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Generalized Hard Algorithmic Scheme (GHAS) 
 k-Medoids Algorithms 
• Each cluster is represented by a vector selected among the elements of X 

(medoid).  
 

• A cluster contains 
 Its medoid 
 All vectors in X  that 

o Are not used as medoids in other clusters 
o Lie closer to its medoid than the medoids representing other clusters. 

In the k-medoids algorithms ONLY 
point representatives can be used to 

represent clusters  
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Generalized Hard Algorithmic Scheme (GHAS) 
 k-Medoids Algorithms 
 
Let  
• Θ be the set of medoids of all clusters,  
• IΘ the set of indices of the points in X that constitute Θ and  
• IX-Θ the set of indices of the points that are not medoids. 
 
Obtaining the set of medoids 𝛩 that best represents the data set, 𝑋 is 
equivalent to minimizing the following cost function 
 
 
 
with 

𝐽 𝛩, 𝑈 =   𝑢𝑖𝑗𝑑(𝒙𝑖 , 𝒙𝑗)

𝑗∈𝐼𝛩𝑖∈𝐼𝑋−𝛩

 

𝑢𝑖𝑗 =  
1, 𝑖𝑓 𝑑 𝑥𝑖 , 𝑥𝑗 = 𝑚𝑖𝑛𝑞∈𝐼𝛩𝑑 𝑥𝑖 , 𝑥𝑞
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖 = 1,… , 𝑁 
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Generalized Hard Algorithmic Scheme (GHAS) 
k-Medoids Algorithms 
Example 3:  
     (a) The five-point two-dimensional set stems from the discrete domain  
 𝐷 = {1,2,3,4,… } × {1,2,3,4, … }. Its medoid is the circled point and its mean is   
 the “+” point, which does not belong to D. 
 
    (b)  In the six-point two-dimensional set , the point (9,2) can be considered 
as an outlier. While the outlier affects significantly the mean of the set, it does 
not affect its medoid. 
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Generalized Hard Algorithmic Scheme (GHAS) 

Representing clusters with mean values vs representing clusters with 
medoids 
 Mean Values Medoids 

1. Suited only for 
continuous domains 

1. Suited for either 
cont. or discrete 
domains 

2. Algorithms using 
means are sensitive 
to outliers 

2. Algorithms using 
medoids  are less 
sensitive to outliers 

3. The mean 
possess a clear 
geometrical and 
statistical meaning 

3. The medoid has not a 
clear geometrical 
meaning 

4. Algorithms using 
means are not 
computationally 
demanding 

4. Algorithms using 
medoids are more 
computationally 
demanding 
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Generalized Hard Algorithmic Scheme (GHAS) 
k-Medoids Algorithms 
Algorithms to be considered 
• PAM (Partitioning Around Medoids) 
• CLARA (Clustering LARge Applications) 
• CLARANS (Clustering Large Applications based on RANdomized Search) 
 
The PAM algorithm 
• The number of clusters 𝑚 is required a priori. 
 
Definitions-preliminaries 
• Two sets of medoids 𝛩 and 𝛩´, each one consisting of 𝑚 elements, are called 

neighbors if they share 𝑚 − 1 elements. 
 

• A set 𝛩 of medoids with 𝑚 elements can have 𝑚(𝑁 −𝑚) neighbors. 
 

• Let 𝛩𝑖𝑗 denote the neighbor of 𝛩 that results if 𝒙𝑗, 𝑗𝐼𝑋−𝛩 replaces 𝒙𝑖, 𝑖𝐼𝛩. 
 

• Let 𝛥𝐽𝑖𝑗 = 𝐽(𝛩𝑖𝑗 
, 𝑈𝑖𝑗)  −  𝐽(𝛩 , 𝑈). 
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Generalized Hard Algorithmic Scheme (GHAS) 
 
The PAM algorithm 
• Determination of 𝛩 that best represents the data 

 Generate a set 𝛩 of 𝑚 medoids, randomly selected out of 𝑋. 
 (A) Determine the neighbor 𝛩𝑞𝑟, 𝑞𝐼𝛩, 𝑟𝛪𝑋−𝛩 among the 𝑚(𝑁 −𝑚) 
neighbors of 𝛩 for which Δ𝐽𝑞𝑟 = 𝑚𝑖𝑛𝑖∈𝐼𝛩, 𝑗∈𝐼𝑋−𝛩

𝛥𝐽𝑖𝑗. 

If Δ𝐽𝑞𝑟 <  0 then 
oReplace 𝛩 by 𝛩𝑞𝑟 
oGo to (A) 

End 
 

• Assignment of points to clusters 
 Assign each 𝒙𝐼𝑋−𝛩 to the cluster represented by the closest to 𝒙 
medoid. 

 

Δ𝐽𝑞𝑟 <  0 ⇔ 𝐽 𝛩𝑞𝑟 
, 𝑈𝑞𝑟 <  𝐽(𝛩 , 𝑈) 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm 
Computation of 𝛥𝐽𝑖𝑗.  

It is defined as:  

𝛥𝐽𝑖𝑗 = 𝐽 𝛩𝑖𝑗 
, 𝑈𝑖𝑗 −  𝐽 𝛩 , 𝑈 =   𝑢𝑠𝑡𝑑 𝒙𝑠, 𝒙𝑡

𝑡∈𝐼𝛩
𝑖𝑗

𝑠∈𝐼𝑋−𝛩
𝑖𝑗

−   𝑢𝑠𝑡𝑑 𝒙𝑠, 𝒙𝑡
𝑡∈𝐼𝛩𝑠∈𝐼𝑋−𝛩

≡  𝐶ℎ𝑖𝑗
ℎ∈𝐼𝑋−𝛩

 

 
where 𝐶ℎ𝑖𝑗  is the difference in J, resulting from the (possible) assignment of the 

vector 𝒙ℎ𝑋 − 𝛩 from the cluster it currently belongs to another, as a 
consequence of the replacement of 𝒙𝑖𝛩 by 𝒙𝑗𝑋 − 𝛩. 
 
For the computation of 𝐶ℎ𝑖𝑗  associated with a specific each 𝒙ℎ𝑋 − 𝛩 it is 

required 
• The distance of 𝒙ℎ from its closest medoid in 𝛩 
• The distance of 𝒙ℎ from its next to closest medoid in 𝛩. 
• The distance of 𝒙ℎ from the newly inserted medoid in 𝛩𝑖𝑗. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm (cont.) 
Computation of 𝐶ℎ𝑖𝑗: 
𝒙ℎ belongs to the cluster represented by 𝒙𝑖 (𝒙ℎ2 𝛩 denotes the second closest 
to 𝒙ℎ representative) and 𝑑(𝒙ℎ, 𝒙𝑗)𝑑(𝒙ℎ, 𝒙ℎ2)

. Then 
 
 𝐶ℎ𝑖 𝑗

= 𝑑(𝒙ℎ, 𝒙ℎ2) −
𝑑(𝒙ℎ, 𝒙𝑖)0 

 

 

 

 

𝒙ℎ belongs to the cluster represented by 𝒙𝑖 (𝒙ℎ2 𝛩 denotes the second closest 
to 𝒙ℎ representative) and 𝑑 𝒙ℎ 

, 𝒙𝑗 𝑑(𝒙ℎ 
, 𝒙ℎ2)

. Then 
 
 𝐶ℎ𝑖𝑗 

=  𝑑(𝒙ℎ 
, 𝒙𝑗)  −  𝑑(𝒙ℎ 

, 𝒙𝑖) (><) 0 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm (cont.) 
Computation of 𝐶ℎ𝑖𝑗 (cont.): 
𝒙ℎ is not represented by 𝒙𝑖 (𝒙ℎ1 denotes the closest to 𝒙ℎ medoid) and  
𝑑(𝒙ℎ 

, 𝒙ℎ1) 
 𝑑(𝒙ℎ 

, 𝒙𝑗). Then 
 

        𝐶ℎ𝑖𝑗 = 𝑑 𝒙ℎ 
, 𝒙𝑗 − 𝑑 𝒙ℎ 

, 𝒙ℎ1 = 0 

 

 

 

 

𝒙ℎ is not represented by xi (𝒙ℎ1 denotes the closest to 𝒙ℎ medoid) and  
𝑑(𝒙ℎ, 𝒙ℎ1) >

𝑑(𝒙ℎ, 𝒙𝑗). Then 
 

 𝐶ℎ𝑖𝑗 
= 𝑑(𝒙ℎ 

, 𝒙𝑗) − 𝑑(𝒙ℎ 
, 𝒙ℎ1) <

0 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm (cont.) 
Remarks: 
• Experimental results show the PAM works satisfactorily with small data sets. 

 
• Its computational complexity is 𝑂(𝑚(𝑁 −𝑚)2). Unsuitable for large data 

sets. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm (Example) 
Data set: 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5, 𝒙6 , with  
𝒙1 = 0,3 𝑇, 𝒙2 = 1,3 𝑇, 𝒙3 = 2,3 𝑇, 𝒙4 = 0,0 𝑇, 𝒙5 = 1,0 𝑇, 𝒙1 = 2,0 𝑇. 
Set of medoids: 𝛩 = 𝒙4, 𝒙5  
Computation of 𝐽(𝛩, 𝑈) (Squared Euclidean distance is considered): 

 𝒙1 ⟶ 𝑑 𝒙1, 𝒙4 = 9 < 10 = 𝑑 𝒙1, 𝒙5 ⟶ 𝑢14 = 1, 𝑢15 = 0 

 𝒙2 ⟶ 𝑑 𝒙2, 𝒙4 = 10 > 9 = 𝑑 𝒙2, 𝒙5 ⟶ 𝑢24 = 0, 𝑢25 = 1 
 𝒙3 ⟶ 𝑑 𝒙3, 𝒙4 = 13 > 10 = 𝑑 𝒙3, 𝒙5 ⟶ 𝑢34 = 0, 𝑢35 = 1 
 𝒙4 ⟶ 𝑑 𝒙4, 𝒙4 = 0 < 1 = 𝑑 𝒙4, 𝒙5 ⟶ 𝑢44 = 1, 𝑢45 = 0 
 𝒙5 ⟶ 𝑑 𝒙5, 𝒙4 = 1 > 0 = 𝑑 𝒙5, 𝒙5 ⟶ 𝑢54 = 0, 𝑢55 = 1 
 𝒙6 ⟶ 𝑑 𝒙6, 𝒙4 = 2 > 1 = 𝑑 𝒙6, 𝒙5 ⟶ 𝑢64 = 0, 𝑢65 = 1 
 

𝒙1 𝒙2  𝒙3  

𝒙4 𝒙5  𝒙6  

𝑢14𝑑 𝒙1, 𝒙4 + 𝑢15𝑑 𝒙1, 𝒙5 + 1 ∙ 9 + 0 ∙ 10 + 

𝑢24𝑑 𝒙1, 𝒙4 + 𝑢25𝑑 𝒙1, 𝒙5 + 0 ∙ 10 + 1 ∙ 9 + 

𝐽(Θ, 𝑈) = 𝑢34𝑑 𝒙1, 𝒙4 + 𝑢35𝑑 𝒙1, 𝒙5 + = 0 ∙ 13 + 1 ∙ 10 + = 29 
𝑢44𝑑 𝒙1, 𝒙4 + 𝑢45𝑑 𝒙1, 𝒙5 + 1 ∙ 0 + 0 ∙ 1 + 

𝑢54𝑑 𝒙1, 𝒙4 + 𝑢55𝑑 𝒙1, 𝒙5 + 0 ∙ 1 + 1 ∙ 0 + 

𝑢64𝑑 𝒙1, 𝒙4 + 𝑢65𝑑 𝒙1, 𝒙5  0 ∙ 2 + 1 ∙ 1 
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Generalized Hard Algorithmic Scheme (GHAS) 
The PAM algorithm (Example) 
Data set: 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5, 𝒙6 , with  
𝒙1 = 0,3 𝑇, 𝒙2 = 1,3 𝑇, 𝒙3 = 2,3 𝑇, 𝒙4 = 0,0 𝑇, 𝒙5 = 1,0 𝑇, 𝒙1 = 2,0 𝑇. 

Set of medoids: 𝛩 = 𝒙4, 𝒙5  

𝛩 = 𝒙4, 𝒙5  
 𝐽(𝛩,𝑈) = 𝟐𝟗 

𝛩41 = 𝒙1, 𝒙5  
𝐽(𝛩41,𝑈41) = 5 
𝛥𝐽41 = 5 − 29 = −24 

𝛩42 = 𝒙𝟐, 𝒙5  
𝐽(𝛩42,𝑈42) = 4 
𝛥𝐽42 = 4 − 29 = −𝟐𝟓 

𝛩43 = 𝒙𝟑, 𝒙5  
𝐽(𝛩43,𝑈43) = 5 
𝛥𝐽43 = 5 − 29 = −24 

𝛩46 = 𝒙𝟔, 𝒙5  
𝐽(𝛩46,𝑈46) = 29 
𝛥𝐽46 = 29 − 29 = 0 

𝛩51 = 𝒙4, 𝒙1  
𝐽(𝛩51,𝑈51) = 6 
𝛥𝐽51 = 6 − 29 = −23 

𝛩56 = 𝒙4, 𝒙6  
𝐽(𝛩56,𝑈56) = 29 
𝛥𝐽56 = 29 − 29 = 0 

𝛩53 = 𝒙4, 𝒙3  
𝐽(𝛩53,𝑈53) = 5 
𝛥𝐽53 = 5 − 29 = −24 

𝛩52 = 𝒙4, 𝒙2  
𝐽(𝛩52,𝑈52) = 5 
𝛥𝐽52 = 5 − 29 = −24 

𝒙4 ↔ 𝒙1 

𝒙4 ↔ 𝒙2 𝒙4 ↔ 𝒙3 𝒙4 ↔ 𝒙6 

𝒙5 ↔ 𝒙1 

𝒙5 ↔ 𝒙2 𝒙5 ↔ 𝒙3 𝒙5 ↔ 𝒙6 

𝒙1 𝒙2  𝒙3  

𝒙4 𝒙5  𝒙6  

It is Δ𝐽42 = 𝑚𝑖𝑛𝑖∈𝐼𝛩, 𝑗∈𝐼𝑋−𝛩
𝛥𝐽𝑖𝑗 = −25 < 0 

Thus, according to PAM, 𝛩 will be replaced by 𝛩42. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The CLARA algorithm 
• It is more suitable for large data sets. 
• The strategy: 

 Draw randomly a sample 𝑋΄ of size 𝑁΄ from the entire data set. 
 Run the PAM algorithm to determine 𝛩΄ that best represents 𝑋΄. 
 Use 𝛩΄ in the place of 𝛩 to represent the entire data set 𝑋. 

• The rationale: 
  Assuming that 𝑋´ has been selected in a way representative of the 

statistical distribution of the data points in 𝑋, 𝛩΄ is expected to be a good 
approximation of 𝛩,  which would have been produced if PAM were run 
on the entire X.  

•  The algorithm: 
  Draw s sample subsets of size 𝑁΄ from 𝑋, denoted by 𝑋΄1, … , 𝑋΄𝑠 (typically 
𝑠 =  5, 𝑁΄ =  40 + 2𝑚). 

 Run PAM on each one of them and identify 𝛩΄1, … , 𝛩΄𝑠. 
 Choose the set 𝛩΄𝑗 that minimizes 

𝐽 𝛩, 𝑈 =   𝑢𝑖𝑗𝑑 𝒙𝑖 , 𝒙𝑗
𝑗∈𝐼𝛩′𝑖∈𝐼𝛸−𝛩′

 

 
based on the entire data set 𝑋. 
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Generalized Hard Algorithmic Scheme (GHAS) 
The CLARANS algorithm 
• It is more suitable for large data sets. 
• It follows the philosophy of PAM with the difference that only a randomly selected 

fraction 𝑞(< 𝑚(𝑁 −𝑚)) of the neighbors of the current medoid set is considered. 
• It performs several runs (𝑠) starting from different initial choices for 𝛩. 
The algorithm: 
 For 𝑖 = 1 to 𝑠 

o Initialize randomly 𝛩. 
o (A) Select randomly 𝑞 neighbors of 𝛩. 
o For 𝑗 = 1 to 𝑞 

        * If the present neighbor of 𝛩 is better than 𝛩 (in terms of 𝐽(𝛩, 𝑈)) then 
             -- Set 𝛩 equal to its neighbor 
             -- Go to (A) 
        * End If 

o End For 
o Set 𝛩𝑖 = 𝛩 

 End For  
 Select the best 𝛩𝑖 with respect to 𝐽(𝛩, 𝑈).  
 Based on 𝛩𝑖, assign each 𝒙𝑋 − 𝛩 to the cluster whose representative is closest to 𝒙 



CFO hard clustering algorithms  

16 

Generalized Hard Algorithmic Scheme (GHAS) 
The CLARANS algorithm (cont.) 

Remarks: 
• CLARANS depends on 𝑞 and 𝑠. Typically, 𝑠 = 2 and  
 𝑞 = max (0.125𝑚(𝑁 −𝑚), 250) 
• As q approaches 𝑚(𝑁 −𝑚) CLARANS approaches PAM and the complexity 

increases. 
• CLARANS can also be described in terms of graph theory concepts. 
• CLARANS unravels better quality clusters than CLARA. 
• In some cases, CLARA is significantly faster than CLARANS. 
• CLARANS retains its quadratic computational nature and thus it is not 

appropriate for very large data sets. 



Discrete random variables: 
•A discrete RV x can take any value x from a finite or countably infinite set X. 
 
•X: sample space or state space. 
 
•Event: Any subset of X. 
 
•Elementary or simple event: A single element subset of X. 
 
•Example: Consider the die roll experiment. X={1,2,3,4,5,6} 
•Events: “Odd number”, “number>3”, “2”, “5” 

Probability and statistics: a brief review 

Random variable (RV): It models the output of an experiment. 
 
RV types: 
•Discrete  
•continuous 

17 
Elementary events 



1)(  Xx
xP

Discrete random variables (cont.): 
 
•Notation: Probability of the event x=xX:      P(x=x) ≡ P(x) 
 
•P(.):A function called probability mass function (pmf) satisfying  

   P(x) ≥ 0, x X 

 

  

Probability and statistics: a brief review 
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Probability and statistics: a brief review 
Discrete random variables (cont.): 
The case of more than one random variables: Definitions 

Discrete RV x y 

Sample space X={x1,…,xnx} Y={y1,…,yny} 

19 

Joint probability: P(xi, yj) ≡ P(x=xi AND y=yj) 
•It corresponds to the case where x takes the value xi AND y takes the value 

yj, simultaneously. 
 

Marginal probabilities: P(xi) ≡ P(x=xi), P(yj) = P(y=yj) 
•This terminology is used only when more than one rvs are involved. 
 

Conditional probability: P(xi| yj) ≡ P(x=xi | y=yj) = P(xi,yj) / P(yj) 
•It corresponds to the case where x takes the value xi given that y takes the 
value yj. 



Probability and statistics: a brief review 
Discrete random variables (cont.): 
The case of more than one variables: Properties 

Discrete RV x y 

Sample space X={x1,…,xnx} Y={y1,…,yny} 
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Sum rule: 
 
Product rule: 
 
Statistical independence:  
 
A consequence:  
 
Bayes rule: 
 
or 

XxyxPxP
Yy
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It plays a key role in ML. 
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Continuous random variables: 
•A continuous RV x can take any value x R. 
 
•Sample space or state space: R 
 
•Events: {x x}, {x1<x x2}, {x ≥x} 
 
•Cumulative distribution function (cdf): Fx(x)=P(x x) 
 
•It is Fx()=P(x <)=1 
 
•Probability of events in terms of cdf: 
P(x x) = Fx(x) 
P(x1<x x2) = P(x x2) – P(x x1) = Fx(x2) - Fx(x1) 
P(x ≥x) = = P(x  ) – P(x x) = 1 - P(x x) = 1 - Fx(x) 

 
 

Probability and statistics: a brief review 
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Corresponds to the 
probability mass function 

from the discrete case. 

It assigns “mass” to events. 



Continuous random variables (cont.): 
•Assumption: Fx(x) is continuous and differentiable. 
 
•Probability density function (pdf): 
 
 

 
•cdf in terms of pdf: 
 
 
•Probability of events in terms of pdf: 
 
P(x x) = Fx(x) =  

 
P(x1<x x2) = P(x x2) – P(x x1) = Fx(x2) - Fx(x1) =  

 
P(x ≥x) = = P(x  ) – P(x x) = 1 - P(x x) = 1 - Fx(x) =  

Probability and statistics: a brief review 
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It assigns “mass” to values. 

 


x

dzzpxF )()( xx



-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Continuous random variables (cont.): 

Probability and statistics: a brief review 
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Continuous random variables (cont.): 
 
•Since P(-<x<+ )=1 it is: 
 
•It is 
 

As Δx0, P(x<x<x+Δx )=P(x=x)=0. 
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1)(x 



dxxp

xxpdzzpxxxP
xx

x




)()()x( xx  


The probability of a continuous rv to 
take a single value is zero. 

The case of more than one variables:  

Continuous RV x y 

Sample space R R 

NOTE: All rules stated for the probability mass function in the discrete case 
are stated for the pdf in the continuous case.   





 dyyxpxp ),()()()|(),( ypyxpyxp 

Product rule Sum rule 
We drop the name of rv 
from the subscript of p. 



Useful quantities related to (continuous) rvs: 
 
•Mean (expected) value of a rv x:  
 
•Variance of a rv x : 
 
•Mean (expected) value of a function of an rv x : 
 
•Mean of a function of two rv’s x, y: 
 
•Conditional mean of an rv y given x = x:  
 
•It is 
 
•Covariance between two rvs x and y: 
 
• Correlation between two rv’s x and y: 

• Correlation coefficient 𝑟𝑥𝑦 =
𝐸 𝑥−𝐸[𝑥])(𝑦−𝐸[𝑦])

𝜎𝑥𝜎𝑦
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 dxxxp )(]x[E

]))x(Ex[(E)(])x[E( 222
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dxxpx





 dxxpxff )()(]x)([E

 







 dxdyyxpyxff ),(),(]y)x,([E yx,





 dyxyypx )|(]|y[E

)]]yx,([[]y)x,([E x|yxyx, fEEf 

)]E[y]E[x])(y(x[E)yx,cov( 

x]E[y][E),cov()xy(Exy  yxr

For discrete rv’s, the 
integrals become 

summations.  



Random vectors 
 
•A collection of rvs: x=[x1,x2,…xl]

T 

 
•Probability density function (pdf) of x : The joint pdf of x1,x2,…xl. 
       p(x)=p(x1,x2,…xl) 
 
•Covariance matrix of x : 
 
 
 
 
 
•Correlation matrix of x: 
 
 
•It is 
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T
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][E][E)cov(][E TT
xxx  xxxR Exercise: Prove this identity 



Random vectors (cont.) 
 
•Remark: Both Rx and cov(x) are symmetric and positive definite lxl matrices. 
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A square matrix 
A is symmetric 

iff AT=A. 

A square matrix 
A is positive 
definite iff 

zTAz>0, zRl. 

Exercise: Prove these statements 



 
•One dim. normal (Gaussian) distribution xN(μ,σ2) or N(x|μ,σ2) :  
 

Sample space: R 
It is  

 
  

 
E[x]=μ 
σx

2 = σ2. 
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x
xp

σ2 = 0.1 

σ2 = 0.01 



•Multi dim. normal (Gaussian) distribution xN(μ,Σ) or N(x| μ,Σ) :  
 

Sample space: Rl 

It is  
 
  

 
E[x]=μ 
cov(x) = Σ. 
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Σ: diagonal with 

equal diagonal 
entries 

Σ: diagonal with 

σ1
2>>σ2

2 

Probability and statistics: a brief review 

•Multi dim. normal (Gaussian) distribution xN(μ,Σ) or N(x| μ,Σ) :  

Isovalued curves: 
•(x-μ)ΤΣ-1(x-μ)=const. 
•All points on it share 
the value p(x) 
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Σ: diagonal with 

σ1
2<<σ2

2 

Σ: non diagonal 

•Multi dim. normal (Gaussian) distribution xN(μ,Σ) or N(x| μ,Σ) :  

Probability and statistics: a brief review 
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       σ 1
2  σ12 

Σ=        
       σ 12  σ2

2 

(α) σ 1
2=σ 2

2=1, σ12=0 
 
(β) σ 1

2=σ 2
2=0.2, σ12=0 

 
(γ) σ 1

2=σ 2
2=2, σ12=0 

 
(δ) σ 1

2=0.2, σ 2
2=2, σ12=0 

 
(ε) σ 1

2=2, σ 2
2=0.2, σ12=0 

 
(στ) σ 1

2=σ 2
2=1, σ12=0.5 

 
(ζ) σ 1

2=0.3, σ 2
2=2, σ12=0.5 

 
(η) σ 1

2=0.3, σ 2
2=2, σ12=-0.5 

Probability and statistics: a brief review 
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Two-dim. pdfs 

Continuous RV distributions (cont.) 
Other examples of multi-dimensional  pdfs 

Probability and statistics: a brief review 

Bimodal distribution 



Likelihood function  
 
• Let 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁} a set of independent data vectors 
• Let 𝑝𝜽(∙) be a pdf belonging to a known parametric set of pdf functions of 

parameter vector 𝜽. 
•  𝑝(𝒙) = 𝑝𝜽(𝒙)  ≡  𝑝(𝒙;

 
𝜽). 

 Examples:  
If 𝑝𝜽(𝒙) is normal distribution parameterized on the mean vector 𝝁, θ 

will simply be 𝝁. 
If 𝑝𝜽(𝒙) is normal distribution parameterized on both the mean vector 𝝁 

and the cov. matrix 𝛴, θ will contain the coordinates of both 𝝁 and 𝛴. 
 
Likelihood function of 𝜽 wrt 𝑋: 
 
Log-likelihood function of 𝜽 wrt 𝑋: 

Probability and statistics: a brief review 

𝑝 𝑋; 𝜽 = 𝑝 𝒙1, … , 𝒙𝑁; 𝜽 =  𝑝 𝒙𝑖; 𝜽
𝑁

𝑖=1
 

𝐿 𝜽 = ln 𝑝 𝑋; 𝜽 = ln 𝑝 𝒙1, … , 𝒙𝑁; 𝜽 =  ln𝑝 𝒙𝑖; 𝜽
𝑁

𝑖=1
 



Likelihood function  
 
Example: 
•𝑋 = {−2,−1, 0, 1, 2} 
•Consider the parametric set of normal distributions of unit variance, 
parameterized on 𝜇. 
•The likelihood of 𝜇 wrt 𝛸 is 

Probability and statistics: a brief review 

𝑝 𝑥 =
1

2𝜋
exp (−

𝑥 − 𝜇 2

2
) 

𝑝 𝑋; 𝜇 = 𝑝 −2,−1,0,1,2; 𝜇 =  
1

2𝜋
exp −

−2−μ 2

2

1

2𝜋
exp −

−1−μ 2

2

1

2𝜋
exp −

0−μ 2

2
  

1

2𝜋
exp −

1−μ 2

2
 
1

2𝜋
exp −

2−μ 2

2
 



Likelihood function  
 

Probability and statistics: a brief review 

𝑃(𝑋; 𝜇 = −2) = 3.1 × 10−9 

𝑃(𝑌; 𝜇) 

𝜇 

𝑝(𝑥; 𝜇 = −2) =
1

2𝜋
exp −

𝑥 + 2 2

2
 

𝑃(𝑋; 𝜇 = 2) = 3.1 × 10−9 

𝑝(𝑥; 𝜇 = 2) =
1

2𝜋
exp −

𝑥 − 2 2

2
 

𝑃(𝑋; 𝜇 = 0) = 6.8 × 10−5 

𝑝(𝑥; 𝜇 = 0) =
1

2𝜋
exp −

𝑥2

2
 



Probabilistic CFO clustering algorithms 
Maximum likelihood (ML) method: 
Given a set of independent data vectors 𝑌 = { 𝒙1, 𝒙2, … , 𝒙𝑁}, 
estimate the parameter vector 𝜽 as the maximum of the likelihood (𝑝(𝑌; 𝜽)) or 
the log-likelihood (𝐿(𝜽)) function. 

 

Since ln (∙) is an increasing 
function, 𝑝(𝑌; 𝜽) and 𝐿(𝜽) 

share the same maxima. 

𝜽 𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽 𝑝(𝑌; 𝜽) 𝜽 𝑀𝐿:
𝜕𝐿(𝜽)

𝜕𝜽
=  

1

𝑝(𝒙𝑘; 𝜃)

𝜕𝑝(𝒙𝑘; 𝜃)

𝜕𝜽

Ν

𝜅=1

= 𝟎 



Probabilistic CFO clustering algorithms 
Maximum likelihood (ML) method: 
 
Assuming that 
 
- the chosen model 𝑝(𝒙;

 
𝜽) is correct and 

- there exists a true parameter 𝜽𝒐, 
 
the ML estimator  
 

(a) is asymptotically unbiased  𝑙𝑖𝑚𝑁→∞𝐸 𝜽 𝑀𝐿 = 𝜽𝜊 

 

(b) is asymptotically consistent 𝑙𝑖𝑚𝑁→∞𝑃𝑟𝑜𝑏 𝜽 𝑀𝐿 − 𝜽𝜊 = 0 

 
(c) is asymptotically efficient (it achieves the Cramer-Rao lower bound) 

 
The pdf of the ML estimator approaches the normal distribution with 
mean 𝜽𝒐, as 𝑁. 



Maximum likelihood method 
Example 1: 

-Let 𝑌 be a set of 𝑁 (independent from each other) data points, 𝒙𝑖, 𝑖 = 1,… ,𝑁, 
generated by a normal distribution 𝑝(𝒙;  𝜽) of known covariance matrix and 
unknown mean. 
-Determine the ML estimate of the mean 𝝁 of 𝑝(𝒙; 𝜽), based on 𝑌. 
Solution: 
-The unknown parameter vector in this case is the mean vector 𝝁, i.e. 𝜽 ≡ 𝝁. 
-It is 

𝑝 𝒙; 𝜽 ≡ 𝑝 𝒙; 𝝁 =
1

2𝜋 𝑙/2 Σ 1/2
∙ 𝑒𝑥𝑝 −

1

2
𝒙 − 𝝁 𝑇Σ−1 𝒙 − 𝝁 ⟹ 

𝐿 𝝁 =  ln𝑝 𝒙𝑖; 𝝁
𝛮

𝑖=1
= 𝑁𝐶 −

1

2
 𝒙𝑖 − 𝝁 𝑇Σ−1 𝒙𝑖 − 𝝁

𝑁

𝑖=1
 

ln 𝑝 𝒙; 𝝁 = ln
1

2𝜋 𝑙/2 Σ 1/2
−
1

2
𝒙 − 𝝁 𝑇Σ−1 𝒙 − 𝝁 = 𝐶 −

1

2
𝒙 − 𝝁 𝑇Σ−1 𝒙 − 𝝁  

Then 



Maximum likelihood method 
Example 1 (cont.): 

Setting the gradient of 𝐿(𝝁) wrt 𝝁 equal to 𝟎 we have 

Remark: The ML estimate for the covariance matrix is 

Σ𝑀𝐿 =
1

𝑁
 (𝒙𝑖 − 𝝁)(𝒙𝑖 − 𝝁)𝛵

𝑁

𝑖=1
 

𝜕𝐿(𝝁)

𝜕𝝁
=

𝜕

𝜕𝝁
𝑁𝐶 −

1

2
 𝒙𝑖 − 𝝁 𝑇Σ−1 𝒙𝑖 − 𝝁

𝑁

𝑖=1
= 𝟎 ⟺ 

 

 Σ−1 𝒙𝑖 − 𝝁
𝑁

𝑖=1
= 𝟎 ⟺  𝒙𝑖 − 𝝁

𝑁

𝑖=1
= 𝟎 ⟺  𝒙𝑖

𝑁

𝑖=1
− 𝑁𝝁 = 𝟎 

 

𝝁𝑀𝐿 =
1

𝑁
 𝒙𝑖

𝑁

𝑖=1
 



Probabilistic CFO clustering algorithms 
Mixture models - The Expectation – Maximization (EM) algorithm  

Mixture model: A weighted sum of known parametric form pdfs. 
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• Assume that 𝑝(𝒙) models the distribution 
of the data in X (each pdf models a cluster).  
 

• The aim is to move each pdf so that to 
“cover” the area in the data space where 
the vectors of each cluster lie (mixture 
decomposition). 



•Adopt a parametric mixture of distributions, each one corresponding to a cluster 
(e.g., mixture of Gaussians), initialized randomly. 
•Move iteratively the distributions each one above a cluster, optimizing a criterion. 

Prerequisite: Knowledge of 
the number of clusters. 

Probabilistic CFO clustering algorithms 
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•Adopt a parametric mixture of distributions, each one corresponding to a cluster 
(e.g., mixture of Gaussians), initialized randomly. 
•Move iteratively the distributions each one above a cluster, optimizing a criterion. 

Prerequisite: Knowledge of 
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Probabilistic CFO clustering algorithms 



•Adopt a parametric mixture of distributions, each one corresponding to a cluster 
(e.g., mixture of Gaussians), initialized randomly. 
•Move iteratively the distributions each one above a cluster, optimizing a criterion. 

Prerequisite: Knowledge of 
the number of clusters. 

Probabilistic CFO clustering algorithms 



Probabilistic CFO clustering algorithms 

47 

Let 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁  be a set of data points. 
 
Each vector belongs exclusively to a single cluster, with a certain probability. 
 
Each cluster is modeled by a pdf 𝑝 𝒙 𝑗 , parameterized by the vector 𝜽𝑗. 

Let: 
 𝛩 = {𝜽1, 𝜽2, … , 𝜽𝑚} 
 
 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑚}, the set of a priori probabilities of the clusters. 
 

 𝑃 𝑗 𝒙 ≡ 𝑃 𝑗 𝒙; 𝜽𝑗   the (a posteriori) probability of cluster 𝑗, given 𝒙. 

 

𝑝 𝒙 𝑗 ≡ 𝑝 𝒙 𝑗; 𝜽𝑗   the pdf that models cluster 𝑗. 

 
It is 𝑝 𝒙 =  𝑝 𝒙, 𝑗𝑚

𝑗=1 =  𝑝 𝒙|𝑗𝑚
𝑗=1 𝑃𝑗 

 

Bayes rule   𝑃 𝑗 𝒙 =
𝑝(𝒙,𝑗)

𝑝(𝒙)
=

𝑝 𝒙 𝑗 𝑷𝒋

𝑝(𝒙)
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It is   
•  𝑃(𝑗|𝒙𝑖) = 1𝑚

𝑗=1 , 𝑖 = 1,… , 𝑁  

 
•  𝑃𝑗 = 1𝑚

𝑗=1 .  

 
Define the cost function  

ln 𝑝(𝑋; 𝛩, 𝑃) =   𝑃 𝑗 𝒙𝑖 ln 𝑝(𝒙𝑖 , 𝑗; 𝜽𝑗)
𝑚

𝑗=1

𝑁

𝑖=1

=   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
 

When ln 𝑝(𝑋;𝛩, 𝑃) is maximized? 
 
When large 𝑃 𝑗 𝒙𝑖 ’s are multiplied by large ln 𝑝(𝒙𝑖 , 𝑗; 𝜽𝑗) ‘s. 

 

ML: 𝐿 𝜽 =  ln (𝑝(𝒙𝑖; 𝜽)
𝑁
𝑖=1  
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For fixed 𝜽𝒋‘s: Use the Bayes rule 𝑃 𝑗 𝒙 =
𝑝 𝒙 𝑗;𝜽𝑗 𝑷𝒋

𝑝(𝒙;𝜣)
 

 
For fixed 𝑃(𝑗|𝒙)‘s: Solve the following maximization problem 

𝑚𝑎𝑥𝛩,𝑃   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1

= 𝑚𝑎𝑥𝛩,𝑃   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗
𝑚

𝑗=1

𝑁

𝑖=1
+  𝑃 𝑗 𝒙𝑖 ln 𝑃𝑗

𝑚

𝑗=1

𝑁

𝑖=1
 

 
Subject to the constraint  𝑃𝑗 = 1𝑚

𝑗=1 . 



Mixture models – Expectation-Maximization (EM) algorithm 
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For fixed 𝜽𝒋‘s: Use the Bayes rule 𝑃 𝑗 𝒙 =
𝑝 𝒙 𝑗;𝜽𝑗 𝑷𝒋

𝑝(𝒙;𝜣)
 

 
For fixed 𝑃(𝑗|𝒙)‘s: Solve the following maximization problem 

𝑚𝑎𝑥𝛩,𝑃   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗 𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
= 

𝑚𝑎𝑥𝛩   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗
𝑚

𝑗=1

𝑁

𝑖=1
+𝑚𝑎𝑥𝑃   𝑃 𝑗 𝒙𝑖 ln 𝑃𝑗

𝑚

𝑗=1

𝑁

𝑖=1

= 𝑚𝑎𝑥𝛩   𝑃 𝑗 𝒙𝑖 ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗
𝑁

𝑖=1

𝑚

𝑗=1
+𝑚𝑎𝑥𝑃   𝑃 𝑗 𝒙𝑖 ln 𝑃𝑗

𝑚

𝑗=1

𝑁

𝑖=1
 

 

Subject to the constraint  𝑃𝑗 = 1𝑚
𝑗=1 . 

The above maximization problem is equivalent to the following maximization 
sub-problems 

− 𝜽𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽𝑗  𝑃(𝑗|𝒙𝒊) ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗
𝑁
𝑖=1 , 𝑗 = 1, … ,𝑚  

− 𝑃 ≡ {𝑃1, 𝑃2, … , 𝑃𝑚} = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃   𝑃(𝑗|𝒙𝒊) ln𝑃𝑗
𝑚

𝑗=1

𝑁

𝑖=1
, 𝑠. 𝑡. 𝑃𝑗 = 1

𝑚

𝑗=1
⟺ 

 

𝑃𝑗 =
1

𝑁
 𝑃(𝑗|𝒙𝒊)

𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 



Generalized probabilistic Algorithmic Scheme (GPrAS) 
• Choose 𝜽𝑗(0), 𝑃𝑗(0) as initial estimates for 𝜽𝑗, 𝑃𝑗 , respectively, 𝑗 = 1,… ,𝑚 

• t=0 
• Repeat 

 For i=1 to N  % Expectation step 
o For j=1 to m 

                                    𝑃(𝑗|𝒙𝑖; 𝛩
𝑡 , 𝑃(𝑡)) =

𝑝(𝑥𝑖|𝑗;𝜃𝑗
𝑡 )𝑃𝑗

(𝑡)

 𝑝(𝑥𝑖|𝑞;𝜃𝑞
𝑡 )𝑃𝑞

(𝑡)𝑚
𝑞=1

≡ 𝛾𝑗𝑖
(𝑡) 

o End {For-j} 
 End {For-i} 
t=t+1 
 For j=1 to m % Parameter updating – Maximization step 

o Set 

𝜽𝑗
(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽𝑗  𝛾𝑗𝑖

(𝑡−1) ln 𝑝 𝒙𝑖 𝑗; 𝜽𝑗
𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

 

𝑃𝑗
(𝑡) =

1

𝑁
 𝛾𝑗𝑖

(𝑡−1)
𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

- End {For-j} 
 

• Until a termination criterion is met. 

Probabilistic CFO clustering algorithms 
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Remark: The above algorithm is an instance of the more general Expectation-
Maximization (EM) framework. 
GPrAS – The case of normal pdfs 
Each cluster is modeled by a normal distribution 

𝑝 𝒙 𝑗; 𝜇𝑗 , Σ𝑗 =
1

(2𝜋)𝑙|Σ𝑗|
1/2

exp −
(𝒙 − 𝝁𝑗)

𝑇Σ𝑗
−1(𝒙 − 𝝁𝑗)

2
, 𝑗 = 1,…𝑚 

In this case 𝜽𝑗 = {𝝁𝑗 , Σ𝑗}. 

 

{𝝁𝑗 , Σ𝑗} = 𝑎𝑟𝑔𝑚𝑎𝑥{𝝁𝑗,Σ𝑗} 𝑃(𝑗|𝒙𝒊) ln 𝑝 𝒙𝑖 𝑗; 𝝁𝑗 , Σ𝑗
𝑁

𝑖=1
 

Equating the gradient of the above function wrt 𝝁𝑗 , Σ𝑗 to 0 and O, respectively, 

we have 

𝝁𝑗 =
 𝑃(𝑗|𝒙𝒊)𝒙𝒊
𝑁
𝑖=1

 𝑃(𝑗|𝒙𝒊) 
𝑁
𝑖=1

 

 

𝛴𝑗 =
 𝑃 𝑗 𝒙𝒊 (𝒙𝒊−𝝁𝒋)
𝑁
𝑖=1 (𝒙𝒊−𝝁𝒋)

𝑻

 𝑃(𝑗|𝒙𝒊) 
𝑁
𝑖=1
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GPrAS – The normal pdfs case 
• Choose 𝝁𝑗(0), Σ𝑗(0), 𝑃𝑗(0) as initial estimates for 𝝁𝑗,Σ𝑗 , 𝑃𝑗 , resp. , 𝑗 = 1,… ,𝑚 

• t=0 
• Repeat 

 For i=1 to N  % Expectation step 
o For j=1 to m 

                                    𝑃(𝑗|𝒙𝑖; 𝛩
𝑡 , 𝑃(𝑡)) =

𝑝(𝑥𝑖|𝑗;𝜃𝑗
𝑡 )𝑃𝑗

(𝑡)

 𝑝(𝑥𝑖|𝑞;𝜃𝑞
𝑡 )𝑃𝑞

(𝑡)𝑚
𝑞=1

≡ 𝛾𝑗𝑖
(𝑡) 

o End {For-j} 
 End {For-i} 
t=t+1 
 For j=1 to m % Parameter updating – Maximization step 

o Set 

𝝁𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)𝒙𝒊

𝑁
𝑖=1

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

, 𝛴𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)(𝒙𝒊−𝝁𝒋)

𝑁
𝑖=1 (𝒙𝒊−𝝁𝒋)

𝑻

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

 𝑗 = 1,… ,𝑚 

 

𝑃𝑗
(𝑡) =

1

𝑁
 𝛾𝑗𝑖

(𝑡−1)
𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

- End {For-j} 
• Until a termination criterion is met. 
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GPrAS – The normal pdfs case 
• Choose 𝝁𝑗(0), Σ𝑗(0), 𝑃𝑗(0) as initial estimates for 𝝁𝑗,Σ𝑗 , 𝑃𝑗 , resp. , 𝑗 = 1,… ,𝑚 

• t=0 
• Repeat 

 For i=1 to N  % Expectation step 
o For j=1 to m 

                                    𝑃(𝑗|𝒙𝑖; 𝛩
𝑡 , 𝑃(𝑡)) =

𝑝(𝑥𝑖|𝑗;𝜃𝑗
𝑡 )𝑃𝑗

(𝑡)

 𝑝(𝑥𝑖|𝑞;𝜃𝑞
𝑡 )𝑃𝑞

(𝑡)𝑚
𝑞=1

≡ 𝛾𝑗𝑖
(𝑡) 

o End {For-j} 
 End {For-i} 
t=t+1 
 For j=1 to m % Parameter updating – Maximization step 

o Set 

𝝁𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)𝒙𝒊

𝑁
𝑖=1

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

, 𝛴𝑗
(𝑡) =

 𝛾𝑗𝑖
(𝑡−1)(𝒙𝒊−𝝁𝒋)

𝑁
𝑖=1 (𝒙𝒊−𝝁𝒋)

𝑻

 𝛾𝑗𝑖
(𝑡−1)𝑁

𝑖=1

 𝑗 = 1,… ,𝑚 

 

𝑃𝑗
(𝑡) =

1

𝑁
 𝛾𝑗𝑖

(𝑡−1)
𝑁

𝑖=1
, 𝑗 = 1,… ,𝑚 

- End {For-j} 
• Until a termination criterion is met. 
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Remark: 
• The above scheme is more computationally demanding since it 

requires the inversion of the m covariance matrices at each iteration 
step. Two ways to deal with this problem are: 
 The use of a single covariance matrix for all clusters. 
 The use of different diagonal covariance matrices. 

 
Example: (a) Consider three two-dimensional normal distributions with 
mean values: 
                              μ1=[1, 1]T, μ2=[3.5, 3.5]T, μ3=[6, 1]T  
    and covariance matrices 
 
 
 
    respectively. 
 
    A group of 100 vectors stem from each distribution. These form the 
data set X. 

,
17.0

7.01
,

13.0

3.01
,
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321 
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Confusion matrix: 
Cluster 1 Cluster 2 Cluster 3 

1st distribution 99 0 1 

2nd distribution 0 100 0 

3rd distribution 3 4 93 

The algorithm reveals accurately the underlying structure. 

The data set Results of GMDAS 
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     (b) The same as (a) but now μ1=[1, 1]T, μ2=[2, 2]T, μ3=[3, 1]T (The clusters are 
closer). 

   Confusion matrix: Cluster 1 Cluster 2 Cluster 3 

1st distribution 85 4 11 

2nd distribution 35 56 9 

3rd distribution 26 0 74 

   The algorithm reveals the underlying structure less accurately. 

The data set Results of GMDAS 
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Initially: 
𝜃1 0 = [0, 5]Τ 
𝜃2 0 = [0, 6]Τ 
P1 0 = 0.1 
𝑃2 0 = 0.9 

 

𝒙1 = [0 0]𝑇 , 𝒙2 = [3 0]𝑇 , 𝒙3 = [0 3]𝑇 , 𝒙4 = [12 12]𝑇 , 𝒙5 = [15 12]𝑇 , 𝒙6 = [12 15]𝑇 

ln 𝑝(𝑋; 𝛩, 𝑃) =  𝑃 1 𝒙𝑖 ln 𝑝 𝒙𝑖 1; 𝜽1 𝑃1 + 𝑃 2 𝒙𝑖 ln 𝑝 𝒙𝑖 2; 𝜽2 𝑃2
𝑁

𝑖=1
 

𝑝 𝒙 1 =
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽1

2 ,   𝑃 1 𝒙 =
𝑝 𝒙 1 𝑃1
𝑝(𝒙)

 

𝑝 𝒙 2 =
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽2

2 , 𝑃 2 𝒙 =
𝑝 𝒙 2 𝑃2
𝑝(𝒙)

 

𝑝 𝒙 = 𝑃1𝑝 𝒙 1 + 𝑃2𝑝 𝒙 2 = 𝑃1
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽1

2 + 𝑃2
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽2

2  
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𝒙1 = [0 0]𝑇 , 𝒙2 = [3 0]𝑇𝒙3 = [0 3]𝑇 , 𝒙4 = [12 12]𝑇 , 𝒙5 = [15 12]𝑇 , 𝒙6 = [12 15]𝑇 

1st iteration: 
A posteriori probs 

𝜽1 1 = [1.1572    0.6906]Τ 
𝜽2 1 = [11.1864   11.5207]Τ 

P1 1 = 0.4174 
𝑃2 1 = 0.5826 

𝑝 𝒙 = 𝑃1𝑝 𝒙 1 + 𝑃2𝑝 𝒙 2 = 

𝑃1
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽1

2 + 𝑃2
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽2

2  

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 

𝑃(1|𝑥) 0.9645 0.9645 0.5751 0.0002 0.0002 0.0000 

𝑃(2|𝑥) 0.0355 0.0355 0.4249 0.9998 0.9998 1.0000 

𝑃 1 𝒙 =
𝑝 𝒙 1 𝑃1
𝑝(𝒙)

, 𝑃 2 𝒙 =
𝑝 𝒙 2 𝑃2
𝑝(𝒙)
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𝒙1 = [0 0]𝑇 , 𝒙2 = [3 0]𝑇𝒙3 = [0 3]𝑇 , 𝒙4 = [12 12]𝑇 , 𝒙5 = [15 12]𝑇 , 𝒙6 = [12 15]𝑇 

2nd iteration: 
A posteriori probs 

𝜽1 2 = [1 1]Τ 
𝜽2 2 = [13 13]Τ 

P1 2 = 0.5 
𝑃2 2 = 0.5 

𝑝 𝒙 = 𝑃1𝑝 𝒙 1 + 𝑃2𝑝 𝒙 2 = 

𝑃1
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽1

2 + 𝑃2
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽2

2  

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 

𝑃(1|𝑥) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

𝑃(2|𝑥) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝑃 1 𝒙 =
𝑝 𝒙 1 𝑃1
𝑝(𝒙)

, 𝑃 2 𝒙 =
𝑝 𝒙 2 𝑃2
𝑝(𝒙)
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𝒙1 = [0 0]𝑇 , 𝒙2 = [3 0]𝑇𝒙3 = [0 3]𝑇 , 𝒙4 = [12 12]𝑇 , 𝒙5 = [15 12]𝑇 , 𝒙6 = [12 15]𝑇 

3rd iteration: 
A posteriori probs 

𝜽1 3 = [1 1]Τ 
𝜽2 3 = [13 13]Τ 

P1 3 = 0.5 
𝑃2 3 = 0.5 

𝑝 𝒙 = 𝑃1𝑝 𝒙 1 + 𝑃2𝑝 𝒙 2 = 

𝑃1
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽1

2 + 𝑃2
1

2π
𝑒𝑥𝑝 −0.5 ∙ 𝒙 − 𝜽2

2  

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 

𝑃(1|𝑥) 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 

𝑃(2|𝑥) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 

𝑃 1 𝒙 =
𝑝 𝒙 1 𝑃1
𝑝(𝒙)

, 𝑃 2 𝒙 =
𝑝 𝒙 2 𝑃2
𝑝(𝒙)

 


