,...x;.
p(x)=p(x1,Xy,...X)

*Covariance matrix of x : 'COV(Xl, X,) -+ COV(X,X, )|
cov(x) = E[(x—E[X])(x—E[x]) "] = ' | '
| COV(X,X;) -+ COV(X,X;)|
_E(X1X1) o E(Xlxl )_
«Correlation matrix of x: R =E[xx']= E :
_E(Xlxl) E(XIXI)_

|t is R = E[XXT] = cov(x) + E[X]E[XT] <[ Exercise: Prove this identity }

26




Probability and statistics: a brief review

Random vectors (cont.) wve these statements ]

*Remark: Both R, and cov(x) are symmetric and posbitive definite IX|I matrices.
o
© O

O

A square matrix
A is positive
definite iff

Z'Az>0, VzeR!.

A square matrix
A is symmetric

iff AT=A.

27



Probability and statistics: a brief review

*One dim. normal (Gaussian) distribution x~N(u,o?) or N(x/|u,o?) :

=Sample space: R

"t is
_ _(x=p)’
> PO == on(— )
>E[x]=p i

p(x)

28



Probability and statistics: a brief review

Multi dim. normal (Gaussian) distribution x~N(u,3) or N(x| u,2) :

=Sample space: R/

=t is
_ _(X=m)'T(x=p)
> p(X) - (272')”2 |Z |1/2 exp( 2 )
>E[x]=p

»cov(x) = 2.

29



Probability and statistics: a brief review

*Multi dim. normal (Gaussian) distribution x~N(u,2) or N(x| u,2) :

1

)

2 diagonal with
equal diagonal
entries

B

Isovalued curves:

o (X-u)21(X-u)=const.
*All points on it share

\ the value p(X) )

/Z:/diagonal with

2 2
0, >>02

(b

h 3

30
(b



Probability and statistics: a brief review

Multi dim. normal (Gaussian) distribution x~N(u,2) or N(x| u,2) :

2. diagonal with
0,%<<0,?

2> non diagonal

31




Probability and statistics: a brief review

l = = = &t i = ¢ L X = - & 5 = = N e (a) o 12=0 2221; 012=0
a) (b) (c)
(B) 0 ,2=0,%=0.2, G,,=0
. .ﬁ (v) 0,2=0,%=2, 6,,=0
- - 'm (6) 012=O.2, 022=2, 012=O
SN I S (e) 0,222, 6,2=0.2, 6,,=0
(d) (&)
(ot) 0 ,°=0,%=1, 0,,=0.5
; . a r F * (Z) Y 12=O-3; 022=2; 012=0-5
. ’# ] 4 (n) 6,2=0.3, 6,2=2, 0,,=-0.5
| = = 4 ¢ i 3 A + = = & i i i = = = ¢ i ) 32
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Probability and statistics: a brief review

Continuous RV distributions (cont.)
=Other examples of multi-dimensional pdfs

Bimodal distribution ]
SRR ™ ey ’
- ,_,—al""‘/ 0
| 3 j Two-dim. pdfs
l ‘.,{_“ e = | 1
R
lL_f_'—f.‘I_iL"'_ e / e e —

33



Probability and statistics: a brief review

Likelihood function

* LetX = {x,x,, ..., x\} aset of independent data vectors
* Let p,y(+) be a pdf belonging to a known parametric set of pdf functions of
parameter vector 0.
* p(x) =py(x) = p(x; 0).
Examples:
PIf pg(x) is normal distribution parameterized on the mean vector p,
will simply be L.
»PIf pg(x) is normal distribution parameterized on both the mean vector u
and the cov. matrix 2, @ will contain the coordinates of both p and 2.

N
Likelihood function of @ wrt X: p(X;0) = p(x4, ..., xpN; 0) = 1_[ p(x;; 0)

i=1
Log-likelihood function of 8 wrt X:

L(0) = Inp(X; 8) = Inp(xy, ..., Xy; ) = ZN

=

Inp(x;;0)
1



Probability and statistics: a brief review

Likelihood function

Example:

X ={-2,-1,0,1,2) ., o O

*Consider the parametric set of normal distributions of unit variance,
parameterized on L.

*The likelihood of 1 wrt X is

p(X; ) =p(=2,-1,0,1,2;p) =

\/% exp (_ (—Z;M)z) \/;_n exp (_ (—1;11)2) \/;_n exp (_ (O—ZH)Z)

exp (- ) exp (- )




Probability and statistics: a brief review
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Likelihood function

0.35}1

0.3r

0251

0.05f

1 1
L IZI.DILSLIEI 0075 g.opot

0.35¢+

n0.z2s

a4 0 Ty

2

1x107°

0.4 :
1
-
035} e
g
o3l
(it = 0) =~ -
p(u=0)=-—exp|——
025t ! i
vami oA 2
1 1
oz} | '
0.15
0.1 | i '
! 0.3%89
1 I 1
1 1 1
0.05 . 0.2897 | 0.2897
1
"0540 | ! 0.0640
0 ! - 4 i
4 3 2 1 0 1 o
x10°
1
P(Y; ,u;')g
8
0.7
0.6
0.5f
0.4F
0.3F
02r
0.1
0 . . .
3 2 1 u] 1 2




Probabilistic CFO clustering algorithms

Maximum likelihood (ML) method:
Given a set of independent data vectors Y = { x,, x,, ..., Xy},
estimate the parameter vector 0 as the maximum of the likelihood (p(Y; @)) or

the log-likelihood (L(8)) function.

N
Py . 0L(09) 1 Jdp(xg; 0)
0y, =argmaxgp(Y;0) — | Opyp: 50 2 (i 0) 08 =0
K=1 '

O

e
A 4

Since In(+) is an increasing
function, p(Y; 0) and L(0)
share the same maxima.

PX:0)




Probabilistic CFO clustering algorithms

Maximum likelihood (ML) method:
Assuming that

- the chosen model p(x; @) is correct and
- there exists a true parameter 0,

the ML estimator

(a) is asymptotically unbiased limNﬁooE[’H\ML: =0,

(b) is asymptotically consistent limN_,ooProb{ |§ML — 00”} =0
(c) is asymptotically efficient (it achieves the Cramer-Rao lower bound)

The pdf of the ML estimator approaches the normal distribution with
mean 0 ,, as N—oo.



Maximum likelihood method

Example 1:

-Let Y be a set of N (independent from each other) data points, x,,i = 1, ..., N,
generated by a normal distribution p(x; @) of known covariance matrix and
unknown mean.

-Determine the ML estimate of the mean u of p(x; @), basedon Y.

Solution:

-The unknown parameter vector in this case is the mean vector u, i.e. 0 = L.

-It is 1 1
p(x;0) =p(lx; p) = GOEE e*P (—5 (x—w'z 1 (x - u)) =

Inp( ) = N — S (= WTE (X — ) = € — = (x — )75 (x — o)
’ (2m)i/2|z|1/2 2 2
Then

N 1 ~—N
L(p) = z _11np(xiiﬂ) = NC — 52-21(’“ -2 (x —

i=



Maximum likelihood method

Example 1 (cont.):
Setting the gradient of L(u) wrt u equal to 0 we have

oL(w) _ 0 _
o < C——Zz -’ 1(xi—u)>=0<=>
N N N
Z 2_1(751'—#):0‘:)2 (xi—ﬂ)=0<:>z x;—Np=20
i=1 i=1 i=1
1 N
HvL = 33 Xi

Remark: The ML estimate for the covariance matrix is

1 N
Lyp = NZ (x; —w)(x; —w)'"
i=1



Probabilistic CFO clustering algorithms

Mixture models - The Expectation — Maximization (EM) algorithm

Mixture model: A weighted sum of known parametrlc form pdfs.

P() = Z_l,p<x|1) ZP =1, jp(xm 1

. Assume that p(x) models the distribution
of the data in X (each pdf models a cluster).

- e " | * The aim is to move each pdf so that to
“cover” the area in the data space where
the vectors of each cluster lie (mixture
decomposition).




Probabilistic CFO clustering algorithms

Prerequisite: Knowledge of
the number of clusters.

*Adopt a parametric mixture of distributions, each one corresponding to a cluster
(e.g., mixture of Gaussians), initialized randomly.
*Move iteratively the distributions each one above a cluster, optimizing a criterion.
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Probabilistic CFO clustering algorithms

02

0.1

40

40

Prerequisite: Knowledge of
the number of clusters.

-10 -20
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*Move iteratively the distributions each one above a cluster, optimizing a criterion.
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02, -
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Prerequisite: Knowledge of
the number of clusters.

-10 -20
*Adopt a parametric mixture of distributions, each one corresponding to a cluster
(e.g., mixture of Gaussians), initialized randomly.
*Move iteratively the distributions each one above a cluster, optimizing a criterion.



Probabilistic CFO clustering algorithms

Let X = {x, x,, ..., Xy} be a set of data points.
Each vector belongs exclusively to a single cluster, with a certain probability.

Each cluster is modeled by a pdf p(x|j), parameterized by the vector 6;.
Let:

@ — {01, 02, e Hm}

P ={Py, P,, ..., Py}, the set of a priori probabilities of the clusters.

P(jlx) = P(j|x; BJ-) the (a posteriori) probability of cluster j, given x.

p(x|j) = p(x J; 9]-) the pdf that models cluster j.

itisp(x) = Xz, p(x,)) = XL p(x|j) P;

p(x,j) _ pxl|j)P;j

Bayesrule P(jlx) = s N




Probabilistic CFO clustering algorithms

Itis

}71:1P(]'|xl-)=1,i=1,...,N O

mop=1, ML: L(8) = XL (In(p(x;; 6).
Define the cost function o ---mmm=-o -

Z 121_ Pb‘li:ﬂrr@(xb, 308

When Inp(X; 0, P) is maximized?

When large P(j|x;)’s are multiplied by large Inp(x;, j; ;) ‘s.

48



Probabilistic CFO clustering algorithms

p(x|j;0;)P;
p(x;0)

For fixed 6's: Use the Bayes rule P(j|x) =

For fixed P(j|x)‘s: Solve the following maximization problem

maxe p S‘N ym P(ilx;) In(p(x;|j; 6;)P;)
= Mmaxep [7 7 P(]lxl) ln p(xl|]' ]) 7 7 P(jlxi) lnPj]

Subject to the constraint )72, P; = 1.

49



Mixture models — Expectation-Maximization (EM) algorithm
p(x]);0,)P;

For fixed 0;'s: Use the Bayes rule P(j|x) =
7 - p(x;¥)

For fixed P(j|x)‘s: Solve the following maximization problem

maxe p ;:1::1 711 P(lx) In(p(x;|j; 6;)P;) =
N m N m
maxgy 7 P(]'le-)ln(p(xi|j;0j) +maxp7 7 P(jlxl-)lnP-
—maxgy 7 P(]le)ln p(xl|], ]) +maxpy 7 P(jlxl-)lnPj

Subject to the constraint .72, P; = 1.
The above maximization problem is equivalent to the following maximization
sub-problems

—0; = = argmaxy, ZN 1 P(lxi) ln( (xl|j, J)) j=1,.
—P={P,P,,.., Py} = argmaxpz Z P(lx;)InP;,s.t. 2 P=1s
=1 j=1 j=1

IV .
p, = NZ.JU"“'“ —1,..,m s0
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Generalized probabilistic Algorithmic Scheme (GPrAS)
* Choose 0;(0), P;(0) as initial estimates for 8;, P;, respectively,j = 1,...,m
e t=0
* Repeat
— Fori=1to N % Expectation step
oForj=1tom

P(jlx; 0, PO =

o End {For-j}

— End {For-i}

—t=t+1

— For J]=1 to m % Parameter updating — Maximization step
o Set

N
0,9 = argmaxejz, 1yji(t_1) In (p(xi|j; Hj)),j =1,..,m
i

p(x:1j:6,0)p;©
™ p(xilq:04P)Pg®

- Vji(t)

®_ 1\

Pj - Nz YJ'i(t_l) rj — 1r ey M
) =1

- End {For-}}

51
e Until a termination criterion is met.



Probabilistic CFO clustering algorithms

Remark: The above algorithm is an instance of the more general Expectation-
Maximization (EM) framework.

GPrAS — The case of normal pdfs
Each cluster is modeled by a normal distribution

1 o [ — (x—p)'E 7 (x — py)
@m5 72 2 '
In this case 6; = {u;, Z;}.

p(x|j; 1, 5) = j=1,..m

N
() = argmaxgyys ) PUlx)In (p(xilis . )
=
Equating the gradient of the above function wrt u;, Z; to 0 and O, respectively,
we have

" = L1 P(x)x;
g §V=1P(]'|xi)

§V=1 P(j|xi)(xi—ﬂj) (xi—ﬂj)T
! £V=1P(]'|xi) 52




Probabilistic CFO clustering algorithms

GPrAS — The normal pdfs case
* Choose 11;(0), Z;(0), P;(0) as initial estimates for u;,%;, Pj,resp.,j = 1,...,m
e t=0
* Repeat

— Fori=1to N % Expectation step

oForj=1tom

P(j|x; 00, p®) =

p(x:1j:6,0)p;©

@) =y;; M
glzl p(xilq;eq )Pq(t)

o End {For-j}
— End {For-i}
—t=t+1
— For J=1 to m % Parameter updating — Maximization step

o Set (1)

N t—
i=1Yji Xi £
50 =

" l(t

' e Vi D o—py) (o—pp)T i=1,..m

©_ 1IN - ;
Pj =NZ yji(_),]=1,...,m
i=1

- End {For-j}
 Until a termination criterion is met.
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GPrAS — The normal pdfs case
* Choose 11;(0), Z;(0), P;(0) as initial estimates for u;,%;, Pj,resp.,j = 1,...,m
e t=0
* Repeat

— For i=1 to N % Fxnectation sten
P(Gjlx; O
3O exp(— 3(x — m) E7 (X — (1)) Pt
O B 2 exp(— L = ()T N0 — p(60)) Pr(t)
o End {For-j}
— End {For-i}
—t=t+1
— For ]=1to m % Parameter updating — Maximization step
o Set
N (t=1) 4. N ..(t—l)(x._ D (x;—pu)T
(t) _ &= 1V]l L 2_(t) . i=1Vji L ﬂ] l ”'] A m
K~ = (t-1) ’ - (t—1) J = L
i= 1VJl i= 1)’]1
p® LN e g
: o i=1yﬂ ,J
- End {For-j}

e Until a termination criterion is met. 54



Probabilistic CFO clustering algorithms

Remark:

* The above scheme is more computationally demanding since it
requires the inversion of the m covariance matrices at each iteration
step. Two ways to deal with this problem are:

» The use of a single covariance matrix for all clusters.
» The use of different diagonal covariance matrices.

Example: (a) Consider three two-dimensional normal distributions with
mean values:

=1, 1], up=[3.5, 3.5]", us=[6, 1]
and covariance matrices

1 =03 1 0.3 1 0.7
z1 — 5 22 — s Z3 — 5
-03 1 0.3 1 0.7 1
respectively.

A group of 100 vectors stem from each distribution. These form the
data set X. >
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(a) The data set (b) Results of GMDAS

Confusion matrix:

Cluster 1

Cluster 2

Cluster 3

15t distribution

99

0

1

274 diistribution

100

0

37 distribution

4

93

The algorithm reveals accurately the underlying structure.




Probabilistic CFO clustering algorithms
(b) The same as (a) but now g, =[1, 1]7, 1,=[2, 2]", u5=[3, 1]" (The clusters are

closer).
6
3 e, 3 Y 02:
%(g %xgggé%%-%;p:* n)gm ‘boO %é%‘j%g%% ':i
x F STy ! T
[ 3 Al X w 3‘53’@'?*7?
O g 3 8, RO gy 4t
0f ® “* Py 0 5
3 3
2 3 8 2 3 g
(@) (b)
The data set Results of GMDAS
Confusion matrix: Cluster 1| Cluster 2 | Cluster 3
15t distribution 85 4 11
29 diistribution 35 56 9
37 distribution 26 0 74

The algorithm reveals the underlying structure less accurately.
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Probabilistic CFO clustering algorithms

Example x, =[00]",x, =[30]",x; = [03]",x, = [1212]", x5 = [15 12]", x, = [12 15]"
16

Initially: 14 -
6.(0) = 0, S]T 12 -
6,(0) = [0,6]"
P,(0) = 0.1 or
P,(0) = 0.9 8l
6~ *
*
41-
2L
0L
o 2 4 & s 16( I% 14 16
1 p(x|1)P,
1) = —exp(—0.5- ||x — 0|2 P(1]x) =
p(x|1) = ——exp(=0.5-[lx — 6411, (1]x) )
1 p(x|2)P,
2) = — —0.5- —0,||? P(2 =
p(x|2) = ——exp(=0.5" |lx — 6 ]I%), (2|x) o
1 1
p(x) = Pip(x|1) + P,p(x[2) = Plﬁew(—O-S lx = 64117) + P %exp(—O-S lx — 6,1%)
N
Inp(X;0,P) = z 1[P(1|xi) In(p(x;|1;0,)P1) + P(2|x;) In(p(x;|2; 6,) P;)] o8
l:
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Example x; =[00]",x, =[30] x5 =[03]",x, = [1212]", x5 = [1512]", x, = [12 15]"

16 -

8 - P(1lx) = M,P(ZM) = p(l2)F,
p(x) p(x)
: p(x) = Pyp(x|1) + Pp(x]2) =
1 P, Ziexp( 0.5 |lx —6,]| )+Pzziexp( 0.5 [lx — 6,]1*)
O -

1%t iteration:
A posteriori probs

I N R A - (1572 05006
0,(1) = 11 1864 11. 5207]T

P(1|lx) 0.9645 0.9645 0.5751 0.0002 0.0002 0.0000 P, (1) — 04174

P(2|x) 0.0355 0.0355 0.4249 0.9998 0.9998 1.0000 P,(1) = 0.5826 *~*°
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Example x,=1[00]",x, =[30]"x; =[03]", x, = [1212]", x5 = [1512]", xc = [12 15]"

16 -

14 |-

12 ° °

10+~

1P 2)P.
T p(x) = Pyp(x|1) + Pop(x|2) =

1 1
Py %exp(—O-S Jlx —0401%) + P, %exp(—O-S Jlx — 6,11%)

=]
=]
=]
=]
=]
—

2" jteration:
A posteriori probs

0,2 =[11]"T
x| x| x| x| x5 | X ,,232):[1[3 1]3]T
P(1|x) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 P,(2) = 0.5
_ 60
P(2|x) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 P,(2) = 0.5
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Example x, =[00]",x, =[30]"x; =[03]",x, = [1212]", x5 = [1512]", x, = [12 15]"

16 -

14 |-

12 ° °

10+~

1P 2
T p(x) = Pyp(x|1) + Pop(x|2) =

1 1
Py %exp(—O-S Jlx — 6411) + P, %exp(—O-S Jlx — 6,11%)
.

=]
=]
=]
=]
=]
—

31 jteration:
A posteriori probs

I =0 = 0 = =" = R et S
0,(3) = [13 13]T
P(1]x) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 p1(3)_0_5
P(2|x) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 P,(3) = 0.5 o



